(完整word版)图形的初步认识知识点
图形初步认识涉及的32个必考点全梳理(100页word) 展开图、三视图、钟面角、方位角等尽有!

图形初步认识涉及的32个必考点全梳理(100页wo rd)知识点一立体图形⏹立体图形概念:有些几何图形的各部分不都在同一个平面内。
常见的立体图形:棱柱、棱锥、圆柱、圆锥、球等。
⏹平面图形概念:有些几何图形的各部分不都在同一个平面内。
常见的平面图形:线段、角、三角形、长方形、圆等【立体图形和平面的区别】1、所含平面数量不同。
平面图形是存在于一个平面上的图形。
立体图形是由一个或者多个平面形成的图形,各部分不在同一平面内,且不同的立体图形所含的平面数量不一定相同。
2、性质不同。
根据“点动成线,线动成面,面动成体”的原理可知,平面图形是由不同的点组成的,而立体图形是由不同的平面图形构成的。
由构成原理可知平面图形是构成立体图形的基础。
3、观察角度不同。
平面图形只能从一个角度观察,而立体图形可从不同的角度观察,如左视图,正视图、俯视图等,且观察结果不同。
4、具有属性不同。
平面图形只有长宽属性,没有高度;而立体图形具有长宽高的属性。
立方体图形平面展开图⏹三视图及展开图三视图:从正面,左面,上面观察立体图形,并画出观察界面。
考察点:(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图。
(2)能根据三视图描述基本几何体或实物原型。
展开图:正方体展开图(难点)。
正方体展开图口诀(共计11种):“一四一”“一三二”,“一”在同层可任意,“三个二”成阶梯,“二个三”“日”相连,异层必有“日”,“凹”“田”不能有,掌握此规律,运用定自如。
⏹点、线、面、体几何图形的组成:点:线和线相交的地方是点,它是几何图形最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
组成几何图形元素的关系:点动成线,线动成面,面动成体。
知识点二直线、射线、线段⏹直线、射线、线段的区别与联系:【射线的表示方法】表示射线时端点一定在左边,而且不能度量。
经过若干点画直线数量:1.经过两点有一条直线,并且只有一条直线(直线公理)。
图形的相识知识点总结

图形的相识知识点总结图形是数学中的一个重要概念,它涉及到几何学、代数学以及实际问题中的模型和计算。
在数学教育中,图形的相识是一个基础性的知识点,它对学生理解和应用几何学和代数学知识起着重要的作用。
本文将从图形的概念、性质、分类以及相关定理和公式等方面,对图形的相识知识点进行总结。
一、图形的概念和性质1. 图形的概念图形是由一系列具有特定形状和特征的点、线、面所组成的物体。
在数学中,图形通常可以用几何学的方法进行描述和分析。
常见的图形包括点、线、角、多边形等。
2. 图形的基本性质图形具有一些基本的性质,例如点是图形的最基本的构成要素,具有位置但没有大小;线是由无数个点组成的,具有长度但没有宽度;面是由线所围成的区域,具有长度和宽度。
3. 图形的相关概念在图形学中,还涉及到一些相关概念,如图形的相似、共线、共面、垂直、平行等。
这些概念是学生理解图形知识的基础,也是几何学和代数学中一些重要定理和公式的前提条件。
二、图形的分类和性质1. 根据维数的分类根据图形的维数,可以将图形分为一维、二维和三维图形。
一维图形是指只具有长度的图形,例如线段;二维图形是指具有长度和宽度的图形,例如矩形、三角形;三维图形是指具有长度、宽度和高度的图形,例如立方体、圆柱体。
2. 根据形状的分类根据图形的形状,可以将图形分为几何图形和非几何图形。
几何图形是指具有明确形状的图形,例如圆形、正方形、三角形;非几何图形是指形状不规则或无法用几何学方法描述的图形,例如云朵、火焰等。
3. 图形的性质不同的图形具有各自的性质和特点,例如正方形的四条边相等,对角线相等且垂直;圆的直径等于其半径的两倍,周长等于直径乘以π等。
这些性质是理解和运用图形知识的重要基础,也是解题和证明的关键。
三、图形的相关定理和公式1. 圆的相关定理和公式圆是几何图形中一个重要的概念,它的相关定理和公式包括圆的周长和面积的计算方法,切线与半径的关系,圆心角与弧长的关系等。
《图形认识初步》知识点

《图形认识初步》1、几何图形:我们把实物中抽象出来的各种图形叫做几何图形。
