平行耦合线滤波器的设计
基于接地平行耦合线的带通滤波器设计

基于接地平行耦合线的带通滤波器设计接地平行耦合线(Grounded Parallel Coupled Line,GPCL)是一种常用的微带线结构,它由两条平行的微带线通过一定的距离耦合在一起,并且其中一条微带线与地面相连。
GPCL具有许多优点,如低损耗、高品质因数、宽带宽等,因此在微波电路设计中得到了广泛应用。
本文将介绍基于GPCL的带通滤波器设计。
一、GPCL的基本原理GPCL的基本结构如图1所示。
其中,两条平行的微带线之间通过一定的距离d 耦合在一起,其中一条微带线与地面相连。
当信号从输入端口进入GPCL时,它会在两条微带线之间产生电磁耦合,从而形成一种新的传输模式,即共模模式和差模模式。
共模模式是指两条微带线上的信号同相位,而差模模式是指两条微带线上的信号反相位。
在GPCL中,共模模式和差模模式的传输速度不同,因此可以通过调整两条微带线之间的距离d来控制它们之间的电磁耦合程度,从而实现不同的滤波特性。
图1 GPCL的基本结构二、带通滤波器的设计带通滤波器是一种可以通过滤除低频和高频信号来选择特定频率范围内信号的电路。
在GPCL中,带通滤波器可以通过调整两条微带线之间的距离d来实现。
具体来说,当两条微带线之间的距离d足够小时,共模模式和差模模式的传输速度几乎相同,因此它们的相位差也很小,从而导致它们之间的电磁耦合程度很弱。
因此,当信号通过GPCL时,它会主要沿着一条微带线传输,而另一条微带线上的信号几乎不会产生影响,因此可以实现带通滤波的效果。
下面以一个具体的例子来说明如何设计一个基于GPCL的带通滤波器。
假设需要设计一个中心频率为2GHz,带宽为200MHz的带通滤波器,其电路图如图2所示。
其中,L1和L2是微带线的长度,W1和W2是微带线的宽度,S是微带线与地面之间的距离,d是两条微带线之间的距离,C1和C2是微带线与地面之间的电容。
图2 基于GPCL的带通滤波器电路图首先,需要确定微带线的特性阻抗Z0和介质常数εr。
三线平行耦合线宽带带通滤波器的设计

三线平行耦合线宽带带通滤波器的设计一、简介在现代通信系统中,滤波器是一种非常重要的电子设备,它可以帮助我们过滤掉不需要的信号,从而提高通信质量。
而三线平行耦合线宽带带通滤波器是一种常见的滤波器类型,它具有宽带特性和良好的通频特性,被广泛应用于各种通信系统中。
在本文中,我们将深入探讨三线平行耦合线宽带带通滤波器的设计原理、特性及相关内容。
二、设计原理三线平行耦合线宽带带通滤波器是由三根平行的传输线构成的,并通过对这三根传输线进行合适的设计和耦合,可以实现对特定频率范围内信号的带通滤波。
在设计过程中,需要考虑传输线的长度、宽度、间距等参数,以及三根传输线之间的耦合方式和大小。
通过合理调整这些参数,可以实现对特定频率范围内信号的传输和过滤,从而实现滤波器的设计目的。
三、特性分析三线平行耦合线宽带带通滤波器具有以下特性:1. 宽带特性:由于设计方式和结构特点,该类型滤波器具有较宽的通频带宽度,可以覆盖较广的频率范围,适用于多种信号传输和滤波需求。
2. 高性能:在适当的设计条件下,三线平行耦合线宽带带通滤波器可以实现较高的传输性能和滤波效果,保证传输信号的质量和稳定性。
3. 调节灵活:通过调整传输线的参数和耦合方式,可以实现对滤波器的频率特性和带宽特性的调节,满足不同应用场景下的需求。
四、设计步骤1. 确定滤波器的工作频率范围和带宽要求2. 计算传输线的长度、宽度和间距等参数3. 选择合适的传输线材料和工艺4. 进行传输线的设计和布局5. 对传输线进行耦合调节和优化6. 进行滤波器的模拟和测试,调整参数以满足设计要求五、个人观点和理解作为一种重要的滤波器类型,三线平行耦合线宽带带通滤波器在现代通信系统中具有广泛的应用前景。
在设计过程中,需要充分理解滤波器的工作原理和特性,合理选择设计参数和工艺,以实现对特定频率范围内信号的传输和滤波。
由于不同应用场景下的需求差异,需要对滤波器的设计和调节具有一定的灵活性和可调节性。
平行耦合微带线带通滤波器设计与测试

