四年级数学奥数培优第十六讲:倒推法示例
四年级数学思维训练——倒推法

倒推法知识导航倒推法是指题目给出的是一个数经过某些变化后的结果,要求原来的数的问题也称还原问题。
解答这一类问题时,要根据题意,从所给的结果出发,抓拄逆运算关系,由后向前一步步逆推,做相反的运算,逐步靠拢已知条件,直到问题得到解决。
精典例题例1:小明问李老师今年多大年纪,李老师说:“把我的年纪加上9,除以4,减去2,再乘3,恰好是30岁。
”你知道李老师今年多少岁吗?思路点拨从最后一个条件恰好是30岁向前推算,再乘3后才得30,那么没乘3之前应该是30÷3=10;减去2之后是10,那么没减之前应该是10+2=12;除以4之后是12,那么没除之前应该是:12×4=48;加上9之后是48,那么,没加之前应该是48-9=39;所以李老师今年39岁。
模仿练习1.在()里填上适当的数。
20×()÷8+16=26 ()÷5×2-8=102.一个数的3倍加上6,再减去9,最后乘2,结果得60,求这个数是多少?3.小神龙俱乐部成立的年份数加上2后,缩小100倍,再扩大4倍,最后减去25,正好是55。
那么小神龙俱乐部成立于哪一年?例2:大嶝粮库内有一批大米,第一次运出总数的一半多3吨,第二次运出剩下的一半多5吨,还剩下4吨,问粮库原有大米多少吨?思路点拨从“第二次运出剩下的一半多5吨”和“还剩下4吨”向前推算,剩下的4吨和多运的5吨合起来9吨正好是第一次运出后剩下的一半。
那么9×2=18吨是第一次运出后剩下的。
而18和3合起来21吨又正好是总数的一半。
那么原来应该有大米:21×2=42吨。
模仿练习1.新店国美电器出售洗衣机,上午出售总数的一半多10台,下午出售剩下的一半多20台,还剩下95台,问新店国美电器原来有洗衣机多少台?2.妈妈买了一些苹果,全家人第一天吃了这些苹果的一半多1个,第二天吃了剩下的一半多1个,第三天又吃了剩下的一半多1个,还剩下1个苹果,问妈妈一开始买了多少个苹果?3.某水果店卖菠萝,第一次卖了总数的一半多2个,第二次卖了剩下的一半多1个,第三次卖了剩下的一半少一个,还剩下3个菠萝,问水果店原来有菠萝多少个?例3:有甲、乙、丙三个小朋友共有梨90个,如果甲给乙3个后,乙又送给丙5个,那么三个人拥有的梨数正好相等。
四年级奥数倒推法例题

四年级奥数倒推法例题
下面是一个四年级奥数倒推法的例题。
一、例题
小明有一些零花钱,他先用零花钱的一半买了一本漫画书,然后又用剩下零花钱的一半买了一个冰淇淋,最后还剩下5元钱。
问小明原来有多少零花钱?
二、倒推法解题思路
1. 咱们从最后剩下的钱开始倒推哈。
最后剩下5元钱,这5元钱是他买完冰淇淋后剩下的。
- 因为他买冰淇淋用的是买完漫画书后剩下零花钱的一半,所以买冰淇淋之前剩下的钱就是5×2 = 10元。
这就好比你有一堆东西,你拿走一半后还剩下5个,那原来肯定是10个呀。
2. 那这10元呢,又是他用总零花钱的一半买了漫画书后剩下的。
- 所以原来小明有的零花钱就是10×2 = 20元。
就像刚刚的道理一样,你拿走一半东西后还剩下10个,那最开始就有20个啦。
所以呢,小明原来有20元零花钱。
这种倒推法就像是沿着你走过的路再倒着走回去,从最后的结果一步步找到最开始的情况。
倒推法解题(小学奥数)