几何图形分为平面图形和立体图形。
(1)平面图形:图形所表示的各个部分都在同一平面内的图形,如直线、三角形等。
(2)立体图形:图形所表示的各个部分不在同一平面内的图形,如圆柱体。
2、常见的立体图形(1)柱体:A 棱柱---有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边互相平行,由这些面围成的几何体叫做棱柱。
B 圆柱---以矩形的一边所在直线为旋转轴,其余各边围绕它旋转一周二形成的曲面所围成的集合体叫做圆柱。
(2)椎体:A 棱锥—有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
B 圆锥—以直角三角形的一条直角边所在的直线为旋转轴,其余各边旋转一周而形成的曲面围成的几何体叫做圆锥。
(3)球体:半圆以它的直径为旋转轴,旋转一周而形成的曲面所围成的几何体叫做球体。
(4)多面体:围成棱柱和棱锥的面都是平的面,想这样的立体图形叫做多面体。
3、 常见的平面图形(1)多边形:由线段围成的封闭图形叫做多边形。
多边形中三角形是最基本的图形。
(2)圆:一条线段绕它的端点旋转一周而形成的图形。
(3)扇形:由一条弧和经过这条弧的端点的两条半径围成的图形叫做扇形。
4、 从不同方向观察几何体从正面、上面、左面三个不同方向看一个物体,然后描出三张所看到的图(分别叫做正视图、俯视图、侧视图),这样就可以把立体图形转化为平面图形。
例题:1、如图是一些小正方体所搭几何体的俯视图,小正方形中的数字表示该位置的小正方体的个数,请画出这个几何体的主视图和左视图:主视图 左视图例题:2、下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为 ( )5、 立体图形的展开图有些立体图形是有一些平面图形围成的,把它们的表面适当剪开后在平面上展开得到的平面图形称为立体图形的展开图。
图形的初步认识知识点

几何图形「立体图形:棱柱、棱锥、圆柱、圆锥、球等。
1几何图形.平面图形:三角形、四边形、圆等。
主(正)视图 ------- 从正面看2、几何体的三视图 侧(左、右)视图-----从左(右)边看俯视图---------- 从上面看(1) 会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图。
(2) 能根据三视图描述基本几何体或实物原型。
3、 立体图形的平面展开图(1) 同一个立体图形按不同的方式展开,得到的平现图形不一样的。
(2) 了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型。
4、 点、线、面、体(1) 几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2) 点动成线,线动成面,面动成体。
例1 ( 1)如图1所示,上面是一些具体的物体,下面是一些立体图形,试找出与下面立体图形相类似的物体。
解:(1)①与d 类似,②与C 类似,③与a 类似,④与b 类似。
(2)①圆柱,②五棱柱,③四棱锥,④长方体,⑤五棱锥。
例2如图3所示,讲台上放着一本书,书上放着一个粉笔盒,指出右边三个平面图形分别是 左边立体图形的哪个视图。
图3解:(1)左视图,(2)俯视图,(3)正视图 练习1 •下图是一个由小立方体搭成的几何体由上而看得到的视图,小正方形中的数字表示该位置 小立方块的个数,则从正面看它的视图为()图形的初步认识(2)如图2所示,写出图中各立体图形的名称。
、本章的知识结构图①㈱ ③立体图瑠 从不同方向看立体图羽■展开立体图形J平面图形直线、肘线、线段两点确定一条直线两点之间线段最短平面图形 角的度量角的大小比较一一角侨分线 等角的补角相等等角的余角相等余常和补肃、立体图形与平面图形① ② ③ ④ ⑤丁2丄从正面看从上面看A B.从右面看3 •如图,下面三个正方体的六个面按相同规律涂有红、黄、蓝、白、黑、绿六种颜色,那么涂黄色、白色、红色的对面分别是( )A.蓝、绿、黑 B .绿、蓝、黑 C .绿、黑、蓝 D .蓝、黑、绿:■、直线、射线、线段(一).直线、射线、线段的区别与联系: 基本概念4 .若如下平面展开图折叠成正方体后,相对面上的两个数之和为5 ,求X + y+ Z的值。
图形的认识知识点

图形的认识
