16-2狭义相对论时空观16-3速度变换公式解析

合集下载

4、相对论的速度变换公式

4、相对论的速度变换公式

1966年用 子作了一个类似于双生子旅游的实验, 1966年用μ子作了一个类似于双生子旅游的实验, 子沿一直径为14米的圆环运动再回到出发点, 14米的圆环运动再回到出发点 让μ子沿一直径为14米的圆环运动再回到出发点,实 子寿命更长。 验结果表明运动的μ子的确比静止的μ子寿命更长。
1971年 1971年,科学家将铯原子钟放在喷气式飞机中作 环球飞行,然后与地面的基准钟对照. 环球飞行,然后与地面的基准钟对照.实验结果与理 论预言符合的很好.这是相对论的第一次宏观验证。 论预言符合的很好.这是相对论的第一次宏观验证。
相对论时空观 同时的相对性 运动的时钟变慢 运动的尺子变短 质量随速度的增大而增大
时间和空间彼此独立, 时间和空间相互关联, 时间和空间彼此独立, 时间和空间相互关联,质 互不关联, 互不关联,且不受物 量随物体的运动状态的改 变而改变。 变而改变。 质或运动的影响。 质或运动的影响。
注意:速度要接近光速时,相对论效应才会明显。 注意:速度要接近光速时,相对论效应才会明显。
E0 = m0c
2
二、相对论的质量和能量
E0 = m0c
2
二、相对论的质量和能量
根据狭义相对论可得出: 根据狭义相对论可得出:
E = mc
m=
2
m0 v2 1− 2 c
2
E0 = m0c
ABC
m=
m0 v2 1− 2 c
物理世界奇遇记》 《物理世界奇遇记》 ----城市速度极限
1
汤普金斯先生
按相对论时空观: 按相对论时空观:
u + v′ 0.9c + 0.5c v= = = 0.966c < c uv ′ 0.9c × 0.5c 1+ 2 1+ 2 c c

16-2狭义相对论时空观16-3速度变换公式解析

16-2狭义相对论时空观16-3速度变换公式解析

由洛仑兹变换:如果在S 系中物体的横向速 度为零,沿 x轴方向的速度为u,则在S′系中 观测,物体的横向速度也为零,而沿x′ 轴方 ux v 向的速度: u
x
v 1 2 ux c
第十六章 狭义相对论基础 狭义相对论基础 狭义相对论基础
由洛仑兹变换得:洛伦兹速度变换式
正变换
ux v u x v 1 2 ux c uy u y v 1 2 u x c uz u z v 1 2 u x c
考察 s' 系观测两事件: y y ' v s' s' 系同一地点B 发 s d 生两事件 发射光信号 ( x ' , t '1 ) o 接受光信号 ( x ' , t '2 )
o'
12
9 6
3
B
x' x
t1 2d c Δt t2 时间间隔 原时(固有时间):在一参考系中,同一 地点发生的两事件的时间间隔 t '。
第十六章 狭义相对论基础 狭义相对论基础 狭义相对论基础
洛伦兹首先导出洛伦兹变换,相对性 原理也是由庞加莱首先提出的,但是他们 都没有抓住同时性的相对性这一关键性、 革命性的思想。
洛伦兹和庞加莱都走近了相对论,却 没能创立相对论。只有26岁的爱因斯坦敢 于质疑人们关于时间的原始观念,坚持同 时性是相对的,才完成了这一历史的重任。
第十六章 狭义相对论基础 狭义相对论基础 狭义相对论基础
讨论
t

3
v c 时,Δt Δt 过度为牛顿力学。
4 由于同时性具有相对性,所以对不同参 考系而言,沿相对速度方向发生的同样的 两个事件之间的时间间隔是不同的,即时 间的量度是相对的。

