专题三-尺规作图

合集下载

尺规作图专题详尽归纳

尺规作图专题详尽归纳

考点名称:尺规作图【学习目标】1.了解什么是尺规作图.2.学会用尺规作图法完成下列五种基本作图:(1)画一条线段等于已知线段;(2)画一个角等于已知角;(3)画线段的垂直平分线;(4)过已知点画已知直线的垂线;(5)画角平分线.3.了解五种基本作图的理由.4.学会使用精练、准确的作图语言叙述画图过程.5.学会利用基本作图画三角形等较简单的图形.6.通过画图认识图形的本质,体会图形的内在美.【基础知识精讲】1.尺规作图:①定义:限定只用直尺和圆规来完成的画图,称为尺规作图.注意:这里所指的直尺是没有刻度的直尺,由于免去了度量,因此,用尺规作图法画出的图形的精确度更高,它在工程绘图等领域应用比较广泛.②步骤:(1)根据给出的条件和求作的图形,写出已知和求作部分;(2)分析作图的方法和过程;(3)用直尺和圆规进行作图; (4)写出作法步骤,即作法。

(根据题目要求来定是否需要写出作法)2.尺规作图中的最基本、最常用的作图称为基本作图.任何尺规作图的步骤均可分解为以下五种.3.基本作图共有五种:(1)画一条线段等于已知线段.如图24-4-1,已知线段DE.求作:一条线段等于已知线段.作法:①先画射线AB.②然后用圆规在射线AB上截取AC=MN.线段AC就是所要作的线段.(2)作一个角等于已知角.如图24-4-2,已知∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:①作射线O′A′;②以点O为圆心,以任意长为半径作弧,交OA于C,交OB于D.③以点O′为圆心,以OC长为半径作弧,交O′A′于C′.④以点C′为圆心,以CD为半径作弧,交前弧于D′.⑤经过点D′作射线O′B′,∠A′O′B′就是所求的角.(3)作线段的垂直平分线.如图24-4-3,已知线段AB.求作:线段AB的垂直平分线.作法:①分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于点C和D.②作直线CD.直线CD就是线段AB的垂直平分线.注意:直线CD与线段AB的交点,就是AB的中点.(4)经过一点作已知直线的垂线.a.经过已知直线上的一点作这条直线的垂线,如图24-4-4.已知:直线AB和AB上一点C,求作:AB的垂线,使它经过点C.作法:作平角ACB的平分线CF.直线CF就是所求的垂线,如图24-4-4.b.经过已知直线外一点作这条直线的垂线.如图24-4-5,已知:直线AB和AB外一点C.求作:AB的垂线,使它经过点C.作法:①任意取一点K,使K和C在AB的两旁.②以C为圆心,CK长为半径作弧,交AB于点D和E.③分别以D和E为圆心,大于的长为半径作弧,两弧交于点F.④作直线CF.直线CF就是所求的垂线.注意:经过已知直线上的一点,作这条直线的垂线转化成画线段垂直平分线的方法解决.(5)平分已知角.如图24-4-6,已知∠AOB.求作:射线OC,使∠AOC=∠BOC.作法:①在OA和OB上,分别截取OD、OE.②分别以D、E为圆心,大于的长为半径作弧,在∠AOB内,两弧交于点C.③作射线OC.OC就是所求的射线.注意:以上五种基本作图是尺规作图的基础,一些复杂的尺规作图,都是由基本作图组成的,同学扪要高度重视,努力把这部分内容学习好.通过这一节的学习,同学们要掌握下列作图语言:(1)过点×和点×画射线××,或画射线××.(2)在射线××上截取××=××.(3)以点×为圆心,××为半径画弧.(4)以点×为圆心,××为半径画弧,交××于点×.(5)分别以点×,点×为圆心,以××,××为半径作弧,两弧相交于点×.(6)在射线××上依次截取××=××=××.(7)在∠×××的外部或内部画∠×××=∠×××.注意:学过基本作图后,在作较复杂图时,属于基本作图的地方,不必重复作图的详细过程,只用一句话概括叙述就可以了.如:(1)画线段××=××.(2)画∠×××=∠×××.(3)画××平分∠×××,或画∠×××的角平分线.(4)过点×画××⊥××,垂足为点×.(5)作线段××的垂直平分线××,等等.但要注意保留全部的作图痕迹,包括基本作图的操作程序,不能因为作法的叙述省略而作图就不按程序操作,只有保留作图痕迹,才能反映出作图的操作是否合理.【经典例题精讲】例1已知两边及其夹角,求作三角形.如图24-4-7,已知:∠α,线段a、b,求作:△ABC,使∠A=∠α,AB=a,AC=b.作法:①作∠MAN=∠α.②在射线AM、AN上分别作线段AB=a,AC=b.③连结BC.如图24-4-8,△ABC即为所求作的三角形.注意:一般几何作图题,应有下面几个步骤:已知、求作、作法,比较复杂的作图题,在作图之前可根据需要作一些分析.例2如图24-4-9,已知底边a,底边上的高h,求作等腰三角形.已知线段a、h.求作:△ABC,使AB=AC,且BC=a,高AD=h.分析:可先作出底边BC,根据等腰三角形的三线合一的性质,可再作出BC的垂直平分线,从而作出BC边上的高AD,分别连结AB和AC,即可作出等腰△ABC来.作法:(1)作线段BC=a.(2)作线段BC的垂直平分线MN,MN与BC交于点D.(3)在MN上截取DA,使DA=h.(4)连结AB、AC.如图24-4-10,△ABC即为所求的等腰三角形.例3已知三角形的一边及这边上的中线和高,作三角形.如图24-4-11,已知线段a,m,h(m>h).求作:△ABC使它的一边等于a,这边上的中线和高分别等于m和h(m>h).分析:如图24-4-12,假定△ABC已作出,其中BC=a,中线AD=m,高AE=h,在△AED中AD=m,AE=h,∠AED=90°,因此这个Rt△AED可以作出来(△AED为奠基三角形).当Rt△AED作出后,由的关系可作出点B和点C,于是△ABC即可得到.作法:(1)作△AED,使∠AED=90°,AE=h,AD=m.(2)延长ED到B,使.(3)在DE或BE的延长线上取.(4)连结AB、AC.则△ABC即为所求作的三角形.注意:因为三角形中,一边上的高不能大于这边上的中线,所以如果h>m,作图题无解;若m=h,则作出的图形为等腰三角形.例4如图24-4-13,已知线段a.求作:菱形ABCD,使其半周长为a,两邻角之比为1∶2.分析:因为菱形四边相等,“半周长为a”就是菱形边长为,为此首先要将线段a等分,又因为菱形对边平行,则同旁内角互补,由“邻角之比为1∶2”可知,菱形较小内角为60°,则菱形较短对角线将菱形分成两个全等的等边三角形.所以作图时只要作出两个有公共边的等边三角形,则得到的四边形即为所求的菱形ABCD.作法:(1)作线段a的垂直平分线,等分线段a.(2)作线段AC,使.(3)分别以A、C为圆心,为半径,在AC的两侧画弧,两弧分别交于B,D.(4)分别连结AB、BC、CD、DA得到四边形ABCD,则四边形ABCD为所求作的菱形(如图24-4-14).注意:这种通过先画三角形,然后再画出全部图形的方法即为“三角形奠基法”.例5如图24-4-15,已知∠AOB和C、D两点.求作一点P,使PC=PD,且使点P到∠AOB的两边OA、OB的距离相等.分析:要使PC=PD,则点P在CD的垂直平分线上,要使点P到∠AOB的两边距离相等,则P应在∠AOB的角平分线上,那么满足题设的P点就是垂直平分线与角平分线的交点了.作法:(1)连结CD.(2)作线段CD的中垂线l.(3)作∠AOB的角平分线OM,交l于点P,P点为所求.注意:这类定点问题应需确定两线,两直线的交点即为定点,当然这两直线应分别满足题目的不同要求.【中考考点】例6 (2000·安徽省)如图24-4-16,直线表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A.一处 B.二处C.三处 D.四处分析:到直线距离相等的点在相交所构成的角的平分线上,可利用作角平分线的方法找到这些点.解:分别作相交所构成的角平分线,共可作出六条,三条角平分线相交的交点共有四个.答案:D.注意:本题应用了角平分线的性质,在具体作图时,不可只作出位于中心位置的一处,而要全面考虑其他满足条件的点.例7 (2002·陕西省)如图24-4-17,△ABC是一块直角三角形余料,∠C=90°,工人师傅要把它加工成—个正方形零件,使C为正方形的—个顶点,其他三个顶点分别在AB、BC、AC边上.(1)试协助工人师傅用尺规画出裁割线(不写作法,保留作图痕迹);(2)工人师傅测得AC=80 cm,BC=120cm,请帮助工人师傅算出按(1)题所画裁割线加工成的正方形零件的边长.解:(1)作∠ACB的平分线与AB的交点E即为正方形—顶点,作CE线段的中垂线HK 与AC、BC的交点F、D即为所作正方形另两个顶点,如图24-4-17.(2)设这个正方形零件的边长为x cm,∵DE∥AC,∴,∴.∴x=48.答:这个正方形零件的边长为48cm.注意:本题是几何作图和几何计算相结合题目,要求读者对基本作图务必掌握,同时对作出图形的性质要清楚.例8 (2002·山西省)如图24-4-18①,有一破残的轮片(不小于半个轮),现要制作一个与原轮片同样大小的圆形零件,请你根据所学的有关知识,设计两种方案,确定这个圆形零件的半径.分析:欲确定这个圆形零件的半径,可以借助三角板,T形尺或尺规作图均可,图②中是这个零件的半径,图③中OB是这个零件半径.解:如图24-4-18②③所示.【常见错误分析】例9如图24-4-19,已知线段a、b、h.求作△ABC,使BC=a,AC=b,BC边上的高AD=h.并回答问题,你作出的三角形唯一吗?从中你可以得到什么结论呢?错解:(1)作法:①作Rt△ADC,使AD=h,AC=b.②在直线CD上截取CB=a.如图24-4-20,则△ABC就是所求作的三角形.(2)作出的三角形唯一.(3)得出结论:有两边及一边上的高对应相等的两三角形全等.误区分析:本题错解在于忽略了三角形的高可能在三角形内部也可能在三角形的外部.正解:如图24-4-21,作法:①作Rt△ADC,使AD=h,AC=b.②在直线CD上截取CB=a(在点C的两侧).则△ABC,△AB′C都是所求作三角形.(2)作出的三角形不唯一.(3)得出结论有两边及—边上的高对应相等的两三角形不一定全等.注意:与三角形的高有关的题目应慎之又慎.【学习方法指导】学习基本作图,主要是运用观察法,通过具体的操作,了解各种基本作图的步骤,掌握作图语言.【规律总结】画复杂的图形时,如一时找不到作法,—般是先画出一个符合所设条件的草图,再根据这个草图进行分析,逐步寻找画图步骤.有时,也可以根据已知条件和基本作图,先作局部三角形,再以此为基础,根据有关条件画出其余部分,从而完成全图,这种方法称为三角形奠基法.拓展: 1.利用基本作图作三角形:(1)已知三边作三角形; (2)已知两边及其夹角作三角形; (3)已知两角及其夹边作三角形; (4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形.2.与圆有关的尺规作图:(1)过不在同一直线上的三点作圆(即三角形的外接圆). (2)作三角形的内切圆.(3)作圆的内接正方形和正六边形.附件:尺规作图简史:“规”就是圆规,是用来画圆的工具,在我国古代甲骨文中就有“规”这个字.“矩”就像现在木工使用的角尺,由长短两尺相交成直角而成,两者间用木杠连接以使其牢固,其中短尺叫勾,长尺叫股.矩的使用是我国古代的一个发明,山东历城武梁祠石室造像中就有“伏羲氏手执矩,女娲氏手执规”之图形.矩不仅可以画直线、直角,加上刻度可以测量,还可以代替圆规.甲骨文中也有矩字,这可追溯到大禹治水(公元前2000年)前.《史记》卷二记载大禹治水时“左准绳,右规矩”.赵爽注《周髀算经》中有“禹治洪水,……望山川之形,定高下之势,……乃勾股之所由生也.”意即禹治洪水,要先测量地势的高低,就必定要用勾股的道理.这也说明矩起源于很远的中国古代.春秋时代也有不少著作涉及规矩的论述,《墨子》卷七中说“轮匠(制造车子的工匠)执其规矩,以度天下之方圆.”《孟子》卷四中说“离娄(传说中目力非常强的人)之明,公输子(即鲁班,传说木匠的祖师)之巧,不以规矩,不能成方圆.”可见,在春秋战国时期,规矩已被广泛地用于作图、制作器具了.由于我国古代的矩上已有刻度,因此使用范围较广,具有较大的实用性.古代希腊人较重视规、矩在数学中训练思维和智力的作用,而忽视规矩的实用价值.因此,在作图中对规、矩的使用方法加以很多限制,提出了尺规作图问题.所谓尺规作图,就是只有限次地使用没有刻度的直尺和圆规进行作图.古希腊的安那萨哥拉斯首先提出作图要有尺寸限制.他因政治上的纠葛,被关进监狱,并被判处死刑.在监狱里,他思考改圆成方以及其他有关问题,用来打发令人苦恼的无所事事的生活.他不可能有规范的作图工具,只能用一根绳子画圆,用随便找来的破木棍作直尺,当然这些尺子上不可能有刻度.另外,对他来说,时间是不多了,因此他很自然地想到要有限次地使用尺规解决问题.后来以理论形式具体明确这个规定的是欧几里德的《几何原本》.由于《几何原本》的巨大影响,希腊人所崇尚的尺规作图也一直被遵守并流传下来.由于对尺规作图的限制,使得一些貌似简单的几何作图问题无法解决.最著名的是被称为几何三大问题的三个古希腊古典作图难题:立方倍积问题、三等分任意角问题和化圆为方问题.当时很多有名的希腊数学家,都曾着力于研究这三大问题,虽然借助于其他工具或曲线,这三大难题都可以解决,但由于尺规作图的限制,却一直未能如愿以偿.以后两千年来,无数数学家为之绞尽脑汁,都以失败而告终.直到1637年笛卡尔创立了解析几何,关于尺规作图的可能性问题才有了准则.到了1837年万芝尔首先证明立方倍积问题和三等分任意角问题都属于尺规作图不可能问题.1882年林德曼证明了π是无理数,化圆为方问题不可能用尺规作图解决,这才结束了历时两千年的数学难题公案.。