3 h t Rsac stto E C, ayn 200 Scun h a .Te h e r I tu C T Mi ag6 10 , i a ,C i ) 9 e h ni ef n h n A s at I re hbtyt t os f itlo m nctn tebnps ftr B F f a- bt c:nodroi iiss mac i o ga cm u i i ,h ad as l ( P )o r r t n e in e d i ao e i p
摘要 : 为了抑制数字通信系统 的噪声 , 利用 A S软 件进行 建模 、 D 优化 仿真设 计 、 制造 了中心频率 为 2 4G' , 宽 . I 带 I z
1 n 的平行耦合微带线带通滤 波器 , 2M z 0 并进行 了测试 , 的 s 测试 参数 与优化仿真结果 、 设计指标吻合较好 , 带内衰 减 3d 。在设计过程 中同时采用了 H S 仿真设 计。本设计 的滤 波器具 有带 内插 损较小 、 格低 、 B FS 价 易于实现 等特
平 行耦 合 微 带 线带 通 滤 波 器设 计 与 测试
夏祖学 夏文海 陈
(. 1 西南科技 大学信息工程学院
3 中国电子集团公 司第 九研究所 .
明 李少甫
浙江宁波 35 2 ; 12 1
四川绵 阳 6 10 ) 2 00
四川绵阳 6 1 1 2 金慰 ( 2 00;. 宁波 ) 电子有限公司
b S o . T e p o o e le a h d a t g so o ri s rin ls y HF S to h r p s d f trh s te a v n a e flwe n e t o s,lw o t a y i lme t- i o o c s ,e s mp e n a t n a d S n.An e f tr i e in d a d a g o r ci a fe ti b ane i n Oo o d t le s d sg e n o d p a t le c s o t i d. h i c Ke r s:Pa allc u ld ln s;Mir sfp b n pa sfle ;Co ue i l t n y wo d r le o p e i e co t a d s tr i i mp trsmu ai o
平行耦合微带线带通滤波器分析与设计

平行耦合微带线带通滤波器分析与设计刘新红【摘要】为了克服平行耦合微带线带通滤波器设计中存在的尺寸大、需要查表、优化困难等问题,提出了一种平行耦合微带线带通滤波器基于ADS软件的设计方法。
经过深入的理论分析发现,平行耦合线带通滤波器系统阻抗微带线非谐振单元,长度可尽量取短以减小电路尺寸;利用ADS软件自带滤波器设计工具可得到低通滤波器原型,省去了查表的麻烦;在版图优化上采用调谐方法比优化方法更有效。
仿真结果表明,所设计带通滤波器系统阻抗微带线为2.5 mm,中心频率5 GHz,相对带宽10%。
该方法在减小滤波器尺寸的同时没有降低滤波器性能,设计实现快速高效。
%In view of large size,table checking required and difficult optimization in the design of parallel coupled microstrip line bandpass filter,a design method of parallel coupled microstrip line bandpass filter based on ADS is proposed.Based on thorough theoret⁃ical analysis,it is found that the parallel coupled microstrip line bandpass filter system impedance microstrip line is not resonant,so the length can be as short as possible to reduce