超棒超快的数学心算方法)_
超棒超快的数学心算方法

超棒超快的数学心算方法文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]超棒超快的数学心算方法,让你从此不再用计算器_乘数的个位与被乘数相加,得数为前积,乘数的个位与被乘数的个位相乘,得数为后积,满十前一。
例:15×1715 + 7 = 225 × 7 = 35---------------255即15×17 = 255解释:15×17=15 ×(10 + 7)=15 × 10 + 15 × 7=150 + (10 + 5)× 7=150 + 70 + 5 × 7=(150 + 70)+(5 × 7)为了提高速度,熟练以后可以直接用“15 + 7”,而不用“150 + 70”。
例:17 × 1917 + 9 = 267 × 9 = 63即260 + 63 = 323二、个位是1的两位数相乘方法:十位与十位相乘,得数为前积,十位与十位相加,得数接着写,满十进一,在最后添上1。
例:51 × 3150 × 30 = 150050 + 30 = 80------------------1580因为1 × 1 = 1 ,所以后一位一定是1,在得数的后面添上1,即1581。
数字“0”在不熟练的时候作为助记符,熟练后就可以不使用了。
例:81 × 9180 × 90 = 720080 + 90 = 170------------------7370------------------7371原理大家自己理解就可以了。
三、十位相同个位不同的两位数相乘被乘数加上乘数个位,和与十位数整数相乘,积作为前积,个位数与个位数相乘作为后积加上去。
例:43 × 46(43 + 6)× 40 = 19603 × 6 = 18----------------------1978例:89 × 87(89 + 7)× 80 = 76809 × 7 = 63----------------------7743四、首位相同,两尾数和等于10的两位数相乘十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积,没有十位用0补。
超棒超快的数学心算办法)_

超棒超快的数学心算方法,让你从此不再用计算器_乘数的个位与被乘数相加,得数为前积,乘数的个位与被乘数的个位相乘,得数为后积,满十前一。
例:15×1715 + 7 = 225 ×7 = 35---------------255即15×17 = 255解释:7370------------------7371原理大家自己理解就可以了。
三、十位相同个位不同的两位数相乘被乘数加上乘数个位,和与十位数整数相乘,积作为前积,个位数与个位数相乘作为后积加上去。
例:43 ×46(43 + 6)×40 = 19603 ×6 = 18----------------------1978例:89 ×87(89 + 7)×80 = 76809 ×7 = 63----------------------7743四、首位相同,两尾数和等于10的两位数相乘十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积,没有十位用0补。
例:56 ×54“--得数的排序是右对齐,即向个位对齐。
这个原则很重要。
六、被乘数首尾相同,乘数首尾和是10的两位数相乘。
乘数首位加1,得出的和与被乘数首位相乘,得数为前积,两尾数相乘,得数为后积,没有十位用0补。
例:66 ×37(3 + 1)×6 = 24--6 ×7 = 42----------------------2442例:99 ×19(1 + 1)×9 = 18--9 ×9 = 81----------------------1881七、被乘数首尾和是10,乘数首尾相同的两位数相乘与帮助6的方法相似。
两首位相乘的积加上乘数的个位数,得数作为前积,两尾数相乘,得数作为后积,没有十位补0。
例:46 ×994 ×9 + 9 = 45--6 ×9 = 54----------------------------------289参阅乘法速算中的“十位是1 的两位相乘”二、个位是1 的两位数的平方底数的十位乘以十位(即十位的平方),得为前积,底数的十位加十位(即十位乘以2),得数为后积,在个位加1。
超棒超快的数学心算方法

超棒超快的数学心算方法This model paper was revised by LINDA on December 15, 2012.超棒超快的数学心算方法,让你从此不再用计算器_乘数的个位与被乘数相加,得数为前积,乘数的个位与被乘数的个位相乘,得数为后积,满十前一。