2020年中考数学必考考点 专题32 尺规作图(含解析)

2020年中考数学必考考点 专题32 尺规作图(含解析)

专题32 尺规作图问题专题知识回顾1.尺规作图的定义:只用不带刻度的直尺和圆规通过有限次操作,完成画图的一种作图方法.尺规作图可以要求写作图步骤,也可以要求不一定要写作图步骤,但必须保留作图痕迹。

2.尺规作图的五种基本情况:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作已知线段的垂直平分线;(4)作已知角的角平分线;(5)过一点作已知直线的垂线。

3.对尺规作图题解法:写出已知,求作,作法(不要求写出证明过程)并能给出合情推理。

4.中考要求:(1)能完成以下基本作图:作一条线段等于已知线段,作一个角等于已知角,作角的平分线,作线段的垂直平分线.(2)能利用基本作图作三角形:已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形.(3)能过一点、两点和不在同一直线上的三点作圆.(4)了解尺规作图的步骤,对于尺规作图题,会写已知、求作和作法(不要求证明).专题典型题考法及解析【例题1】(2019•湖南长沙)如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是()A.20°B.30°C.45°D.60°【答案】B【解析】根据内角和定理求得∠BAC=60°,由中垂线性质知DA=DB,即∠DAB=∠B=30°,从而得出答案.在△ABC中,∵∠B=30°,∠C=90°,∴∠BAC=180°﹣∠B﹣∠C=60°,由作图可知MN为AB的中垂线,∴DA=DB,∴∠DAB=∠B=30°,∴∠CAD=∠BAC﹣∠DAB=30°。