大学物理狭义相对论基础全部内容

大学物理狭义相对论基础全部内容

伽利略 变换
洛仑兹 变换
实验检验
绝对时空观
狭义相对论时空观 比 较
相对论动力学基础
广义相对论时空观
学时: 8 (狭义相对论); 自学*广义相对论简介
重点: 狭义相对论的两条基本原理 洛仑兹坐标变换 狭义相对论时空观(“同时”的相对性、钟慢尺缩) 质速关系,质能关系,能量与动量关系
难点: 狭义相对论时空观 *广义相对论的两条基本原理 *时空的几何化,空间弯曲
—— 牛顿
即:时间先于运动存在。没有时间,无法描述运动; 而没有运动,时间照样存在和流逝。
2. 空间:用以表征物质及其运动的广延性
空间测量:刚性尺 国际单位:米
光在真空中 29979241秒58的时间间隔内传播的
距离。
长度的测量:
长度 = 在与长度方向平行的坐标轴上,物体两端 坐标值之差 注意:当物体静止时,两端坐标不一定同时记录;
物理学家感到自豪而满足,两个事例:
在已经基本建成的科学大厦中,后辈物理学家只要 做一些零碎的修补工作就行了。也就是在测量数据的 小数点后面添加几位有效数字而已。
——开尔芬(1899年除夕)
理论物理实际上已经完成了,所有的微分方程都 已经解出,青年人不值得选择一种将来不会有任何 发展的事去做。
——约利致普朗克的信
同学们好!
物理书都充满了复 杂的数学公式。可是 思想及理念,而非公 式,才是每一物理理 论的开端。
--爱因斯坦
《物理学的进化》
阿尔伯特.爱因斯坦(1879 — 1955)
?
第八章 狭义相对论 *广义相对论简介
力学相对性原理 对称性扩展
狭义相对性原理 光速不变原理 对称性扩展 广义相对性原理 等效原理

狭义相对论推导详细计算过程

狭义相对论推导详细计算过程

狭义相对论狭义相对论基本原理:1. 基本物理定律在所有惯性系中都保持相同形式的数学表达式,因此一切惯性系都是等价的。

2. 在一切惯性系中,光在真空中的传播速率都等于c ,与光源的运动状态无关。

假设S 系和S ’系是两个相对作匀速运动的惯性坐标系,规定S ’系沿S 系的x 轴正方向以速度v 相对于S 系作匀速直线运动,x ’、y ’、z ’轴分别与x 、y 、z 轴平行,两惯性系原点重合时,原点处时钟都指示零点。

Ⅰ洛伦兹变换现假设,x ’=k(x-vt) ①,k 是比例系数,可保证变化是线性的,相应地,S ’系的坐标变换为S 系,有x=k(x ’+vt) ②,另有y ’=y ,z ’=z 。

将①代入②:x=k[k(x-vt)+vt ’] x=k^2*(x-vt)+kvt ’ t ’=kt+(1-k^2)x/kv 两原点重合时,有t=t ’=0,此时在共同原点发射一光脉冲,在S 系,x=ct ,在S ’系,x ’=ct ’,将两式代入①和②:ct ’=k(c-v)t 得 ct ’=kct-kvt 即t ’=(kct-kvt)/c ct=k(c+v)t ’ 得 ct=kct ’+kvt ’ 两式联立消去t 和t ’ct=k(kct-kvt)+kv(kct-kvt)/cct=k^2ct-k^2vt+k^2vt-k^2v^2t/c c^2=k^2c^2-k^2v^2k=22/11c v -将k 代入各式即为洛伦兹变换: x ’=22/1cv vt x --y ’=y z ’=z t ’=222/1/cv c vx t --或有x=k(x ’+vt ’) x ’=k(x-vt) =k(1+v/c)x ’ =k(1-v/c)x 两式联立,x’=k(1-v/c)k(1+v/c)x ’ k=22/11cv -Ⅱ同时的相对性S 中取A (x 1,y,z,t 1)和B (x 2,y,z,t 2),同时发出一光脉冲信号,即t 1= t 2,且x 1≠x 2。