例:15×1715+7=225×7=35---------------255即15×17=255解释:15×17=15×(10+7)=15×10+15×7=150+(10+5)×7=150+70+5×7=(150+70)+(5×7)为了提高速度,熟练以后可以直接用“15+7”,而不用“150+70”。
例:17×1917+9=267×9=63即260+63=323二、个位是1的两位数相乘方法:十位与十位相乘,得数为前积,十位与十位相加,得数接着写,满十进一,在最后添上1。
例:51×3150×30=150050+30=80------------------1580因为1×1=1,所以后一位一定是1,在得数的后面添上1,即1581。
数字“0”在不熟练的时候作为助记符,熟练后就可以不使用了。
例:81×9180×90=720080+90=170------------------7370------------------7371原理大家自己理解就可以了。
三、十位相同个位不同的两位数相乘被乘数加上乘数个位,和与十位数整数相乘,积作为前积,个位数与个位数相乘作为后积加上去。
例:43×46(43+6)×40=19603×6=18----------------------1978例:89×87(89+7)×80=76809×7=63----------------------7743四、首位相同,两尾数和等于10的两位数相乘十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积,没有十位用0补。
超棒超快地数学心算方法)_

超棒超快的数学心算方法,让你从此不再用计算器_乘数的个位与被乘数相加,得数为前积,乘数的个位与被乘数的个位相乘,得数为后积,满十前一。
例:15×1715 + 7 = 225 ×7 = 35---------------255即15×17 = 255解释:15×17=15 ×(10 + 7)=15 ×10 + 15 ×7=150 + (10 + 5)×7=150 + 70 + 5 ×7=(150 + 70)+(5 ×7)为了提高速度,熟练以后可以直接用“15 + 7”,而不用“150 + 70”。
例:17 ×1917 + 9 = 267 ×9 = 63即260 + 63 = 323二、个位是1的两位数相乘方法:十位与十位相乘,得数为前积,十位与十位相加,得数接着写,满十进一,在最后添上1。
例:51 ×3150 ×30 = 150050 + 30 = 80------------------1580因为1 ×1 = 1 ,所以后一位一定是1,在得数的后面添上1,即1581。
数字“0”在不熟练的时候作为助记符,熟练后就可以不使用了。
例:81 ×9180 ×90 = 720080 + 90 = 170------------------7370------------------7371原理大家自己理解就可以了。
三、十位相同个位不同的两位数相乘被乘数加上乘数个位,和与十位数整数相乘,积作为前积,个位数与个位数相乘作为后积加上去。
例:43 ×46(43 + 6)×40 = 19603 ×6 = 18----------------------1978例:89 ×87(89 + 7)×80 = 76809 ×7 = 63----------------------7743四、首位相同,两尾数和等于10的两位数相乘十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积,没有十位用0补。
心算秘籍_快速算数_心算方法

1.十几乘十几:口诀:头乘头,尾加尾,尾乘尾。
例:12×14=?解: 1×1=12+4=62×4=812×14=168注:个位相乘,不够两位数要用0占位。
2.头相同,尾互补(尾相加等于10):口诀:一个头加1后,头乘头,尾乘尾。
例:23×27=?解:2+1=32×3=63×7=2123×27=621注:个位相乘,不够两位数要用0占位。
3.第一个乘数互补,另一个乘数数字相同:口诀:一个头加1后,头乘头,尾乘尾。
例:37×44=?解:3+1=44×4=167×4=2837×44=1628注:个位相乘,不够两位数要用0占位。
4.几十一乘几十一:口诀:头乘头,头加头,尾乘尾。
例:21×41=?解:2×4=82+4=61×1=121×41=8615.11乘任意数:口诀:首尾不动下落,中间之和下拉。
例:11×23125=?解:2+3=53+1=41+2=32+5=72和5分别在首尾11×23125=254375注:和满十要进一。
6.十几乘任意数:口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。
例:13×326=?解:13个位是33×3+2=113×2+6=123×6=1813×326=4238注:和满十要进一。