【例题2】(2019山东枣庄)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【答案】见解析。

专题三 尺规作图、图形变换

专题三 尺规作图、图形变换

专题三尺规作图、图形变换、投影与视图一.五种基本尺规作图1.如图,利用尺规,在△ABC的边AC上方作∠CAE=∠ACB,在射线AE上截取AD=BC,连接CD,并证明:C D∥AB(尺规作图要求保留作图痕迹,不写作法)2.(2016湖南省怀化市)如图,在Rt△ABC中,∠BAC=90°.(1)先作∠ACB的平分线交AB边于点P,再以点P为圆心,P A长为半径作⊙P;(要求:尺规作图,保留作图痕迹,不写作法)(2)请你判断(1)中BC与⊙P的位置关系,并证明你的结论.3.如图,AE∥BF,AC平分∠BAE,交BF于C.(1)尺规作图:过点B作AC的垂线,交AC于O,交AE于D,(保留作图痕迹,不写作法);(2)在(1)的图形中,找出两条相等的线段,并予以证明.4. 如图,已知△ABC中,∠ABC=90°.(1)尺规作图:按下列要求完成作图(保留作图痕迹,请标明字母)①作线段AC的垂直平分线l,交AC于点O;②连接BO并延长,在BO的延长线上截取OD,使得OD=OB;③连接DA、DC.(2)判断四边形ABCD的形状,并说明理由.5.如图,已知⊙O,用尺规作⊙O的内接正四边形ABCD和过点A作⊙O的切线.(写出结论,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)6.如图,△ABC是等边三角形,D是BC的中点.(1)作图:①过B作AC的平行线BH;②过D作BH的垂线,分别交AC,BH,AB的延长线于E,F,G.(2)在图中找出一对全等的三角形,并证明你的结论.二.与圆有关的尺规作图如图,在△ABC中,利用尺规作图,在图1,图2中分别画出△ABC的外接圆,内切圆(不写作法,必须保留作图痕迹)(图1)(图2)三.三角形的高、中线在下列三角形中,分别画出AB边上的高、中线.B 四.图形变换与坐标变换1.如图所示,正方形网格中,△ABC 为格点三角形(即三角形的顶点都在格点上): ①把△ABC 沿BA 方向平移,请在网格中画出当点A 移动到点A 1时的△A 1B 1C 1; ②把△A 1B 1C 1绕点A 1按逆时针方向旋转90°后得到△A 2B 2C 2,如果网格中小正方形的边长为1,求点B 1旋转到B 2的路径长.2.如图,在平面直角坐标系网格中,将△ABC 进行位似变换得到△A 1B 1C 1.(1)△A 1B 1C 1与△ABC 的位似比是 ;(2)画出△A 1B 1C 1关于y 轴对称的△A 2B 2C 2;(3)设点P (a ,b )为△ABC 内一点,则依上述两次变换后,点P 在△A 2B 2C 2内的对应点 P 2的坐标是 .3.已知:如图,□ABCD.(1)画出□A 1B 1C 1D 1使□A 1B 1C 1D 1与□ABCD 关于直线MN 对称;(2)画出□A 2B 2C 2D 2,使□A 2B 2C 2D 2与□ABCD 关于点O 中心对称;(3) □A 1B 1C 1D 1与□A 2B 2C 2D 2是对称图形吗?若是,请在图上画出对称轴或对称中心五.投影与视图1、如图所示,在平整的地面上,有若干个完全相同的小正方体堆成一个几何体.(1)这个几何体由个小正方体组成,(2)请画出这个几何体的三视图.2、如图,小明与同学合作利用太阳光线测量旗杆的高度,身高1.6m的小明落在地面上的影长为BC=2.4m.(1)请你在图中画出旗杆在同一时刻阳光照射下落在地面上的影子EG;(2)若小明测得此刻旗杆落在地面的影长EG=16m,请求出旗杆DE的高度.3.作出下列图形的三视图.。

(完整)尺规作图专题详尽归纳,推荐文档

(完整)尺规作图专题详尽归纳,推荐文档

考点名称:尺规作图【学习目标】1.了解什么是尺规作图.2.学会用尺规作图法完成下列五种基本作图:(1)画一条线段等于已知线段;(2)画一个角等于已知角;(3)画线段的垂直平分线;(4)过已知点画已知直线的垂线;(5)画角平分线.3.了解五种基本作图的理由.4.学会使用精练、准确的作图语言叙述画图过程.5.学会利用基本作图画三角形等较简单的图形.6.通过画图认识图形的本质,体会图形的内在美.【基础知识精讲】1.尺规作图:①定义:限定只用直尺和圆规来完成的画图,称为尺规作图.注意:这里所指的直尺是没有刻度的直尺,由于免去了度量,因此,用尺规作图法画出的图形的精确度更高,它在工程绘图等领域应用比较广泛.②步骤:(1)根据给出的条件和求作的图形,写出已知和求作部分;(2)分析作图的方法和过程;(3)用直尺和圆规进行作图; (4)写出作法步骤,即作法。