4.3 狭义相对论基本原理 相对时空观

4.3 狭义相对论基本原理 相对时空观
在一切惯性系中,光在真空中的速率恒为c ,与 光源的运动状态无关
Guangxi university
S
y S' O
u y' O' c c c x' c x
在S系中, 若按伽利略变换: 往左:v=c-u 往右:v=c+u
Guangxi university
讨论:
1 Einstein 的相对性理论 是 Newton理论的发展 一切物理规律 力学规律
解1:以地面为参照系 介子寿命延长。 用经典时空观 介子所走路程
y 0.998c 0 8 6 y 0.998 3 10 2.15 10 644(m )
还没到达地面,就已经衰变了。但实际探测 仪器不仅在地面,甚至在地下 3km 深的矿井 中也测到了 介子。
Guangxi university
S
S
u
弟 a. e f 弟 0 .
x
x
x
) 花开事件:( x, t1 S 系x处发生两个事件 ) ( x, t 2 花谢事件:
t1 (寿命) t t2
在S系中观察者测量花的寿命是多少?
Guangxi university
S
第三节
狭义相对论基本原理 相对时空观
Guangxi university
返回
一、 狭义相对论的两条基本原理
爱因斯坦在1905年发表的《论动体的电动力学》 论文中提出了狭义相对论两条基本原理 1.相对性原理
所有物理规律在一切惯性系中都具有相同形式。 (所有惯性系都是平权的,在它们之中所有物理规 律都一样) 2.光速不变原理
2 光速不变与伽利略变换 与伽利略的速度相加原理不相容

第三章 狭义相对论知识梳理汇总

第三章 狭义相对论知识梳理汇总
第3章 相对论基础
( special relativity )
§3-1 经典力学相对性原理与时空观 §3-2 狭义相对论基本原理 §3-3 狭义相对论的时空观 §3-4 洛仑兹变换 速度变换 §3-5 相对论动力学基础
主讲人:第五组成员
1
§1 经典力学相对性原理与时空观 1. 伽利略相对性原理 研究的问题: 在两个惯性系(实验室参考系S与运动参考系S ')中 考察同一物理事件。 事件:某一时刻发生在某一空间位置的事例。
宏观低速物体的力学规律在任何惯性系中形式相同。
或 牛顿力学规律在伽利略变换下形式不变。
如:动量守恒定律
S : m1v1 m2v2 m1v10 m2v20
S : m1v1 m2v2 m1v10 m2v20
5
2. 经典力学时空观 据伽利略变换,可得到经典(绝对)时空观 (1) 同时的绝对性 在同一参照系中,两个事件同时发生 t1 t2
t t 0 M 发一光信号,
事件1: A接收到闪光, 事件2: B 接收到闪光,
研究的问题: S、S系两事件发生的时间间隔.
S :M 处闪光,光速为C,
同时具有相对性!
AM BM
S S
A 、B 同时接收到光信号,
u
事件1、事件2 同时 发生。
x
x,x' 轴重合, S' 相对 S 以速度u 沿x 轴作匀速直线运动。
0与0 重合时,计时开始 t t 0
伽利略变换
事件: t 时刻,物体到达 P 点
S rx, y, z,t vx, y, z,t a S rx, y, z,t vx, y, z,t a
正变换 S S
x x ut, y y, z z,t t z

大学物理相对论总结

大学物理相对论总结
相对论
基本内容
1、力学相对性原理、伽利略变换;狭义相对论产生 根源、实验基础和历史条件;狭义相对论的基本原理、 洛仑兹变换。 2、狭义相对论时空观:同时的相对性、长度收缩、 时间延缓、因果律。 3、狭义相对论质速关系、相对论动力学基本方程、 相对论动能、静能总能和质能关系、能量和动量的关 系。
1
内容提要
2、长度的收缩(运动物体在运动方向上长度收缩)
在s' 系中测量
l0 x'2 x'1 l'
l l' 1 2 l0
固有长度
y y'
s
s' u
x'1
l0
x'2 x'
o
z
o'
z'
x1
x2
x 5
3、时间的延缓
t t'
1 2
固有时间 :同一地点发生的两事件的时间间隔 .
t t' t0 固有时间
解:
S ( x1, t1) (x2,t2 ) S′ ( x1, t1) ( x2 , t2 )
x2 x1 1m t1 t2
x2 x1 ?
x2
x1
x2
ut2 (x1 ut1) 1 u2 c2
1 1u2 c2
9
六、相对论质量和相对论动量
1、动1量)与相速对度论的动关量系p
m0 v
1 2
Ei mic2 (m0ic2 Eki ) 恒量
i
i
i
相对论质量守恒定律 在一个孤立系统内,所有粒子的 相对论总质量
mi 恒量
i
八、动量与能量的关系
E pc
E 2 E02 p2c2