the circuit size.A prototype of a lowpass filter is obtained by using ADS software,eliminating the trouble of the look⁃up table;In the layout optimization,the tuning method is more effective than the optimization method.The simula⁃tion results show that the system impedance microstrip line is 2.5 mm long,the center frequency is 5GHz,and the relative bandwidth is 10%.This method can reduce the size of filter and not reduce the performance of the filter.The design and implementation of this method is fast and efficient.【期刊名称】《无线电工程》【年(卷),期】2016(046)002【总页数】6页(P52-57)【关键词】平行耦合微带线;带通滤波器;谐振器;插入损耗;回波损耗;ADS仿真【作者】刘新红【作者单位】北京信息职业技术学院,北京100015【正文语种】中文【中图分类】TN713.5AbstractIn view of large size,table checking required and difficult optimization in th e design of parallel coupled microstrip line bandpass filter,a design metho d of parallel coupled microstrip line bandpass filter based on ADS is propo sed.Based on thorough theoretical analysis,it is found that the parallel cou pled microstrip line bandpass filter system impedance microstrip line is not resonant,so the length can be as short as possible to reduce the circuit siz e.A prototype of a lowpass filter is obtained by using ADS software,elimina ting the trouble of the look-up table;In the layout optimization,the tuning method is more effective tha n the optimization method.The simulation results show that the system im pedance microstrip line is 2.5 mm long,the center frequency is 5 GHz,and t he relative bandwidth is 10%.This method can reduce the size of filter andnot reduce the performance of the filter.The design and implementation of this method is fast and efficient.Key wordsparallel coupled microstrip line;bandpass filter;resonator;insertion loss;retu rn loss;ADS simulation0 引言平行耦合微带线滤波器广泛应用于微波、无线通信射频前端和终端已有数十年。