(根据题目要求来定是否需要写出作法)2.尺规作图中的最基本、最常用的作图称为基本作图.任何尺规作图的步骤均可分解为以下五种.3.基本作图共有五种:(1)画一条线段等于已知线段.如图24-4-1,已知线段DE.求作:一条线段等于已知线段.作法:①先画射线AB.②然后用圆规在射线AB上截取AC=MN.线段AC就是所要作的线段.(2)作一个角等于已知角.如图24-4-2,已知∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:①作射线O′A′;②以点O为圆心,以任意长为半径作弧,交OA于C,交OB于D.③以点O′为圆心,以OC长为半径作弧,交O′A′于C′.④以点C′为圆心,以CD为半径作弧,交前弧于D′.⑤经过点D′作射线O′B′,∠A′O′B′就是所求的角.(3)作线段的垂直平分线.如图24-4-3,已知线段AB.求作:线段AB的垂直平分线.作法:①分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于点C和D.②作直线CD.直线CD就是线段AB的垂直平分线.注意:直线CD与线段AB的交点,就是AB的中点.(4)经过一点作已知直线的垂线.a.经过已知直线上的一点作这条直线的垂线,如图24-4-4.已知:直线AB和AB上一点C,求作:AB的垂线,使它经过点C.作法:作平角ACB的平分线CF.直线CF就是所求的垂线,如图24-4-4.b.经过已知直线外一点作这条直线的垂线.如图24-4-5,已知:直线AB和AB外一点C.求作:AB的垂线,使它经过点C.作法:①任意取一点K,使K和C在AB的两旁.②以C为圆心,CK长为半径作弧,交AB于点D和E.③分别以D和E为圆心,大于的长为半径作弧,两弧交于点F.④作直线CF.直线CF就是所求的垂线.注意:经过已知直线上的一点,作这条直线的垂线转化成画线段垂直平分线的方法解决.(5)平分已知角.如图24-4-6,已知∠AOB.求作:射线OC,使∠AOC=∠BOC.作法:①在OA和OB上,分别截取OD、OE.②分别以D、E为圆心,大于的长为半径作弧,在∠AOB内,两弧交于点C.③作射线OC.OC就是所求的射线.注意:以上五种基本作图是尺规作图的基础,一些复杂的尺规作图,都是由基本作图组成的,同学扪要高度重视,努力把这部分内容学习好.通过这一节的学习,同学们要掌握下列作图语言:(1)过点×和点×画射线××,或画射线××.(2)在射线××上截取××=××.(3)以点×为圆心,××为半径画弧.(4)以点×为圆心,××为半径画弧,交××于点×.(5)分别以点×,点×为圆心,以××,××为半径作弧,两弧相交于点×.(6)在射线××上依次截取××=××=××.(7)在∠×××的外部或内部画∠×××=∠×××.注意:学过基本作图后,在作较复杂图时,属于基本作图的地方,不必重复作图的详细过程,只用一句话概括叙述就可以了.如:(1)画线段××=××.(2)画∠×××=∠×××.(3)画××平分∠×××,或画∠×××的角平分线.(4)过点×画××⊥××,垂足为点×.(5)作线段××的垂直平分线××,等等.但要注意保留全部的作图痕迹,包括基本作图的操作程序,不能因为作法的叙述省略而作图就不按程序操作,只有保留作图痕迹,才能反映出作图的操作是否合理.【经典例题精讲】例1已知两边及其夹角,求作三角形.如图24-4-7,已知:∠α,线段a、b,求作:△ABC,使∠A=∠α,AB=a,AC=b.作法:①作∠MAN=∠α.②在射线AM、AN上分别作线段AB=a,AC=b.③连结BC.如图24-4-8,△ABC即为所求作的三角形.注意:一般几何作图题,应有下面几个步骤:已知、求作、作法,比较复杂的作图题,在作图之前可根据需要作一些分析.例2如图24-4-9,已知底边a,底边上的高h,求作等腰三角形.已知线段a、h.求作:△ABC,使AB=AC,且BC=a,高AD=h.分析:可先作出底边BC,根据等腰三角形的三线合一的性质,可再作出BC的垂直平分线,从而作出BC边上的高AD,分别连结AB和AC,即可作出等腰△ABC来.作法:(1)作线段BC=a.(2)作线段BC的垂直平分线MN,MN与BC交于点D.(3)在MN上截取DA,使DA=h.(4)连结AB、AC.如图24-4-10,△ABC即为所求的等腰三角形.例3已知三角形的一边及这边上的中线和高,作三角形.如图24-4-11,已知线段a,m,h(m>h).求作:△ABC使它的一边等于a,这边上的中线和高分别等于m和h(m>h).分析:如图24-4-12,假定△ABC已作出,其中BC=a,中线AD=m,高AE=h,在△AED中AD=m,AE=h,∠AED=90°,因此这个Rt△AED可以作出来(△AED为奠基三角形).当Rt△AED作出后,由的关系可作出点B和点C,于是△ABC即可得到.作法:(1)作△AED,使∠AED=90°,AE=h,AD=m.(2)延长ED到B,使.(3)在DE或BE的延长线上取.(4)连结AB、AC.则△ABC即为所求作的三角形.注意:因为三角形中,一边上的高不能大于这边上的中线,所以如果h>m,作图题无解;若m=h,则作出的图形为等腰三角形.例4如图24-4-13,已知线段a.求作:菱形ABCD,使其半周长为a,两邻角之比为1∶2.分析:因为菱形四边相等,“半周长为a”就是菱形边长为,为此首先要将线段a等分,又因为菱形对边平行,则同旁内角互补,由“邻角之比为1∶2”可知,菱形较小内角为60°,则菱形较短对角线将菱形分成两个全等的等边三角形.所以作图时只要作出两个有公共边的等边三角形,则得到的四边形即为所求的菱形ABCD.作法:(1)作线段a的垂直平分线,等分线段a.(2)作线段AC,使.(3)分别以A、C为圆心,为半径,在AC的两侧画弧,两弧分别交于B,D.(4)分别连结AB、BC、CD、DA得到四边形ABCD,则四边形ABCD为所求作的菱形(如图24-4-14).注意:这种通过先画三角形,然后再画出全部图形的方法即为“三角形奠基法”.例5如图24-4-15,已知∠AOB和C、D两点.求作一点P,使PC=PD,且使点P到∠AOB的两边OA、OB的距离相等.分析:要使PC=PD,则点P在CD的垂直平分线上,要使点P到∠AOB的两边距离相等,则P应在∠AOB的角平分线上,那么满足题设的P点就是垂直平分线与角平分线的交点了.作法:(1)连结CD.(2)作线段CD的中垂线l.(3)作∠AOB的角平分线OM,交l于点P,P点为所求.注意:这类定点问题应需确定两线,两直线的交点即为定点,当然这两直线应分别满足题目的不同要求.【中考考点】例6 (2000·安徽省)如图24-4-16,直线表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A.一处 B.二处C.三处 D.四处分析:到直线距离相等的点在相交所构成的角的平分线上,可利用作角平分线的方法找到这些点.解:分别作相交所构成的角平分线,共可作出六条,三条角平分线相交的交点共有四个.答案:D.注意:本题应用了角平分线的性质,在具体作图时,不可只作出位于中心位置的一处,而要全面考虑其他满足条件的点.例7 (2002·陕西省)如图24-4-17,△ABC是一块直角三角形余料,∠C=90°,工人师傅要把它加工成—个正方形零件,使C为正方形的—个顶点,其他三个顶点分别在AB、BC、AC边上.(1)试协助工人师傅用尺规画出裁割线(不写作法,保留作图痕迹);(2)工人师傅测得AC=80 cm,BC=120cm,请帮助工人师傅算出按(1)题所画裁割线加工成的正方形零件的边长.解:(1)作∠ACB的平分线与AB的交点E即为正方形—顶点,作CE线段的中垂线HK 与AC、BC的交点F、D即为所作正方形另两个顶点,如图24-4-17.(2)设这个正方形零件的边长为x cm,∵DE∥AC,∴,∴.∴x=48.答:这个正方形零件的边长为48cm.注意:本题是几何作图和几何计算相结合题目,要求读者对基本作图务必掌握,同时对作出图形的性质要清楚.例8 (2002·山西省)如图24-4-18①,有一破残的轮片(不小于半个轮),现要制作一个与原轮片同样大小的圆形零件,请你根据所学的有关知识,设计两种方案,确定这个圆形零件的半径.分析:欲确定这个圆形零件的半径,可以借助三角板,T形尺或尺规作图均可,图②中是这个零件的半径,图③中OB是这个零件半径.解:如图24-4-18②③所示.【常见错误分析】例9如图24-4-19,已知线段a、b、h.求作△ABC,使BC=a,AC=b,BC边上的高AD=h.并回答问题,你作出的三角形唯一吗?从中你可以得到什么结论呢?错解:(1)作法:①作Rt△ADC,使AD=h,AC=b.②在直线CD上截取CB=a.如图24-4-20,则△ABC就是所求作的三角形.(2)作出的三角形唯一.(3)得出结论:有两边及一边上的高对应相等的两三角形全等.误区分析:本题错解在于忽略了三角形的高可能在三角形内部也可能在三角形的外部.正解:如图24-4-21,作法:①作Rt△ADC,使AD=h,AC=b.②在直线CD上截取CB=a(在点C的两侧).则△ABC,△AB′C都是所求作三角形.(2)作出的三角形不唯一.(3)得出结论有两边及—边上的高对应相等的两三角形不一定全等.注意:与三角形的高有关的题目应慎之又慎.【学习方法指导】学习基本作图,主要是运用观察法,通过具体的操作,了解各种基本作图的步骤,掌握作图语言.【规律总结】画复杂的图形时,如一时找不到作法,—般是先画出一个符合所设条件的草图,再根据这个草图进行分析,逐步寻找画图步骤.有时,也可以根据已知条件和基本作图,先作局部三角形,再以此为基础,根据有关条件画出其余部分,从而完成全图,这种方法称为三角形奠基法.拓展: 1.利用基本作图作三角形:(1)已知三边作三角形; (2)已知两边及其夹角作三角形; (3)已知两角及其夹边作三角形; (4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形.2.与圆有关的尺规作图:(1)过不在同一直线上的三点作圆(即三角形的外接圆). (2)作三角形的内切圆.(3)作圆的内接正方形和正六边形.附件:尺规作图简史:“规”就是圆规,是用来画圆的工具,在我国古代甲骨文中就有“规”这个字.“矩”就像现在木工使用的角尺,由长短两尺相交成直角而成,两者间用木杠连接以使其牢固,其中短尺叫勾,长尺叫股.矩的使用是我国古代的一个发明,山东历城武梁祠石室造像中就有“伏羲氏手执矩,女娲氏手执规”之图形.矩不仅可以画直线、直角,加上刻度可以测量,还可以代替圆规.甲骨文中也有矩字,这可追溯到大禹治水(公元前2000年)前.《史记》卷二记载大禹治水时“左准绳,右规矩”.赵爽注《周髀算经》中有“禹治洪水,……望山川之形,定高下之势,……乃勾股之所由生也.”意即禹治洪水,要先测量地势的高低,就必定要用勾股的道理.这也说明矩起源于很远的中国古代.春秋时代也有不少著作涉及规矩的论述,《墨子》卷七中说“轮匠(制造车子的工匠)执其规矩,以度天下之方圆.”《孟子》卷四中说“离娄(传说中目力非常强的人)之明,公输子(即鲁班,传说木匠的祖师)之巧,不以规矩,不能成方圆.”可见,在春秋战国时期,规矩已被广泛地用于作图、制作器具了.由于我国古代的矩上已有刻度,因此使用范围较广,具有较大的实用性.古代希腊人较重视规、矩在数学中训练思维和智力的作用,而忽视规矩的实用价值.因此,在作图中对规、矩的使用方法加以很多限制,提出了尺规作图问题.所谓尺规作图,就是只有限次地使用没有刻度的直尺和圆规进行作图.古希腊的安那萨哥拉斯首先提出作图要有尺寸限制.他因政治上的纠葛,被关进监狱,并被判处死刑.在监狱里,他思考改圆成方以及其他有关问题,用来打发令人苦恼的无所事事的生活.他不可能有规范的作图工具,只能用一根绳子画圆,用随便找来的破木棍作直尺,当然这些尺子上不可能有刻度.另外,对他来说,时间是不多了,因此他很自然地想到要有限次地使用尺规解决问题.后来以理论形式具体明确这个规定的是欧几里德的《几何原本》.由于《几何原本》的巨大影响,希腊人所崇尚的尺规作图也一直被遵守并流传下来.由于对尺规作图的限制,使得一些貌似简单的几何作图问题无法解决.最著名的是被称为几何三大问题的三个古希腊古典作图难题:立方倍积问题、三等分任意角问题和化圆为方问题.当时很多有名的希腊数学家,都曾着力于研究这三大问题,虽然借助于其他工具或曲线,这三大难题都可以解决,但由于尺规作图的限制,却一直未能如愿以偿.以后两千年来,无数数学家为之绞尽脑汁,都以失败而告终.直到1637年笛卡尔创立了解析几何,关于尺规作图的可能性问题才有了准则.到了1837年万芝尔首先证明立方倍积问题和三等分任意角问题都属于尺规作图不可能问题.1882年林德曼证明了π是无理数,化圆为方问题不可能用尺规作图解决,这才结束了历时两千年的数学难题公案.•。