立体图形:正方体,长方体,圆柱,球
封闭图形:长方形,正方形,三角形,平行四边形
平面图形
非封闭图形:角(锐角,直角,钝角)
角:由公共顶点的2条射线组成的图形叫做角。
角的大小与边的长短没有关系。
张口越大角越大。
大于直角的角是钝角,小于直角的角是锐角,等于90度的角是直角。
平行四边形:对边相等的四边形
菱形:4条边都相等的四边形
长方形:对边相等,有4个直角的四边形
正方形:4条边都相等,有4个直角的四边形。
菱形,长方形,正方形是特殊的平行四边形
正方形是特殊的平行四边形,菱形,长方形。
球:像圆球一样的立体图形
圆柱:上下底面是个圆,侧面展开是个长方形
长方体:有6个面,对面相等,有12条棱,有8个顶点。
正方体:有6个面,每个面都相等的且是正方形。
有12条棱,有8个顶点。
正方体是特殊的长方体。
图形的观察:在一个位置上最多能观察到一个物体的3个面。
在相反的位置上看到的物体相反。
近处看到的物体大而少,在远处看到的物体小而多。
第四章 图形的初步认识 知识点归纳

第四章图形的初步认识一、全章知识结构(一)多姿多彩的图形(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图。
(2)能根据三视图描述基本几何体或实物原型。
3、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的。
(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型。
4、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
(二)直线、射线、线段1、基本概念2、直线的性质经过两点有一条直线,并且只有一条直线。
简单地:两点确定一条直线。
3、画一条线段等于已知线段(1)度量法(2)用尺规作图法4、线段的大小比较方法(1)度量法(2)叠合法5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点。
图形:符号:若点M是线段AB的中点,则AM=BM=AB,AB=2AM=2BM。
6、线段的性质两点的所有连线中,线段最短。
简单地:两点之间,线段最短。
7、两点的距离连接两点的线段长度叫做两点的距离。
8、点与直线的位置关系(1)点在直线上(2)点在直线外。
(三)角1、角:由公共端点的两条射线所组成的图形叫做角。
2、角的表示法(四种):3、角的度量单位及换算4、角的分类5、角的比较方法(1)度量法(2)叠合法6、角的和、差、倍、分及其近似值7、画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角。
(2)借助量角器能画出给定度数的角。
(3)用尺规作图法。
8、角的平分线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线。
9、互余、互补(1)若∠1+∠2=90°,则∠1与∠2互为余角。
其中∠1是∠2的余角,∠2是∠1的余角。
第四章图形的初步认识知识点总结

第四章图形的初步认识知识点总结1、生活中常见的立体图形(1)球体(2)柱体:包括圆柱和棱柱。
1)圆柱:有两个底面是圆,侧面是曲面。
2)棱柱:上下两个底面是两个平行且相同的多边形,侧面是平行四边形。
棱柱可按底面多边形边数分为三棱柱、四棱柱、五棱柱等。
(3)椎体:包括圆锥和棱锥。
1)圆锥:有一个底面是圆,侧面是曲面。
2)棱锥:底面是多边形,侧面是三角形。
棱锥可按底面多边形边数分为三棱锥、四棱锥、五棱锥等。
(4)多面体:由平的面围成的立体图形。
2、画立体图形(1)视图:就是从正面、上面、和侧面(左面或右面)三个不同的方向看一个物体,然后描绘三张所看到的图,即视图。
正视图:从正面看到的图形。
俯视图:从上面看到的图形。
侧视图:从侧面看到的图形。
依观看方向不同,有左视图、右视图。
三视图:通常把正视图、俯视图、与左(或右)视图称作一个物体的三视图。
(2)球体的三视图都是圆。
正方体的三视图都是正方形圆柱体的正视图和左视图都是长方体,俯视图是圆。
圆锥体的正视图和左视图都是三角形,俯视图是圆,中心有一个点。
3、由视图到立体图形主视图:可分清物体的长与高。
俯视图:可分清物体的长与宽。