平行耦合微带线滤波器的优化设计方法

平行耦合微带线滤波器的优化设计方法
1平行耦合微带线滤波器
平行耦合微带线滤波器(Parallel Coupled Microstrip
Filter,PCF)是一种利用平行耦合两个微带线耦合而成的电磁元件,广泛用于过滤器中。
它具有具有良好的快速响应、高通频带宽和高抑制特性。
许多研究者研究了PCF的设计和优化,取得了很多的研究成果。
2优化设计方法
(1)数值优化设计方法。
基于微带线耦合器有限差分法提出了PCF带宽优化方法,利用数值例程解决PCF的驻波比优化设计问题。
这种数值优化设计方法又被称为基于数值优化的梯度法设计方法,它是在使用有限差分法求得电磁场的基础上,通过从电器中获得目标函数的梯度信息,从而实现快速且有效的滤波器优化设计。
(2)传统的最优化方法。
根据半径的不同和元件的结构,PCF可以分为几何优化和特征参数优化两个类型。
对于第一种,通过最优化法寻找最优的微带线几何参数,从而获得最佳的滤波器性能。
而对于特征参数优化,主要是利用可变零点位置和特征参数来优化PCF,改变零极点的位置可以有效改变滤波器的特性,进而获得高效率、低插入损耗和宽带宽的滤波器。
3综述
平行耦合微带线滤波器是众多滤波应用中常用的电磁元件,其优化设计也一直受到学者的关注。
在设计优化的基础上,主要有数值优化设计方法和传统的最优化方法等两种方法,它们既能获得最优的滤波器特性,也可以有效地改变滤波器的性能,从而实现PCF的高性能设计。
HFSS高性能平行耦合微带带通滤波器设计与仿真攻略

HFSS高性能平行耦合微带带通滤波器设计与仿真攻略HFSS(High Frequency Structural Simulator)是一款广泛应用于高频电磁场仿真的软件工具,具有高效准确的计算能力,广泛应用于微波通信、天线设计、微带滤波器设计等领域。
在微带带通滤波器设计中,HFSS软件可以帮助工程师快速准确地设计出性能优异的滤波器,提高设计效率和准确性。
本文将介绍HFSS软件在高性能平行耦合微带带通滤波器设计与仿真中的一般步骤和攻略。
一、平行耦合微带带通滤波器原理平行耦合微带带通滤波器是一种结构简单、性能良好的微带滤波器,通常由一组垂直耦合微带谐振器和几个开路微带谐振器组成。
通过合理设计电路结构中的微带谐振器的长度、宽度和耦合间隔等参数,可以实现所需的滤波特性。
平行耦合微带带通滤波器通常具有较低的插入损耗、较高的带宽和较好的阻带衰减等性能。
二、HFSS平行耦合微带带通滤波器设计步骤1.确定滤波器的工作频率和性能指标,如通带中心频率、通带带宽、阻带衰减等;2.设计滤波器的电路拓扑结构,包括微带谐振器的种类和数量、耦合方式等;3.利用HFSS软件建立滤波器的三维模型,并设置仿真参数,如工作频率、网格精度等;4.通过HFSS软件进行电磁场仿真,分析滤波器的传输特性和谐振器的工作状态,调整设计参数以满足性能指标;5.优化滤波器的结构设计,如微带谐振器的长度、宽度和耦合间隔等参数;6.在HFSS软件中进行频域和时域仿真,验证滤波器的性能指标是否满足设计要求;7.在满足性能指标的前提下,进一步优化滤波器的结构设计,以降低损耗和提高性能;8.导出最终的滤波器设计文件,用于制作和验证实际器件性能。
1.合理选择HFSS软件版本和许可证类型,确保软件功能和性能满足设计需求;2.熟练掌握HFSS软件的操作界面和基本功能,包括建模、设置仿真参数、网格划分、分析结果等;3.在建立滤波器的三维模型时,注意设计精度和模型简化,提高仿真效率和准确性;4.在仿真过程中,结合HFSS软件的参数优化功能,快速有效地调整设计参数,实现滤波器性能的优化;5.结合HFSS软件的频域和时域仿真功能,全面分析滤波器的传输特性和动态响应,确保性能指标的准确性;6.在滤波器设计的不同阶段,及时保存和备份仿真文件和结果,方便后续验证和分析;8.最终,通过HFSS软件的仿真和验证结果,确定滤波器的结构设计方案,并导出制作文件进行实际器件的制作和测试。
三线平行耦合线宽带带通滤波器的设计