专题三 与全等三角形相关的尺规作图

专题三 与全等三角形相关的尺规作图
AD = BC ,连接 CD ,并证明: CD ∥ AB . (保留作图痕迹,不写作法)
1
2
3
4
3.
过程性学习 (2024重庆北碚区期末)如图,矩形 ABCD 中, AC 为其对角
线,过点 B 作 BE ⊥ AC 于点 E .
(1)用直尺和圆规,作∠ CDF ,使∠ CDF =∠ ABE , DF 交 AC 于点 F ,交 BC 于点 G; (2)小明思考此时的 DF 是否会垂直 AC ,为了探究这个问题,小明尝试利用证明三 角形全等来推导 DF ⊥ AC . 根据小明的思路,完成以下填空:
第十二章 全等三角形
专题三 与全等三角形相关的尺规作图
建议用时:20分钟 1. 用尺规作图. 已知:如图,线段 a 及锐角∠α. 求作:△ ABC ,使∠ B =∠α, AB = BC = a .
`
1
2
3
4
2. 如图,利用尺规,在△ ABC 的边 AC 上方作∠ CAE =∠ ACB ,在射线 AE 上截取
1
2
3
4
AB ∥ CD
∠ AEB =∠ CFD ∠ AEB =90°
1
2
3
4
4. 在学习了全等三角形的判定方法“SAS”后,小明想:“SSA(即两边及其中一边 的对角对应相等)能否判定两个三角形全等呢?”带着这个问题,请同学们作如下 探索: (1)如图1,2,已知线段 a , b 及∠α,画△ ABC ,使∠ B =∠α, BC = a , AC = b ;(尺规作图,保留作图痕迹)
1
2
34Biblioteka (2)观察(1)中你所画的图形,你认为“两边及其中一边的对角对应相等的两个三角 形全等(SSA)”是真命题还是假命题? 解:(2)假命题.

初中数学专题讲解——尺规作图技巧+典型题全汇总!务必掌握

初中数学专题讲解——尺规作图技巧+典型题全汇总!务必掌握

初中数学专题讲解——尺规作图技巧+典型题全汇总!务必掌握
初中数学三大专题100道基础好题
初中数学尺规作图专题讲解
尺规作图是起源于古希腊的数学课题,是指用没有刻度的直尺和圆规作图。

其中直尺必须没有刻度,只能用来作直线、线段、射线或延长线段;圆规可以开至无限宽,但上面也不能有刻度,只能用来作圆和圆弧.因此,尺规作图与一般的画图不同,一般画图可以动用一切画图工具,包括三角尺、量角器等,在操作过程中可以度量,但尺规作图在操作过程中是不可以度量的.
1、尺规作图规范用语
2、尺规作图基本步骤
3、五种基础的尺规作图题型(掌握基础才能挑战复杂题型)
基本作图一:作一条线段等于已知线段。

基本作图二:作一个角等于已知角。

基本作图三:作已知线段的垂直平分线。

基本作图四:作已知角的角平分线
基本作图五:过一点作已知直线的垂线。

4、典型例题分析
5、题目练习。

尺规作图专题

尺规作图专题

图 1 尺规作图专题一、关于尺规作图用 和 准确地按要求作出图形。

不利用...直尺的刻度,三角板现有的角度,及量角器。

二、几种基本作图1、画一条线段等于已知线段如图1,MN 为已知线段,用直尺和圆规准确地画一条线段AC 与MN 相等。

2、画一个角等于已知角如图2所示,∠AOB 为已知角,试按下列步骤用圆规和直尺准确地画∠A ′O ′B ′等于∠AOB .3、画已知线段的垂直平分线定义: 于一条线段并且 这条线段的直线,叫做线段的垂直平分线(或叫中垂线。

) 如图所示,已知线段AB ,画出它的垂直平分线.4、画角平分线利用直尺和圆规把一个角二等分.已知:如图3,∠AOB求作:射线OC ,使∠AOC =∠BOCoB A 图2o B A 图25、作已知直线垂线(1)过直线上一点作一条直线与已知直线垂直如图,点A 在1l 上,过点A 作直线2l ,使得1l ⊥2l(2)过直线上一点作一条直线与已知直线垂直练习一1、已知线段AB 和CD ,如下图,求作一线段,使它的长度等于AB +2CD.2、如图,已知∠A 、∠B ,求作一个角,使它等于∠A-∠B.3、根据要求作△ABC 和它的内切圆。

(1)如图作△ABC ,使得BC=a 、AC=b 、AB=c(2)作 △ABC 的内切圆。

b aAl 1A l 14、如图,画一个等腰△ABC ,使得底边BC=a ,它的高AD=h5、如图,已知∠AOB 及M 、N 两点,求作:点P ,使点P 到∠AOB 的两边距离相等,且到M 、N 的两点也距离相等。