左视图:可分清物体的宽与高。
口诀:主俯长对正,主左高齐平,俯左宽相等。
4、立体图形的表面展开图多面体是由平面图形围成的的立体图形,沿着多面体的一些棱将它剪开,可以把多面体的表面展开成一个平面图形,这个平面图形叫做多面体的表面展开图。
正方体的表面展开图:有“一四一型”、“一三二型”、“二二二型”、“三三型”口诀:一行不过四,“田”“凹”应弃之,相间、Z端是对面。
5、平面图形(1)圆是由曲线围成的封闭图形。
(2)多边形:由在同一平面且不在同一直线上的三条或三条以上的线段首尾顺次连结所组成的封闭图形叫做多边形。
按照组成多边形的边的个数,多边形可分为三角形、四边形、五边形、六边形……在多边形里,三角形是最基本的图形,每个n边形都可以分割成(n-2)个三角形。
(word版)七年级数学几何图形初步认识知识点,文档

初中年级〔上册〕导学案班级小组姓名第二章几何图形的初步认识从生活中认识几何图形知识点:一、认识几何图形平面图形圆柱柱体棱柱几何图形圆锥锥体立体图形棱锥球体圆台台体棱台二、几何图形的构成1、面与面相交成___,线与线相交成___。
2、点动成___,___动成面,面动成___。
3、___、___、___是构成几何图形的根本要素,体是由___围成的。
4、面有___面和___面,线有___线和___线。
引申探讨:n棱柱有几个顶点、几条棱、几个面编制教师:领导审核签字:初中年级〔上册〕导学案班级小组姓名点和线知识点:1、点的表示:A B用一个大写的字母,例如:点A、点B2、线段的表示:方法一:用表示端点的两个大写字母(没有次序).例如:线段AB、线段BA.方法二:用一个小写字母.例如线段 a.3、射线的表示:用表示端点的大写字母和其余任一点的字母(表示端点的大写字母必须写在前).例如:射线AB4、直线的表示:方法一:用表示任两点的两个大写字母(没有次序).例如:直线AB、直线BA.方法二:用一个小写字母.例如直线 a.5、线段、射线、直线的比拟:6、直线的性质:经过两点有一条直线,并且只有一条直线〔简记为:两点确定一条直线〕7、点与直线的位置关系:点在直线上〔直线经过点〕;点在直线外〔直线不经过点〕引申探讨:1、一条直线上有n个点,会有几条线段?2、握手问题、票价问题、车票问题。
编制教师:领导审核签字:初中年级〔上册〕导学案班级小组姓名线段的长短知识点:1、线段长短的比拟方法:〔两种〕1〕度量法:是从数量的角度来比拟2〕叠合法:是从图形的角度来比拟另外了解估测法:依据已有的经验来判断2、线段的画法:3、线段的性质:两点之间的所有连线中,线段最短。
〔简记为:两点之间,线段最短。
〕引申探讨:蚂蚁爬行问题线段的和与差知识点:一、线段的和与差的概念及作图方法二、线段的和与差的计算三、线段的中点几何图形初步一、本节学习指导本节知识点比拟简单,都是根底,当看书应该就能理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⎧⎨⎩⎧⎨⎩图形的初步认识一、本章的知识结构图一、立体图形与平面图形立体图形:棱柱、棱锥、圆柱、圆锥、球等。
1、几何图形平面图形:三角形、四边形、圆等。
主(正)视图---------从正面看2、几何体的三视图侧(左、右)视图-----从左(右)边看俯视图---------------从上面看(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图。
(2)能根据三视图描述基本几何体或实物原型。
3、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的。
12(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型。
4、点、线、面、体 (1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
例1 (1)如图1所示,上面是一些具体的物体,下面是一些立体图形,试找出与下面立体图形相类似的物体。
(2)如图2所示,写出图中各立体图形的名称。
图13图2解:(1)①与d 类似,②与c 类似,③与a 类似,④与b 类似。
(2)①圆柱,②五棱柱,③四棱锥,④长方体,⑤五棱锥。
例2 如图3所示,讲台上放着一本书,书上放着一个粉笔盒,指出右边三个平面图形分别是左边立体图形的哪个视图。