倒推法解题【专题简析】:有些应用题按照一般的方法顺着题目条件一步一步的列式出来解 答过程会比较繁琐,所以有些题我们从后面往前面推会很好的简化题,使题变得 很简单,很容易理解也便于解答?例1、建筑队修一条路,第一天修了全长的51多100米,第二次修了余下的72,还剩下500米,求公路的全长。
练习1、乙队煤上午运走72,下午运走的比余下的31还多6吨,最后还剩下14吨没有运走,这堆煤原有多少吨?例2、某果地里有一些桃树结了一些桃子,有一群调皮猴子每天都去摘果园里的桃子吃,第一天摘下桃子总数的101,第二天摘了剩下总数的91,第三天摘了第二天摘后剩下总数的81……,第八天摘了第七天摘后剩下总数的31,第九天摘了第八天摘后剩下总数的21,这时树上还剩下10个桃子,果园里原来有多少个桃子?练习2、将一根绳子从中间剪开,再取其中的一端再从中间剪开,这样剪了四次,正好剩下一米,这根绳子原来有多长?例3、有甲乙两桶油,从甲桶中倒出31给乙桶后,又从乙桶中倒出51给甲,这时两桶正好各有24千克,原来甲乙两桶各有多少千克油?练习3、甲乙两人个有钱若干,甲拿出自己钱总数的51给乙,乙从自己现在所有的钱中拿出41给甲,这时两人各有12元钱,原来两人个有多少钱?综合练习:1、一个数减去1,乘以3,再加上2,最后除以4,结果是5,这个数是多少?2、猴子摘桃,第一天摘了树上桃子的一半多1个,第二天又摘上了余下桃子的一半多1个,这时树上还有15个桃子,原来树上有多少个桃子?3、兔妈妈带着小白兔和小黑兔去拔萝卜,小白兔把全部的萝卜平均分成三份,运走了其中的一份;小黑兔又把余下的萝卜平均分成三份,运走了其中的一份;兔妈妈运走了剩下的16个萝卜。
小白兔和小黑兔各运走多少个萝卜?4、一条小虫由幼虫长到成虫,每天长大1倍(即第二天是第一天的2倍,第三天是第二天的2倍,……)。
30天能长到20厘米,那么长到2.5厘米时用了多少天?5、有120个队伍进行单循环淘汰赛比赛,最后要决出一个冠军队,问:需要多少场比赛才能决出冠军队?6.一种荷叶每天长大1倍,第100天把整个池塘铺满了,求盖满池塘的一半需要多少天?盖满池塘的四分之一需要多少天?。
第 十 六 讲 倒 推 法

第 十 六 讲 倒 推 法【典型例题】1、甲、乙、丙、丁四个同学共有彩色玻璃弹子100颗,甲给乙13颗,乙给丙18颗,丙给丁16颗,丁给甲2颗,这时四人的弹子数相同。
他们原来每人各有弹子多少颗?2、某人去储蓄所取款,第一次取了存款数的一半还多5元,第二次取了余下的一半还多10元,还剩下125元,他原有存款多少元。
3、有西瓜26个,兄弟二人争着挑,弟弟抢在前面,则摆好瓜,哥哥赶到了,哥哥看弟弟挑得太多,就抢过一半,弟弟不服,又从哥哥那儿抢走一半,哥哥不肯,弟弟只好给哥哥5个,这时哥哥比弟弟多挑2个,问最初弟弟准备挑 个西瓜。
4、甲、乙两人各有苹果若干,若甲先拿出与乙同样多的苹果给乙,然后乙又拿出与甲现在同样多的苹果给甲,此时两人都有12个苹果,问这两人原来各有多少苹果?5、书架上、中、下三层共放着96本书,先从上层取出与中层同样多的书放到中层,再从中层取出与下层同样多的书放到下层,最后从下层取出与上层剩下的本数同样多的书放到上层,这时三层所放书的本数相同。
这个书架的上、中、下三层原来各放书多少本?【课堂小测】1.甲、乙、丙三人共有24元钱,如果甲给乙4元,乙给丙5元,那么三人的钱数就相等了。
乙原来有多少元?2.食堂买来一批大米,第一次吃了全部的一半少3千克,第二次吃了余下的一半少8千克,最后剩下22千克。
这批大米共有多少千克?3.抽屉里有若干个玻璃球,小军每次拿出了其中的一半再放回一个,这样一共拿了五次,抽屉里还有3个玻璃球,问原来抽屉中有个玻璃球。
4.有甲、乙、丙三个数,从甲数中拿出15加到乙数,再从乙数中拿出18加到丙数。
最后从丙数拿出12加到甲数,这时三个数都是180。
问甲、乙、丙三个数原来各是多少?5.桌上放着三盘桔子共45个,如果从第一盘拿4个放到第二盘,再从第二盘拿出7个放到第三盘,那么三个盘子中的桔子个数就完全相等。
问原来每盘桔子各有多少个?【课后作业】家长签字:用时: 分钟后1.甲、乙两人各有苹果若干,若甲先拿出与乙同样多的苹果给乙,然后乙又拿出与甲现在同样多的苹果给甲,此时两人都有12个苹果,问这两人原来各有多少苹果?2.兄弟俩去挑180千克大米,哥哥挑着若干往前走,弟弟看哥哥挑得太多,就抢过去50千克,哥哥不肯,又从弟弟那抡走30千克,这时哥哥挑的是弟弟的2倍,问最初哥哥,弟弟各挑多少千克大米?3.李辉和张新合搬60本图书,李辉抢先拿了若干本,张新看李辉拿了太多,就抢了一半,李辉不肯,张新就给了他10本,这时李辉比张新多4本。
小升初数学培优讲义全46讲—第16讲 倒推法解题