练习二1.己知三边求作三角形己知一个三角形三条边分别为a ,b ,c 求作这个三角形。

2.己知三角形的两条边及其夹角,求作三角形已知一个三角形的两条边分别为a ,b ,这两条边夹角为∠a ,求作这个三角形3.已知三角形的两角及其夹边,求作三角形巳知一个三角形的两角分别为∠a ∠β夹边为a 求作这个三角形。

h a B O AN M4、己知三角形的两角及其中一角的对边,求作三角形已知三角形的两角分别为∠a ∠β,∠a 的对边为∠a,求作这个三角形5.己知一直角边和斜边求作三角形己知一个直角三角形的一条直角边为a ,斜边长为c ,求作这个三角形。

中考数学专题复习导学案《尺规作图》含答案

中考数学专题复习导学案《尺规作图》含答案

中考数学专题练习尺规作图知识归纳一尺规作图1.定义只用没有刻度的和作图叫做尺规作图.2.步骤①根据给出的条件和求作的图形,写出已知和求作部分;②分析作图的方法和过程;③用直尺和圆规进行作图;④写出作法步骤,即作法.二五种基本作图1.作一条线段等于已知线段;2.作一个角等于已知角;3.作已知角的平分线;4.过一点作已知直线的垂线;5.作已知线段的垂直平分线.三基本作图的应用1.利用基本作图作三角形1已知三边作三角形;2已知两边及其夹角作三角形;3已知两角及其夹边作三角形;4已知底边及底边上的高作等腰三角形;5已知一直角边和斜边作直角三角形.2.与圆有关的尺规作图1过不在同一直线上的三点作圆即三角形的外接圆.2作三角形的内切圆.基础检测1.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为2a ,b +1,则a 与b 的数量关系为A .a =bB .2a +b =﹣1C .2a ﹣b =1D .2a +b =12.如图,已知△ABC ,以点B 为圆心,AC 长为半径画弧;以点C 为圆心,AB 长为半径画弧,两弧交于点D ,且点A ,点D 在BC 异侧,连结AD ,量一量线段AD 的长,约为A .2.5cmB .3.0cmC .3.5cmD .4.0cm3.如图,已知△ABC,∠BAC=90°,请用尺规过点A 作一条直线,使其将△ABC 分成两个相似的三角形保留作图痕迹,不写作法4.如图,在边长为1的正方形网格中,△ABC 的顶点均在格点上,点A 、B 的坐标分别是A4,3、B4,1,把△ABC 绕点C 逆时针旋转90°后得到△A 1B 1C .1画出△A 1B 1C,直接写出点A 1、B 1的坐标;2求在旋转过程中,△ABC 所扫过的面积.5.如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD 的两条边AB 与BC,且四边形ABCD 是一个轴对称图形,其对称轴为直线AC .1试在图中标出点D,并画出该四边形的另两条边;2将四边形ABCD 向下平移5个单位,画出平移后得到的四边形A′B′C′D′.6.已知:线段a 及∠ACB.求作:⊙O,使⊙O 在∠ACB 的内部,CO=a,且⊙O 与∠ACB 的两边分别相切.7.如图,OA=2,以点A 为圆心,1为半径画⊙A 与OA 的延长线交于点C,过点A 画OA 的垂线,垂线与⊙A 的一个交点为B,连接BC1线段BC 的长等于 ; 2请在图中按下列要求逐一操作,并回答问题:①以点 为圆心,以线段的长为半径画弧,与射线BA 交于点D,使线段OD 的长等于A B C②连OD,在OD上画出点P,使OP得长等于,请写出画法,并说明理由.达标检测一、选择题1.如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为A.65° B.60° C.55° D.45°2.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧错误!;步骤2:以B为圆心,BA为半径画弧错误!,将弧错误!于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是第10题图A.BH垂直分分线段AD B.AC平分∠BAD=BC·AH D.AB=ADC.S△ABC二、填空题3.如图,已知线段AB,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于C、D两点,作直线CD交AB于点E,在直线CD上任取一点F,连接FA,FB.若FA=5,则FB= .4.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的是 ;①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.三、解答题5.12分图1是某公交公司1路车从起点站A站途经B站和C站,最终到达终点站D站的格点站路线图.8×8的格点图是由边长为1的小正方形组成1求1路车从A站到D站所走的路程精确到;2在图2、图3和图4的网格中各画出一种从A站到D站的路线图.要求:①与图1路线不同、路程相同;②途中必须经过两个格点站;③所画路线图不重复6.7分图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC 的两个端点均在小正方形的顶点上.1如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形AQCP的周长;2在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.7.如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形保留作图痕迹,不写作法8.如图,已知BD是矩形ABCD的对角线.1用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F保留作图痕迹,不写作法和证明.2连结BE,DF,问四边形BEDF是什么四边形请说明理由.9.如图,方格中,每个小正方形的边长都是单位1,△ABC在平面直角坐标系中的位置如图.1画出将△ABC向右平移2个单位得到△A1B1C1;2画出将△ABC绕点O顺时针方向旋转90°得到的△A2B2C2;3求△A1B1C1与△A2B2C2重合部分的面积.知识归纳答案一尺规作图1.定义只用没有刻度的直尺和圆规作图叫做尺规作图.2.步骤①根据给出的条件和求作的图形,写出已知和求作部分;②分析作图的方法和过程;③用直尺和圆规进行作图;④写出作法步骤,即作法.二五种基本作图1.作一条线段等于已知线段;2.作一个角等于已知角;3.作已知角的平分线;4.过一点作已知直线的垂线;5.作已知线段的垂直平分线.三基本作图的应用1.利用基本作图作三角形1已知三边作三角形;2已知两边及其夹角作三角形;3已知两角及其夹边作三角形;4已知底边及底边上的高作等腰三角形;5已知一直角边和斜边作直角三角形.2.与圆有关的尺规作图1过不在同一直线上的三点作圆即三角形的外接圆.2作三角形的内切圆.基础检测答案1.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为2a ,b +1,则a 与b 的数量关系为A .a =bB .2a +b =﹣1C .2a ﹣b =1D .2a +b =1解析作图—基本作图;坐标与图形性质;角平分线的性质.根据作图过程可得P 在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得|2a |=|b +1|,再根据P 点所在象限可得横纵坐标的和为0,进而得到a 与b 的数量关系.解答解:根据作图方法可得点P 在第二象限角平分线上,则P 点横纵坐标的和为0,故2a +b +1=0,整理得:2a +b =﹣1,故选:B .点评此题主要考查了每个象限内点的坐标特点,以及角平分线的性质,关键是掌握各象限角平分线上的点的坐标特点|横坐标|=|纵坐标|.2.如图,已知△ABC ,以点B 为圆心,AC 长为半径画弧;以点C 为圆心,AB 长为半径画弧,两弧交于点D ,且点A ,点D 在BC 异侧,连结AD ,量一量线段AD 的长,约为A .2.5cmB .3.0cmC .3.5cmD .4.0cm答案B解析首先根据题意画出图形,由“两组对边分别相等的四边形是平行四边形”,可A B C知四边形ABCD是平行四边形,再根据平行四边形的性质对角线相等,得出AD=BC.最后利用刻度尺进行测量即可.方法指导此题主要考查了复杂作图以及平行四边形的判定和性质,关键是正确理解题意,画出图形.3.如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形保留作图痕迹,不写作法考点作图—相似变换.分析过点A作AD⊥BC于D,利用等角的余角相等可得到∠BAD=∠C,则可判断△ABD与△CAD相似.解答解:如图,AD为所作.4. 8分如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A4,3、B4,1,把△ABC绕点C逆时针旋转90°后得到△A1B1C.1画出△A1B1C,直接写出点A1、B1的坐标;2求在旋转过程中,△ABC所扫过的面积.考点作图-旋转变换;扇形面积的计算.分析1根据旋转中心方向及角度找出点A、B的对应点A1、B1的位置,然后顺次连接即可,根据A、B的坐标建立坐标系,据此写出点A1、B1的坐标;2利用勾股定理求出AC的长,根据△ABC扫过的面积等于扇形CAA1的面积与△ABC的面积和,然后列式进行计算即可.解答解:1所求作△A1B1C如图所示:由A4,3、B4,1可建立如图所示坐标系,则点A1的坐标为﹣1,4,点B1的坐标为1,4;2∵AC===,∠ACA1=90°∴在旋转过程中,△ABC所扫过的面积为:S扇形CAA1+S△ABC=+×3×2=+3.5.8分如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.1试在图中标出点D,并画出该四边形的另两条边;2将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.考点作图-平移变换.分析1画出点B关于直线AC的对称点D即可解决问题.2将四边形ABCD各个点向下平移5个单位即可得到四边形A′B′C′D′.解答解:1点D以及四边形ABCD另两条边如图所示.2得到的四边形A′B′C′D′如图所示.6.2016.山东省青岛市,4分已知:线段a及∠ACB.求作:⊙O,使⊙O在∠ACB的内部,CO=a,且⊙O与∠ACB的两边分别相切.考点作图—复杂作图.分析首先作出∠ACB的平分线CD,再截取CO=a得出圆心O,作OE⊥CA,由角平分线的性质和切线的判定作出圆即可.解答解:①作∠ACB的平分线CD,②在CD上截取CO=a,③作OE⊥CA于E,以O我圆心,OE长为半径作圆;如图所示:⊙O即为所求.7.如图,OA=2,以点A为圆心,1为半径画⊙A与OA的延长线交于点C,过点A画OA的垂线,垂线与⊙A 的一个交点为B,连接BC1线段BC的长等于;2请在图中按下列要求逐一操作,并回答问题:①以点 A 为圆心,以线段BC 的长为半径画弧,与射线BA交于点D,使线段OD的长等于②连OD,在OD上画出点P,使OP得长等于,请写出画法,并说明理由.考点作图—复杂作图.分析1由圆的半径为1,可得出AB=AC=1,结合勾股定理即可得出结论;2①结合勾股定理求出AD的长度,从而找出点D的位置,根据画图的步骤,完成图形即可;②根据线段的三等分点的画法,结合OA=2AC,即可得出结论.解答解:1在Rt△BAC中,AB=AC=1,∠BAC=90°,∴BC==.故答案为:.2①在Rt△OAD中,OA=2,OD=,∠OAD=90°,∴AD===BC.∴以点A为圆心,以线段BC的长为半径画弧,与射线BA交于点D,使线段OD的长等于.依此画出图形,如图1所示.故答案为:A;BC.②∵OD=,OP=,OC=OA+AC=3,OA=2,∴.故作法如下:连接CD,过点A作AP∥CD交OD于点P,P点即是所要找的点.依此画出图形,如图2所示.达标检测答案一、选择题1.如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为A.65° B.60° C.55° D.45°考点线段垂直平分线的性质.