三线平行耦合线宽带带通滤波器的设计标题:三线平行耦合线宽带带通滤波器的设计——从理论到实践导语:三线平行耦合线宽带带通滤波器是一种常见且重要的电路设计,广泛应用于通信系统和无线电频谱处理中。
本文将从理论到实践,详细介绍三线平行耦合线宽带带通滤波器的设计原理、优点和应用。
1. 引言随着通信技术的快速发展,对频谱资源的有效利用和信号的高品质传输要求越来越高。
而带通滤波器作为一种重要的信号处理手段,起到了关键的作用。
在众多的带通滤波器中,三线平行耦合线宽带带通滤波器因其优越的性能而备受关注。
2. 三线平行耦合线宽带带通滤波器的原理三线平行耦合线宽带带通滤波器是利用电磁耦合的方式实现信号的频率选择性,通过合理设置耦合电容和电感的数值,使得滤波器具有较宽的带宽和良好的滤波特性。
其结构主要包括耦合线,微带线和神经元电容,并通过优化参数和布局设计,使得滤波器能够在频率范围内保持较低的插入损耗和较高的抑制带衰减。
3. 设计流程和关键要点在三线平行耦合线宽带带通滤波器的设计过程中,需要考虑一系列的关键要点,包括滤波器的中心频率、带宽、阻带抑制、通带插入损耗以及尺寸和布线等。
设计流程主要包括以下几个步骤:确定设计规格和要求、计算耦合电容和电感的数值、选择和优化滤波器的布线方式、进行仿真和性能评估、制作并测试样品。
4. 三线平行耦合线宽带带通滤波器的优点和应用与传统的LC滤波器相比,三线平行耦合线宽带带通滤波器具有许多优点,如高度集成、尺寸小、可重复性好、抗干扰性强等。
该滤波器在无线通信、卫星通信、射频前端和宽带通信等领域有广泛的应用。
5. 个人观点和理解作为一种重要的滤波器设计方式,三线平行耦合线宽带带通滤波器在实际应用中展现出了其独特的性能和优势。
在设计过程中,我认为关键要点的合理掌握和设计流程的严谨执行是确保滤波器性能良好的关键。
对于不同应用环境下的设计需求,应根据实际情况进行参数的调整和优化,以达到最佳的滤波效果。
基于ADS的平行耦合微带线带通滤波器的设计

基于ADS的平⾏耦合微带线带通滤波器的设计基于ADS的平⾏耦合微带线带通滤波器的设计摘要:本⽂介绍了平⾏耦合微带线带通滤波器的电路结构,阐述了设计带通滤波器的⽅法,最后给出了相对带宽为10%的滤波器设计的实例及仿真分析结果,证明了该⽅法的可⾏性和便捷性。
关键词: ADS; 微带线;带通滤波器;优化0 引⾔微带滤波器具有⼩型化、⾼性能、低成本等优点,在射频电路系统设计中得到⼴泛的应⽤。
其主要技术指标包括传输特性的插⼊损耗及回波损耗,通带内的相移与群时延,寄⽣通带等参数。
传统的设计⽅法是通过经验公式和查表来求得相关参数,⽅法繁琐且精度不⾼。
近年来,随着射频CAD软件的不断发展,微带滤波器的设计也进⼊了⼀个全新的阶段。
借助CAD软件可以避开复杂的理论计算,进⼀步精确和调整设计参数,确保设计出的滤波器特性符合技术要求。
本⽂通过ADS软件对平⾏耦合微带线带通滤波器进⾏优化仿真设计,证明了该⽅法的可⾏性和便捷性。
1微带带通滤波器的理论设计⽅法1.1 微带带通滤波器主要指标和基本设计思想微带滤波器的主要技术指标包括以下⼏个:(1) 通带边界频率与通带内衰减、起伏, 以及阻带边界频率与阻带衰减;(2) 通带的输⼊电压驻波⽐;(3) 通带内的相移与群时延;(4) 寄⽣通带, 它是由于分布参数传输线的周期性频率特性引起的, 即离设计通带⼀定处⼜产⽣了通带。
微波带通滤波器应⽤⼴泛, 结构多样, 但以微带线实现带通滤波器的结构种类有限, 为此,本⽂以平⾏耦合微带线为例来设计微带带通滤波器。
由于单个带通滤波器单元不能提供良好的滤波响应及陡峭的通带- 阻带过渡, ⽽通过级连基本的带通滤波器单元则可以得到⾼性能的滤波效果。
图1所⽰是⼀种多节耦合微带线带通滤波器的结构⽰意图, 这种结构不要求对地连接, 因⽽结构简单, 易于实现, 这是⼀种应⽤⼴泛的滤波器。
整个电路可以印制在很薄(⼩于1mm) 的介质基⽚上;其纵向尺⼨虽和⼯作波长可以⽐拟, 但采⽤⾼介电常数的介质基⽚则可使线上的波长⽐⾃由空间缩⼩⼏倍; 此外, 整个微带电路元件共⽤⼀个接地板, 且只需由导体带条构成电路图形, 因⽽结构⼤为紧凑, ⼤⼤减⼩了其体积和重量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行耦合线滤波器的设计