末同首和十就是相乘的两个数字,个位数完全相同,十位数相加之和刚好为10,举例来说,45×65,两数个位都是5,十位数4+6的结果刚好等于10。
首同末和十就是指两个数字相乘,十位数相同,个位数相加之和为10,67×63,7×3=21,这21就是得数的后两位;6×(6+1)=6×7=42,这42就是得数的前两位,综合起来,67×63=4221它的计算法则是,两数相同的各位数之积为得数的后两位数,不足10的,在十位上补0;两数十位数相乘后加上相同的个位数,结果就是得数的百位和千位数。
心算秘籍快速算数心算方法

1.十几乘十几:口诀:头乘头,尾加尾,尾乘尾。
例:12×14=?解: 1×1=1 2+4=6 2×4=8 12×14=168 注:个位相乘,不够两位数要用0占位。
2.头相同,尾互补(尾相加等于10):口诀:一个头加1后,头乘头,尾乘尾。
例:23×27=?解:2+1=32×3=63×7=21 23×27=621 注:个位相乘,不够两位数要用0占位。
3.第一个乘数互补,另一个乘数数字相同:口诀:一个头加1后,头乘头,尾乘尾。
例:37×44=?解:3+1=4 4×4=16 7×4=2837×44=1628注:个位相乘,不够两位数要用0占位。
4.几十一乘几十一:口诀:头乘头,头加头,尾乘尾。
例:21×41=?解:2×4=82+4=61×1=121×41=8615.11乘任意数:口诀:首尾不动下落,中间之和下拉。
例:11×23125=?解:2+3=53+1=41+2=32+5=72和5分别在首尾11×23125=254375注:和满十要进一。
6.十几乘任意数:口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。
例:13×326=?解:13个位是33×3+2=113×2+6=123×6=1813×326=4238注:和满十要进一。
。
数字心算最快的方法

数字心算最快的方法:1、十几乘十几:口诀:头乘头,尾加尾,尾乘尾。
例:12×14=?解: 1×1=12+4=62×4=812×14=168注:个位相乘,不够两位数要用0占位。
2.头相同,尾互补(尾相加等于10):口诀:一个头加1后,头乘头,尾乘尾。
例:23×27=?解:2+1=32×3=63×7=2123×27=621注:个位相乘,不够两位数要用0占位。
3、第一个乘数互补,另一个乘数数字相同:口诀:一个头加1后,头乘头,尾乘尾。
例:37×44=?解:3+1=44×4=167×4=2837×44=1628注:个位相乘,不够两位数要用0占位。
4、几十一乘几十一:口诀:头乘头,头加头,尾乘尾。
例:21×41=?解:2×4=82+4=61×1=121×41=8615、11乘任意数:口诀:首尾不动下落,中间之和下拉。
例:11×23125=?解:2+3=53+1=41+2=32+5=72和5分别在首尾11×23125=254375注:和满十要进一。
6、十几乘任意数:口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。
例:13×326=?解:13个位是33×3+2=113×2+6=123×6=1813×326=4238注:和满十要进一。
心算数学最快的方法

条形图法是指将数字绘制成简单的条形图,并通过比较长度来进行计算。例如,问题是"32+17",我们可以在纸上绘制两个长度分别为32和17的条形,然后将它们放在一起,通过观察条形的总长度来得出结果。
5.快速乘法法则
快速乘法法则是指利用数值的特点和乘法法则来进行快速计算。例如,问题是"27×8",我们可以将8分解为5+3,然后分别计算27×5和27×3,最后将两个结果相加。这种方法在进行大数字乘法时特别有用。
心算数学最快的方法
心算是指不借助任何工具,纯凭头脑进行计算的方法。我们可以通过一些技巧和策略来提高心算速度。以下是一些心算数学最快的方法:
1.固定基数法
固定基数法是指将计算问题中一些数固定为一个基数,然后对其他数进行相对计算。例如,如果问题是"48+25+13",我们可以将48固定为基数,然后计算25+13+48、这种方法减少了头脑中需要同时保存多个数字的负担,简化了计算过程。
2.四舍五入法
四舍五入法可以在计算过程中快速估算数值。例如,问题是"37+19",我们可以四舍五入为40+20=60来快速计算结果。这种方法在加减法中特别有用。
3.数字转化法
数字转化法是指将复杂的计算问题转化为更简单的形式。例如,问题是"48×32",我们可以将32转化为30+2,然后计算48×30和48×2,最后将两个结果相加。这种方法可以将复杂的乘法问题简化为基本的加法和乘法问题。