狭义相对论的速度变换

狭义相对论的速度变换

狭义相对论的速度变换的另一种方法目前常用的方法设车厢相对于地面的速度为v1,车厢里面的人相对于车厢行走的速度为v2,这个人相对于地面的速度为v合速度,按照通常使用的方法,如果这些速度是同向的话,那么v合速度=v1+v21+v1∙v2c例1.若v1=c2,v2=2c3,那么v合速度=c2+2c31+c2∙2c3c2=12+231+12∙23c=3+46+2c=7c8现在介绍另一种方法。

我们为每一个实际速度引入一个与之伴随的数,暂且称为内隐速度,换算关系如下v内隐=1ln 1+v实际c 1−v实际cv实际c =e2v内隐−1 e2v内隐c+1其中ln是自然对数,e是自然对数的底数,c是光速。

那么v1和v2的内隐速度分别由v1内隐=1ln 1+v1c 1−v1cv2内隐c =12ln1+v2c1−v2c求出。

而v合速度对应的内隐速度v合速度内隐=v1内隐+v2内隐于是v合速度由v合速度c =e2v合速度内隐c−1 e2v合速度内隐c+1求出。

例1.若v1=c2,v2=2c3, 那么v1内隐=12ln3, v2内隐=12ln5,v合速度内隐=v1内隐+v2内隐=cln15v合速度=15−115+1=7c8(仅适用于v1,v2平行)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
S'系(车厢参考系 )
事件1 ( x '1 , y '1 , z '1 , t '1 )
y'
1
12
v
3 6 9
2
12
事件2 ( x'2 , y '2 , z '2 , t '2 ) o'9
3 6
x'
t1 时间间隔 Δt t2
x1 空间间隔 Δx x2
第十六章 狭义相对论基础 狭义相对论基础 狭义相对论基础
第十六章 狭义相对论基础 狭义相对论基础 狭义相对论基础
运动物体长度的测量:同时测定物体两端 的坐标,差值即为测长l,即物体的长度。 3 长度收缩效应只发生在物体运动的方向 上,在垂直方向上不收缩。这常说成是纵 向收缩,横向不收缩。 4 长度收缩效应纯属时空的性质,与在热 胀冷缩现象中所发生的那种实在的收缩和 膨胀是完全不同的。 5 如将物体固定于 S 系,由 S 系测量,同样 出现长度收缩现象。 结论 长度具有相对意义
第十六章 狭义相对论基础 狭义相对论基础 狭义相对论基础
同时的相对性(图1)
事件1:车厢后壁接收器接收到光信号 事件2:车厢前壁接收器接收到光信号
第十六章 狭义相对论基础 狭义相对论基础 狭义相对论基础
, x2 两处发生两事件,时间 设:S′系中 x1 t1 ,问 S系中这两事件发 间隔为 Δt t2 生的时间间隔是多少?
第十六章 狭义相对论基础 狭义相对论基础 狭义相对论基础
例1 设想有一光子火箭,相对于地球以速 率 v 0.95c 直线飞行,若以火箭为参考 系测得火箭长度为15m ,问以地球为参 考系,此火箭有多长?
y y'
o ' o
l0 15m
s' v x' s
x
火箭参照系 地面参照系
第十六章 狭义相对论基础 狭义相对论基础 狭义相对论基础
第十六章 狭义相对论基础 狭义相对论基础 狭义相对论基础
2
2 v 讨论 l l0 1 2 v c 1 长度收缩效应:在惯性系中观测,运动 物体在其运动方向上的长度要缩短,l < l0 即动尺变短。固有长度l0(原长)最长。 2 长度的测量 固有长度测量:即静止物体长度(记为 l0) 的测量,对测量的先后次序没有要求,可 以不同时测量物体两端的坐标。 测长:在某一参考系中沿运动方向同时发 生的两个事件的空间间隔(记为 l )。