摘要:通过ADS软件设计平行耦合线带通滤波器,并通过ADS优化控件优化滤波器电路参数,最后生成版图,并进行二维平面电磁场仿真,即Momentum 仿真。
关键词:滤波器S参数原理图设计优化设计Momentum仿真
一、引言
滤波器是模拟电路中最基本也是最常用的基本器件,在频率较低的模拟电路中,滤波器常用电感、电容等集总参数元件构成,在频率较高的电路中,滤波器则由一些不同长度和宽度的微带线组成,简称微带滤波器。
耦合微带线滤波器是最常用的微带滤波器,它由平行的耦合线节相连组成,构成谐振电路。
每一个耦合线节是左右对称的,长度约为四分之一波长(对中心频率而言)。
本文研究的耦合微带线滤波器为带通滤波器,通带3.0-3.1GHz,带内衰减小于2dB,2.8GHz 以下及3.3GHz以上衰减大于40dB,端口反射系数小于-20dB。
二、设计分析
在进行设计时,主要是以滤波器的S参数作为优化目标进行优化仿真。
S21(S12)是传输参数,滤波器通带、阻带的位置以及衰减、起伏全都表现在S21(S12)随频率变化曲线的形状上。
S11(S22)参数是输入、输出端口的反射系数,由它可以换算出输入、输出端的电压驻波比。
如果反射系数过大,就会导致反射损耗增大,并且影响系统的前后级匹配,使系统性能下降。
三、原理图设计
将滤波器节数定为5节,由于平行耦合线滤波器的结构是对称的,所以五个耦合线节中,第1、5及2、4节微带线长L、宽W和缝隙S的尺寸是相同的。
耦合线的这些参数是滤波器设计和优化的主要参数,因此要用变量代替,便于后面修改和优化。
滤波器两边的引出线是特性阻抗为50欧姆的微带线,它的宽度W可由微带线计算工具得到。
最后分别设置滤波器的尺寸参数和电气参数,得到的滤波器原理图。
四、优化设计
当采用初始设定的参数时,滤波器的性能指标距设计要求相差很远,因此需要对滤波器的各个参数进行优化。
这里总共设置了四个优化目标,前三个的优化参数都是S21,用来设定滤波器的通带和阻带的频率范围及衰减情况(通带衰减小于2dB,阻带衰减大于40dB),最后一个的优化参数是S11,用来设定通带内的反射系数(反射系数小于-20dB)。
由于原理图仿真和实际情况会有一定的偏差,在设定优化参数时,可以适当增加通带宽度。
对于其它的参数,也可以根据优化的结果进行一定的调整。
设定好优化目标后,ADS会自动对电路进行优化,几次优化后的原理图仿真结果如下:
五、版图仿真
微带滤波器的实际电路是由微带线和电路板构成,实际电路的性能可能会与原理图仿真的结果有很大区别,因此在原理图仿真的基础上还要进行版图仿真。
版图的仿真是采用矩量法直接对电磁场进行计算,其结果比在原理图中仿真要准确。
首先要由原理图生成版图,生成版图前先要把原理图中用于S参数仿真的两
个Term以及地去掉,然后使用ADS中Layout生成版图,版图生成后,使用ADS 菜单中的Momentum仿真进行版图仿真,仿真结果如下:
六、小结
本文探讨了使用ADS仿真软件对平行耦合线带通滤波器设计仿真的方法,解决了工程应用中平行耦合线带通滤波器计算过于繁琐的问题,在平行耦合线带通滤波器设计及仿真中,主要是通过对滤波器电路原理图进行S参数仿真以及版图的Momentum仿真;其中,在原理图仿真中,由于初始设置的参数并不能满足设计目标,需要使用优化控件对滤波器电路参数进行优化调整。
本文探讨的平行耦合线带通滤波器设计方法,简化了设计过程,提高了工作效率,同时也为平行耦合线带通滤波器的设计奠定了基础。
参考文献:
[1]ADS用户手册:Circuit Simulation Agilent公司
[2]ADS 2008 Fundamentals Agilent公司
[3]ADS应用详解人民邮电出版社2008.8
[4]射频集成电路与系统科学出版社2008.8
[5]微波集成电路国防工业出版社1995.5
[6]微带电路人民邮电出版社1979.6。