-灵活运用估算:利用Байду номын сангаас算来验证答案或者加速计算,可以减少不必要的计算步骤和时间消耗。
最后,提高心算速度需要不断的练习和耐心。通过使用这些方法和技巧,并结合个人的实践和经验,可以逐渐提高心算能力,快速准确地进行数学计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超棒超快的数学心算方法,让你从此不再用计算器_乘数的个位与被乘数相加,得数为前积,乘数的个位与被乘数的个位相乘,得数为后积,满十前一。
例:15×1715 + 7 = 225 ×7 = 35---------------255即15×17 = 255解释:15×17=15 ×(10 + 7)=15 ×10 + 15 ×7=150 + (10 + 5)×7=150 + 70 + 5 ×7=(150 + 70)+(5 ×7)为了提高速度,熟练以后可以直接用“15 + 7”,而不用“150 + 70”。
例:17 ×1917 + 9 = 267 ×9 = 63即260 + 63 = 323二、个位是1的两位数相乘方法:十位与十位相乘,得数为前积,十位与十位相加,得数接着写,满十进一,在最例:51 ×3150 ×30 = 150050 + 30 = 80------------------1580因为1 ×1 = 1 ,所以后一位一定是1,在得数的后面添上1,即1581。
数字“0”在不熟练的时候作为助记符,熟练后就可以不使用了。
例:81 ×9180 ×90 = 720080 + 90 = 170------------------7370------------------7371原理大家自己理解就可以了。
三、十位相同个位不同的两位数相乘被乘数加上乘数个位,和与十位数整数相乘,积作为前积,个位数与个位数相乘作为后积加上去。
例:43 ×46(43 + 6)×40 = 19603 ×6 = 18----------------------例:89 ×87(89 + 7)×80 = 76809 ×7 = 63----------------------7743四、首位相同,两尾数和等于10的两位数相乘十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积,没有十位用0补。
例:56 ×54(5 + 1) ×5 = 30--6 ×4 = 24----------------------3024例: 73 ×77(7 + 1) ×7 = 56--3 ×7 = 21----------------------5621例: 21 ×29(2 + 1) ×2 = 6--1 ×9 = 9----------------------609“--”代表十位和个位,因为两位数的首位相乘得数的后面是两个零,请大家明白,不要忘了,这点是很容易被忽略的。
五、首位相同,尾数和不等于10的两位数相乘两首位相乘(即求首位的平方),得数作为前积,两尾数的和与首位相乘,得数作为中积,满十进一,两尾数相乘,得数作为后积。
例:56 ×585 ×5 = 25--(6 + 8 )×5 = 7--6 ×8 = 48----------------------3248得数的排序是右对齐,即向个位对齐。
这个原则很重要。
六、被乘数首尾相同,乘数首尾和是10的两位数相乘。
乘数首位加1,得出的和与被乘数首位相乘,得数为前积,两尾数相乘,得数为后积,没有十位用0补。
例:66 ×37(3 + 1)×6 = 24--6 ×7 = 42----------------------2442例:99 ×19(1 + 1)×9 = 18--9 ×9 = 81----------------------1881七、被乘数首尾和是10,乘数首尾相同的两位数相乘与帮助6的方法相似。
两首位相乘的积加上乘数的个位数,得数作为前积,两尾数相乘,得数作为后积,没有十位补0。
例:46 ×994 ×9 + 9 = 45--6 ×9 = 54-------------------4554例:82 ×338 ×3 + 3 = 27--2 ×3 = 6-------------------2706八、两首位和是10,两尾数相同的两位数相乘。
两首位相乘,积加上一个尾数,得数作为前积,两尾数相乘(即尾数的平方),得数作为后积,没有十位补0。
例:78 ×387 ×3 + 8 = 29--8 ×8 = 64-------------------例:23 ×832 ×8 +3 = 19--3 ×3 = 9--------------------1909B、平方速算一、求11~19 的平方底数的个位与底数相加,得数为前积,底数的个位乘以个位相乘,得数为后积,满十前一。