图3解:(1)左视图,(2)俯视图,(3)正视图 练习1.下图是一个由小立方体搭成的几何体由上而看得到的视图,小正方形中的数字表示该位置小立方块的个数,则从正面看它的视图为( )43.如图,下面三个正方体的六个面按相同规律涂有红、黄、蓝、白、黑、绿六种颜色,那么涂黄色、白色、红色的对面分别是( )A .蓝、绿、黑B .绿、蓝、黑C .绿、黑、蓝D .蓝、黑、绿4.若如下平面展开图折叠成正方体后,相对面上的两个数之和为5,求x +y +z 的值。
5.一个物体从不同方向看的视图如下,画出该物体的立体图形。
二、直线、射线、线段(一).直线、射线、线段的区别与联系:基本概念例3如图4所示,已知三点A,B,C,按照下列语句画出图形。
(1)画直线AB;(2)画射线AC;(3)画线段BC。
解:如图所示,直线AB、射线AC、线段BC即为所求。
5例4如图所示,回答下列问题。
(1)图中有几条直线?用字母表示出来;(2)图中有几条射线?用字母表示出来;(3)图中有几条线段?用字母表示出来。
解:(1)图中有1条直线,表示为直线AD(或直线AB,AC,BD,BC,CD);(2)共有8条射线,能用字母表示的有射线AB,AC,AD,BC,BD,CD,不能用字母表示的有2条,(3)共有6条线段,表示为线段AB,AC,AD,BC,BD,CD。
练习6、下列各直线的表示方法中,正确的是()A.直线A B.直线AB C.直线ab D.直线Ab7、右图中有__________条线段,分别表示为______________。
(二).直线、线段性质:经过两点有一条直线,并且只有一条直线;或者说两点确定一条直线;1、线段的性质两点的所有连线中,线段最短。
简单地:两点之间,线段最短。
62.画线段的方法(1)度量法(2)用尺规作图法3、线段的大小比较方法(1)度量法(2)叠合法4、点与直线的位置关系(1)点在直线上(2)点在直线外。
练习:8.把一段弯曲的公路改为直道,可以缩短路程。
其理由是:()(A)两点之间,线段最短(B)两点确定一条直线(C)线段有两个端点(D)线段可以比较大小9 在同一平面上的三点A,B,C,(1)过任意两点做一条直线,则可作直线的条数为 ____________(2)过三个已知点的直线的条数为 ____________解:(1)如图所示,当A,B,C三点不共线时,过其中的每两点可以画一条直线,共可画出三条直线;当A,B,C三点在一条直线上时,经过每两点画出的直线重合为一条直线。
7(2)过三个已知点不一定能画出直线。
当三个已知点在一条直线上时,可以画出一条直线;当三个已知点不在一条直线上时,不能画出直线。
(三).两点距离的定义:连接两点间的线段的长度,叫做这两点的距离。
练习:10、下列说法中,正确的是()A.射线比直线短 B.两点确定一条直线C.经过三点只能作一条直线 D.两点间的长度叫做两点间的距离11、线段AB=9cm,C是直线AB上的一点,BC=4cm,则AC=________.(四).线段中点:把一条线段分成两条相等的线段的点叫线段中点,如图:若点C是线段AB的中点,则有(1)AC=BC= AB 或(2)AB=2AC=2BC,反之,若有(1)式或(2)式成立,亦能说明点C是线段AB的中点。
(五).延长线和反向延长线:延长线段AB是指按从端点A到B的方向延长;延长线段BA是指按从端点B到A的反方向延长,这时也可以说反向延长线段AB。
直线、射线没有延长线,射线可以有反向延长线。
(六).关于线段的计算:8两条线段长度相等,这两条线段称为相等的线段,记作AB=CD,平面几何中线段的计算结果仍为一条线段。
即使不知线段具体的长度也可以作计算。
例:如图:AB+BC=AC,或说:AC-AB=BC例5 已知线段AB=4厘米,延长AB到C,使B C=2AB,取AC的中点P,求PB的长.例6、画图并计算已知线段CD,延长CD到B,使DB=0.5C B,反向延长CD到A,使CA=CB,若AB=12,求CD的长。
练习:12、若点P是线段AB的中点,则下列等式错误的是()A.AP=PB B.AB=2PB C.AP=1/2 AB D.AP=2PB13.已知点C是线段AB的中点,点D是线段BC的中点,CD=2.5厘米,请你求出线段AB、AC、AD、BD的长各为多少?二、角(一).角的意义:1、角:由公共端点的两条射线所组成的图形叫做角。