分析根据线段垂直平分线的性质得到AD=DC,根据等腰三角形的性质得到∠C=∠DAC,求得∠DAC=30°,根据三角形的内角和得到∠BAC=95°,即可得到结论.解答解:由题意可得:MN是AC的垂直平分线,则AD=DC,故∠C=∠DAC,∵∠C=30°,∴∠DAC=30°,∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC﹣∠CAD=65°,故选A.点评此题主要考查了线段垂直平分线的性质,三角形的内角和,正确掌握线段垂直平分线的性质是解题关键.2.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧错误!;步骤2:以B为圆心,BA为半径画弧错误!,将弧错误!于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是第10题图A.BH垂直分分线段AD B.AC平分∠BAD=BC·AH D.AB=ADC.S△ABC答案:A解析:AD相当于一个弦,BH、CH⊥AD;B、D两项不一定;C项面积应除以2;知识点:尺规作图二、填空题3.如图,已知线段AB,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于C、D两点,作直线CD交AB于点E,在直线CD上任取一点F,连接FA,FB.若FA=5,则FB= 5 .考点作图—基本作图;线段垂直平分线的性质.分析根据线段垂直平分线的作法可知直线CD是线段AB的垂直平分线,利用线段垂直平分线性质即可解决问题.解答解:由题意直线CD是线段AB的垂直平分线,∵点F在直线CD上,∴FA=FB,∵FA=5,∴FB=5.故答案为5.4.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的是 ;①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.解析①根据作图的过程可以判定AD是∠BAC的角平分线;②利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC的度数;③利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三合一”的性质可以证明点D在AB的中垂线上;④利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.解答解:①根据作图的过程可知,AD是∠BAC的平分线.故①正确;②如图,∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.又∵AD是∠BAC的平分线,∴∠1=∠2=∠CAB=30°,∴∠3=90°﹣∠2=60°,即∠ADC=60°.故②正确;③∵∠1=∠B=30°,∴AD=BD,∴点D在AB的中垂线上.故③正确;④∵如图,在直角△ACD中,∠2=30°,∴CD=AD,∴BC=CD+BD=AD+AD=AD,S△DAC=ACCD=ACAD.∴S△ABC=ACBC=ACAD=ACAD,∴S△DAC:S△ABC=ACAD: ACAD=1:3.故④正确.综上所述,正确的结论是:①②③④.点评本题考查了角平分线的性质、线段垂直平分线的性质以及作图﹣基本作图.解题时,需要熟悉等腰三角形的判定与性质.三、解答题5.12分图1是某公交公司1路车从起点站A站途经B站和C站,最终到达终点站D站的格点站路线图.8×8的格点图是由边长为1的小正方形组成1求1路车从A站到D站所走的路程精确到;2在图2、图3和图4的网格中各画出一种从A站到D站的路线图.要求:①与图1路线不同、路程相同;②途中必须经过两个格点站;③所画路线图不重复考点作图—应用与设计作图;勾股定理的应用.分析1先根据网格求得AB、BC、CD三条线段的长,再相加求得所走的路程的近似值;2根据轴对称、平移或中心对称等图形的变换进行作图即可.解答解:1根据图1可得:,,CD=3∴A站到B站的路程=≈;2从A站到D站的路线图如下:6.7分图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC 的两个端点均在小正方形的顶点上.1如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形AQCP的周长;2在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.考点作图-轴对称变换.分析1直接利用网格结合勾股定理得出符合题意的答案;2直接利用网格结合矩形的性质以及勾股定理得出答案.解答解:1如图1所示:四边形AQCP即为所求,它的周长为:4×=4;2如图2所示:四边形ABCD即为所求.7.如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形保留作图痕迹,不写作法考点作图—相似变换.分析过点A作AD⊥BC于D,利用等角的余角相等可得到∠BAD=∠C,则可判断△ABD与△CAD相似.解答解:如图,AD为所作.8.如图,已知BD是矩形ABCD的对角线.1用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F保留作图痕迹,不写作法和证明.2连结BE,DF,问四边形BEDF是什么四边形请说明理由.考点矩形的性质;作图—基本作图.分析1分别以B、D为圆心,比BD的一半长为半径画弧,交于两点,确定出垂直平分线即可;2连接BE,DF,四边形BEDF为菱形,理由为:由EF垂直平分BD,得到BE=DE,∠DEF=∠BEF,再由AD与BC平行,得到一对内错角相等,等量代换及等角对等边得到BE=BF,再由BF=DF,等量代换得到四条边相等,即可得证.解答解:1如图所示,EF为所求直线;2四边形BEDF为菱形,理由为:证明:∵EF垂直平分BD,∴BE=DE,∠DEF=∠BEF,∵AD∥BC,∴∠DEF=∠BFE,∴∠BEF=∠BFE,∴BE=BF,∵BF=DF,∴BE=ED=DF=BF,∴四边形BEDF为菱形.9.如图,方格中,每个小正方形的边长都是单位1,△ABC在平面直角坐标系中的位置如图.1画出将△ABC向右平移2个单位得到△A1B1C1;2画出将△ABC绕点O顺时针方向旋转90°得到的△A2B2C2;3求△A1B1C1与△A2B2C2重合部分的面积.考点作图-旋转变换;作图-平移变换.分析1将△ABC向右平移2个单位即可得到△A1B1C1.2将△ABC绕点O顺时针方向旋转90°即可得到的△A2B2C2.3B2C2与A1B1相交于点E,B2A2与A1B1相交于点F,如图,求出直线A1B1,B2C2,A2B2,列出方程组求出点E、F 坐标即可解决问题.解答解:1如图,△A1B1C1为所作;2如图,△A2B2C2为所作;3B2C2与A1B1相交于点E,B2A2与A1B1相交于点F,如图,∵B20,1,C22,3,B11,0,A12,5,A25,0,∴直线A1B1为y=5x﹣5,直线B2C2为y=x+1,直线A2B2为y=﹣x+1,由解得,∴点E,,由解得,∴点F,.∴S△BEF=1509676.∴△A1B1C1与△A2B2C2重合部分的面积为.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课后任务: 从现在开始,做题时,请有意识的归纳圆与相似的 题型,并且做技巧分析。
题型二:线段相等(利用垂直平分线的性质)
点击中考
例题3:(2019.福州第十八中学模拟)如图,已知△ABC中,∠C=90°,在BC上求作点D,使AD=BD,当 AC=4,CD=3时,求AB的长。(要求:尺规作图,保留作图痕迹,不写作法)
性质定理
线段垂直平分线上的点到这条线段两个端点的距离相等。
数学语言: ∵直线MN是线段AB的垂直平分线 ∴AP=BP
判定定理
到一条线段两个端点的距离相等的点在这条线段的垂直平分线上。 数学语言: ∵AP=BP ∴点P在线段AB的垂直平分线上
一.垂直平分线
在△性质 △三边的垂直平分线相交于一点,这个点到三个顶点的距离相等。
解:如图所示,直线DE为所求作
的AB的垂直平分线。
相似的判定方法有哪些?相似比的作用呢?
相似的判定方法有哪些?相似比的作用呢?
①平行于三角形一边的直线和其他两边和两边的延长线相交,所构成的三角形与原 三角形相似; ②如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那 么这两个三角形相似; (即:两边对应成比例且夹角相等,两个三角形相似.) ③ 如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角 形相似; (即:三边对应成比例,两个三角形相似.) ④如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三 角形相似; (即:两角对应相等,两个三角形相似.)
解:如图ʘO为所求作的
题型四:外接圆
点击中考
例题6:(2019.厦门一中模拟) (1)尺规作图:如图,A、B是平面上两个定点,在平面上找一点C,使△ABC构成等腰直角三角形,且C 为直角顶点(画出一个点C即可); (2)在(1)条件下,若A(0,2),B(4,0),则点C的坐标是 (1,-1)或(3,3)
作已知线段的垂直平分线 尺规作图
题型一:题干直接说明作垂直平分线
点击中考
例题1:(2018.福州市模拟)如图,BD为△ABC的角平分线。求作BD的垂直平分线与边AB、BC分别交 于点M、N,连接DM、DN;并证明四边形BNDM为菱形。(要求:尺规作图,保留作图痕迹,不写作法)
解:如图,MN就是所求作的线段BD的垂直平分线, 点M、N就是所求作的点,线段DM、DN就是所要 连接的线段。(4‘)
菱形的判定方法有哪些?
菱形的判定方法有哪些?
① 四条边都相等的四边形是菱形; ②对角线互相垂直的平行四边形是菱形(对角线互相垂直且平分的四边形是菱形); ③ 一组邻边相等的平行四边形是菱形; ④一组对角线平分一组对角的平行四边形是菱形;(简答题中,要先证明后利用) 注意:一组对角线平分一组对角的四边形不是菱形,也可能是筝形。
解:如图所示,ʘO即为所求作的花坛的位置。
题型五:作特殊四边形
点击中考
例题7:(2018.宁德二检)如图,已知矩形ABCD,E是AB上一点。 (1)如图1,若F是BC上一点,在AD、CD上分别截取DH=BF,DG=BE,求证:四边形EFGH是平行四边 形。 (2)如图2,利用尺规分别在BC、CD、AD上确定点F、G、H,使得四边形EFGH是特殊的平行四边形。 (保留作图痕迹,不写作法)
解:如图所示,作线段AB的垂直 平分线MN交AB于点O,以O为圆 心,OA为半径作ʘO交直线MN于 点C、C’,连接AC、BC,AC'、 BC‘,点C、C’为所求作的。
题型四:外接圆
点击中考
例题7:(2019.厦门外国语海沧分校模拟)小明家的房前有一块矩形的空地,空地上有三棵树A、B、C, 小明想建一个圆形花坛,使三棵树都在花坛的边上。 (1)请你帮小明把花坛的位置画出来;(要求:尺规作图,保留作图痕迹,不写作法); (2)若△ABC中,AB=8米,AC=6米,∠BAC=90°,试求小明家圆形花坛的面积。
相似的判定方法有哪些?相似比的作用呢?
直角三角形相似的判定定理: ①直角三角形被斜边上的高分成两个直角三角形和原三角形相似; ②如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角 边对应成比例,那么这两个直角三角形相似.
判定出相似是为了得出相似比,这个比值往往可以进行等量代换求得所需要的值。
课后任务: 请列表总结归纳平行四边形、矩形、菱形、正方形 这四个特殊四边形的性质和判定方法。
题型一:题干直接说明作垂直平分线
点击中考
例题2:(2018.莆田擢英中学模拟)如图,在△ABC中,∠ABC=80°,∠BAC=40°。求作AB的垂直平分线 DE分别与AC、AB交于点D、E,连接BD;并证明BC2 CD AC。(要求:尺规作图,保留作图痕迹,不 写作法)
中考 专题三 尺规作图
主讲人:陈雅琳
基础作图(五种)