例:17 ×1717 +7 = 24-7 ×7 = 49---------------289参阅乘法速算中的“十位是1 的两位相乘”二、个位是1 的两位数的平方底数的十位乘以十位(即十位的平方),得为前积,底数的十位加十位(即十位乘以2),得数为后积,在个位加1。
例:71 ×717 ×7 = 49--7 ×2 = 14------------------参阅乘法速算中的“个位数是1的两位数相乘”三、个位是5 的两位数的平方十位加1 乘以十位,在得数的后面接上25。
例:35 ×35(3 + 1)×3 = 12--25----------------------1225四、21~50 的两位数的平方在这个范围内有四个数字是个关键,在求25~50之间的两数的平方时,若把它们记住了,就可以很省事了。
它们是:21 ×21 = 44122 ×22 = 48423 ×23 = 52924 ×24 = 576求25~50 的两位数的平方,用底数减去25,得数为前积,50减去底数所得的差的平方作为后积,满百进1,没有十位补0。
例:37 ×3737 - 25 = 12--(50 - 37)^2 = 169----------------------1369注意:底数减去25后,要记住在得数的后面留两个位置给十位和个位。
例:26 ×2626 - 25 = 1--(50-26)^2 = 576-------------------676C、加减法一、补数的概念与应用补数的概念:补数是指从10、100、1000……中减去某一数后所剩下的数。
例如10减去9等于1,因此9的补数是1,反过来,1的补数是9。
补数的应用:在速算方法中将很常用到补数。
例如求两个接近100的数的乘法或除数,将看起来复杂的减法运算转为简单的加法运算等等。
D、除法速算一、某数除以5、25、125时1、被除数÷ 5= 被除数÷(10 ÷2)= 被除数÷10 ×2= 被除数×2 ÷102、被除数÷25= 被除数×4 ÷100= 被除数×2 × 2 ÷1乘数的个位与被乘数相加,得数为前积,乘数的个位与被乘数的个位相乘,得数为后积,满十前一。
例:15×1715 + 7 = 225 ×7 = 35---------------255即15×17 = 255解释:15×17=15 ×(10 + 7)=15 ×10 + 15 ×7=150 + (10 + 5)×7=150 + 70 + 5 ×7=(150 + 70)+(5 ×7)为了提高速度,熟练以后可以直接用“15 + 7”,而不用“150 + 70”。
例:17 ×1917 + 9 = 267 ×9 = 63即260 + 63 = 323二、个位是1的两位数相乘方法:十位与十位相乘,得数为前积,十位与十位相加,得数接着写,满十进一,在最后添上1。
例:51 ×3150 ×30 = 150050 + 30 = 80------------------1580因为1 ×1 = 1 ,所以后一位一定是1,在得数的后面添上1,即1581。
数字“0”在不熟练的时候作为助记符,熟练后就可以不使用了。
例:81 ×9180 ×90 = 720080 + 90 = 170------------------7370------------------7371原理大家自己理解就可以了。
三、十位相同个位不同的两位数相乘被乘数加上乘数个位,和与十位数整数相乘,积作为前积,个位数与个位数相乘作为后积加上去。
例:43 ×46(43 + 6)×40 = 19603 ×6 = 18----------------------1978例:89 ×87(89 + 7)×80 = 76809 ×7 = 63----------------------7743四、首位相同,两尾数和等于10的两位数相乘十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积,没有十位用0补。
例:56 ×54(5 + 1) ×5 = 30--6 ×4 = 24----------------------3024例: 73 ×77(7 + 1) ×7 = 56--3 ×7 = 21----------------------5621例: 21 ×29(2 + 1) ×2 = 6--1 ×9 = 9----------------------609“--”代表十位和个位,因为两位数的首位相乘得数的后面是两个零,请大家明白,不要忘了,这点是很容易被忽略的。
五、首位相同,尾数和不等于10的两位数相乘两首位相乘(即求首位的平方),得数作为前积,两尾数的和与首位相乘,得数作为中积,满十进一,两尾数相乘,得数作为后积。
例:56 ×585 ×5 = 25--(6 + 8 )×5 = 7--6 ×8 = 48----------------------3248得数的排序是右对齐,即向个位对齐。