2、角的表示法(四种):3、角的度量单位及换算4、角的分类有公共端点的两条射线组成的图形叫做角,公共端点是角的顶点,这两条射线是角的两条边,角也可以看做由一条射线绕着它的端点旋转而形成的图。
9注意:表示角时,一定要对照几何图形,注意不能漏掉角的符号,切记用三个大写字母表示一个角时,顶点字母一定要写在中间;同一顶点处有多个角时,切不可用顶点字母来表示。
(二).角的度量:1°=60′ 1′=60″1直角=90° 1平角=180 ° 1周角=360°例7(1)用度、分、秒表示48.12°。
(3)用度表示50°7′30″。
练习:14.60°=________平角,45°45′=_____ _____度。
15.计算下列各题:(1)23°30′=____°;13.6°=____°____′;(2)52°45′-32°46′=____°____′;(3)18.3°+26°34′=____°____′.(三).角的大小的比较:(1)叠合法,使两个角的顶点及一边重合,另一边在重合边的同旁进行比较;(2)度量法。
(四).画角利用三角尺画出15的整数倍的角,利用量角器画出任何给定度数的角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角。
10(2)借助量角器能画出给定度数的角。
(3)用尺规作图法。
(五).角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。
如图:OC平分∠AOB,则(1)∠AOC=∠BOC= ∠AOB或(2)2∠AOC =2∠BOC =∠AOB。
(六).有关角的运算:举例说明:如图,∠AOC+∠BOC=∠AOB,∠AOB-∠AOC=∠BOC16题图练习:1116、由图形填空 :∠AOC=______+______ ;∠AOC-∠AOB =_________ ;∠COD=∠AOD-_______ ;∠BOC= _____-∠COD ;∠AOB+∠COD=_____-______.例7(1)计算:①27°42′30″+1070′;②63°36′-36.36°。
或63°36′-36.36°=63°36′-36°21.6′=27°14.4′=27°14′24″。
练习:17计算(1)48°39′+67°41′;(2)90°-78°19′40″;(3)1800–46 037/ 45//(七)时针和分针所成的角度钟表一周为360°,每一个大格为30°,每一个小格为6°.(每小时,时针转过30°,即一个大格,分针转过360°,即一周;每分钟,分针转过6°即一个小格)练习:18、钟表在5点半时,它的时针与分针所成的锐角是()A.70° B.75° C.15° D.90°(七)方位角:表示方向的角,经常用于航空、航海、测绘中。
注意:用角度表示方向,一般以正北、正南为基准,向东或向西旋转的角度表示方向,如“北偏东40°”,不要写成“东偏北50°”例8小明从A点出发,向北偏西33°方向走33 m到B点,小林从A点出发,向北偏东20°方向走了6.6 m到C点,试画图确定A,B,C三点的位置(1cm12表示3m),并从图上求出点B,C的实际距离。
解:①如图所示,任取一点A,经过点A画一条东西方向的直线WE和一条南北方向的直线NS(两条直线相交成90°角)。
②在∠NAW内作∠NAB=33°,量取AB=1.1cm。
③在∠NAE内作∠NAC=20°,量取AC=2.2cm。
④连接BC,量得BC=1.8cm,∴BC的实际距离是5.4m。
练习:19、从A看B的方向是北偏东35°,那么从B看A的方向是()A.南偏东55° B.南偏西55° C.南偏东35° D.南偏西35°20、有公共顶点的两条射线分别表示南偏东30°与北偏东15°,则这两条射线组成的角的度数为_____________________.八,互余与互补:(1)若∠1+∠2=90°,则∠1与∠2互为余角。
其中∠1是∠2的余角,∠2是∠1的余角。
13(2)若∠1+∠2=180°,则∠1与∠2互为补角。
其中∠1是∠2的补角,∠2是∠1的补角。
如果两个角的和等于直角,就说这两个角互为余角,即其中一个是另一个的余角;如果两个角的和等于平角,就说这两个角互为补角,即其中一个是另一个的补角;等角的余角相等,等角的补角相等。