第16讲 倒推法解题1、考察范围:加法、减法、乘法、除法的逆运算。
2、考察重点:倒推运算。
3、命题趋势:对较复杂的还原问题,可借助画图和列表的方法从后往前进行倒推运算。
以填空和解答题居多。
1、一般方法运用加法、减法、乘法、除法的意义进行逆运算,对较复杂的还原问题,可借助画图和列表的方法从后往前进行倒推运算。
【例1】一个数的4倍减去4的差,再乘以4,再除以4得4,这个数是 。
【变式练习】1、一个数的2倍加上4,再乘以4,再除以4得74,这个数是 。
2、一个数的60%与4的差为6,这个数是 。
【例2】 一个分数的分母扩大到原来的4倍,分子缩小到原来的31后是6013,这个分数原来是 。
考点解读知识梳理典例剖析【变式练习】1、小强在计算一道分数除法题时,把一个数除以32看作乘以32结果算出来的答案是278,那么这道题的正确答案是 。
2、一个分数的分母加上2,分子减去2,所得新分数的分子与分母的差是123,约分后为498,则原来的分数是 。
【例3】 一筐鸡蛋第一次卖出全部的一半多2个,第二次卖出余下的一半少2个,这时还剩下28个,这筐鸡蛋一共有多少个?【变式练习】1、一根铁丝第一次用去它的一半少1米,第二次用去剩下的一半多1米,最后剩下5米,这根铁丝原来有多少米?2、修一条路,第一天修了全长的31还多3千米,第二天修了余下的41少2千米,第三天修了余下的51还多1千米。
这样还剩下15千米没有修完。
求这条路的长度?【例4】 小华拿出自己的画片的51给小强,小强再从自己现有的画片中拿出41给小华,这时两人各有画片12张,原来两人各有画片多少张?小强 小华 最后的张数1212小强拿出41给小华之前的张数 =-÷)411(12小华拿出51给小强之前的张数原来的张数【变式练习】1、有甲、乙两桶油,从甲桶中倒出31给乙桶后,又从乙桶中倒出51给甲桶,这时两桶油都是48千克,原来甲桶中有多少千克油?甲桶 乙桶 最后的重量4848乙桶拿出51给甲桶之前的重量 甲桶拿出31给乙桶之前的重量原来的重量【例5】甲、乙、丙三个班共有学生144人,先从甲班调出与乙班相同的人数给乙班,再从乙班调出与丙班相同的人数到丙班。
倒推法解题