图形变换(三种)

三视图
其他
基础作图Biblioteka 六项基本技能1.作已知线段的垂直平分线 2.作已知角的角平分线 3.作一个角等于已知角 4.作一条线段等于已知线段 5.过一点作已知直线的垂线 6.过一点作已知圆的切线
一.垂直平分线
定义 垂直于一条线段,并平分这条线段的直线叫这条线段的垂直平分线。
圆的外心 △外接圆的圆心叫做△的外心。
一.垂直平分线
特点归纳
①锐角Δ三边的垂直平分线交点在Δ内部; ②钝角Δ三边的垂直平分线交点在Δ外部; ③直角Δ三边垂直平分线交点在Δ斜边中点。
一.垂直平分线
尺规作图
步骤: ① 分 别 以 点 A 、 B 为 圆 心 , 大 于 1 AB 长 为 半 径 ,
2 在AB两侧作弧,分别交于点M、N; ②连接MN,则直线MN为线段AB的垂直平分线。
解:如图所示,分别作线段AB、线段AC的垂直平分线, 分别交AB、AC于点M、N,则M、N为所求作的。
题型四:外接圆
点击中考
例题5:(2019.福州市二检)如图,在Rt△ABC中,∠ACB=90°,BD平分∠ABC,求作ʘO,使得点O在边 AB上,且ʘO经过B、D两点;并证明AC与ʘO相切。(要求:尺规作图,保留作图痕迹,不写作法)
解:如图所示,所求作的线段AB的垂直平分线 交于BC于点D,点D为所要求作的。
题型三:作线段或三角形的中线
点击中考
例题4:(2019.龙岩市二检)证明:三角形的中位线平行于三角形的第三边,并且等于第三边的一半。 (要求:在给出△ABC中用尺规作出AB、AC边的中点M、N,保留作图痕迹,不要求写作法,并根据图形 写出已知、求证和证明)
相关文档
最新文档