S系(地面参考系) 事件1 ( x1 , y1 , z1 , t1 ) y y ' 1 事件2 ( x2 , y2 , z2 , t2 ) 12 o ' Δ t t t o 时间间隔 2 1 9 6 空间间隔 Δx x2 x1
v
2
12 12
x'
3
3
9 6
3
9 6
x
在一个惯性系同时发生的两个事件,在 另一个惯性系是否同时? v Δt 2 Δx c Δ t 由洛伦兹变换 1 2
狭义相对论的时空观
第十六章 狭义相对论基础 狭义相对论基础 狭义相对论基础
16.2.1
同时性的相对性
爱因斯坦指明 了时间的测量与同 时性之间的密切关 系:‘凡是时间在 里面起作用的,我 们的一切判断总是 关于同时的事件的 判断’。
第十六章 狭义相对论基础 狭义相对论基础 狭义相对论基础
爱因斯坦:比如我说,“那列火车7点 钟到达这里”,这大概是说:“我的表的 短针指到7同火车到达这里是同时的事件。” 绝对时空观:如果两个事件在某一惯 性系中同时发生,则在任何其他惯性系 中观测,这两个事件也一定同时发生。 绝对时空观结论是同时性的绝对性
第十六章 狭义相对论基础 狭义相对论基础 狭义相对论基础
v Δt 2 Δx c Δt 2 1
v Δt 2 Δx c
----同时
结论
同时性具有相对意义
沿两个惯性系相对运动方向,不同地 点发生的两个事件,在其中一个惯性系中 是同时的,在另一惯性系中观察则不一定 同时,所以同时具有相对意义。只有在同 一地点,同一时刻发生的两个事件,在其 他惯性系中观察也是同时的。
第十六章 狭义相对论基础 狭义相对论基础
例2 长为1m的棒静止地放在 O ' x ' y ' 平面内,在 S' 系的观察者测得此棒与 O' x' 轴成 45角,试问从S系的观察者来看,此 棒的长度以及棒与Ox 轴的夹角是多少度? 设 S 系相对S系的运动速度 v 3c 2
第十六章 狭义相对论基础 狭义相对论基础 狭义相对论基础
第十六章 狭义相对论基础 狭义相对论基础 狭义相对论基础
16.2.2 长度的相对性—长度收缩
长度的测量和同时性概念密切相关. 棒沿 O x 轴对 S y ' y 系静止放置,在 S ' 2 x' 1 , x2 端坐标 x1 o o' x x x 2 1 则棒的长度为 z z'
x1 l0 x2
固有长度l0:物体相对静止时所测得的长度
问:在S系中测得棒有多长?
第十六章 狭义相对论基础 狭义相对论基础 狭义相对论基础
设:在S系中某时刻t同时测得棒两端坐标 为 x1、x2,则S系中测得棒长 l = x2 - x1,l 与l0 的关系为: ( x2 vt ) ( x1 vt ) x1 l0 x2 1 2 x2 x1 l 1 2 1 2 得S系中的长度 l l 1 v 0 2 c
第十六章 狭义相对论基础 狭义相对论基础 狭义相对论基础
讨论
1 Δx 0 Δt 0 同时不同地 ----不同时 2 Δx 0 Δt 0 同地不同时 ----不同时 3 Δx 0 Δt 0 ----同时 同时同地 4 Δx 0 Δt 0 不同时不同地 ----不同时
第十六章 狭义相对论基础 狭义相对论基础 狭义相对论基础
洛伦兹首先导出洛伦兹变换,相对性 原理也是由庞加莱首先提出的,但是他们 都没有抓住同时性的相对性这一关键性、 革命性的思想。
洛伦兹和庞加莱都走近了相对论,却 没能创立相对论。只有26岁的爱因斯坦敢 于质疑人们关于时间的原始观念,坚持同 时性是相对的,才完成了这一历史的重任。
相关文档
最新文档