倒推法解题一、考点、热点回顾用逆向方法解决问题就是根据问题的叙述过程,从最终结果开始,用逆向方法逐步找到问题的答案。
使用反向法求解问题时,原始加法用于减法,原始减法用于加法,原始乘法用于除法,原始除法用于乘法。
二、典型例题例1:一位农妇有一篮鸡蛋。
她第一次卖一半,第二次卖一半,第三次卖一半。
篮子里还有一个鸡蛋。
问:篮子里有多少个鸡蛋?例2、一瓶酒精,第一次倒出1/3,然后又倒回瓶中40克,第二次倒出瓶中剩下酒精的5/9,第三次倒出180克,瓶中还剩下60克,原来瓶中有多少克酒精?例3:一只猴子偷着吃桃子。
第一天,他偷着吃树上1/10的桃子。
在接下来的8天里,他偷吃了1/9,1/8,1/7,。
,每天有1/2的桃子在树上。
此时,树上还剩下10个桃子。
问:树上有多少桃子?例4、甲、乙二人分16个苹果,分完后,甲将自己所得苹果数的1/3分给了乙,乙又将自己苹果数的1/3还给甲,最后甲又将自己现有苹果数的1/3分给了乙,这时两人苹果数恰好相等,问:最初甲分得多少个苹果?三、课堂练习1、有一堆桃子,第一只猴子拿走了这堆桃子的一半多半个,第二只猴子又拿走了剩下桃子的一半多半个,第三只猴子也拿走了剩下桃子的一半多半个,桃子正好被拿完,问:这堆桃子原来有几个?2.工地上有一堆沙子。
第一次,一半以上的砂用于0.5吨以上,第二次,一半以上的剩余砂用于0.5吨以上,第三次,一半以上的剩余砂用于0.5吨以上。
此时,施工现场仍有20吨沙子。
工地上有多少吨沙子?3、小明的存钱盒中有一些钱,小明每次用去盒中钱数的一半多1元,这样一共用了5次,盒中还剩下4元钱,小明的存钱盒中原来有多少元?4.第一次倒出一瓶橙汁,然后再倒回50克,第二次倒出剩余橙汁的2/5,第三次倒出150克。
此时,瓶子里剩下120克。
瓶子里有多少克橙汁?5、修一段公路,第一次修了全长的1/2多2千米,第二天修了余下的1/2少1千米,这时还剩下20千米没有修,这段公路长多少千米?6.一堆西瓜,第一次售出总数的1/4和6,第二次售出剩余的1/3和4,第三次售出剩余的1/2和3。
小学四年级奥数题:倒推法及答案解析

小学四年级奥数题:倒推法及答案解析
1.甲、乙、丙三只盘子里分别盛着6个苹果。
小明按下面的方法
搬动5次:
第1次,把1个苹果从一只盘子里搬到另一只盘子里去;
第2次,把2个苹果从一只盘子里搬到另一只盘子里去;
第3次,甲盘不动,把3个苹果从一只盘子里搬到另一只盘子里去;
第4次,乙盘不动,把4个苹果从一只盘子里搬到另一只盘子里去;
第5次,丙盘不动,把5个苹果从一只盘子里搬到另一只盘子里去。
最后发现,甲、乙、丙三只盘子里依次盛有4,6,8个苹果。
你
知道小明是怎样搬动的吗?
2.小明共有贰分和伍分硬币208枚。
小明从中取出两枚硬币放在
手中作为标准,剩余硬币两枚一组分成103组,每组得到一个币值和。
他发现有67组的币值和比他手中币值和大,有12组的币值和比他手
中币值和小,有24组的币值和与他手中币值和相等,那么208枚硬币
的币值总和是多少分?
1.解答
利用倒推的思想,第2次结束后,每盘里的苹果数可能为(5,4,9)或(13,4,1)。
通过试验能够发现,显然第2次结束后只有(5,4,9)成立,所以搬动过程是的。
(6,6,6)→(5,6,7)→(5,4,9)→(5,1,12)→(9,1,8)→(4,6,8)
2.解答
67×(5+5)+(24+1)×(2+5)+12×(2+2)=893(分)。
四年级下册数学倒推法

四年级下册数学倒推法摘要:一、四年级下册数学倒推法的概念二、倒推法的应用实例三、倒推法在数学中的意义四、如何培养孩子掌握倒推法正文:一、四年级下册数学倒推法的概念在四年级下册的数学课程中,倒推法作为一种解决问题的策略,逐渐被孩子们所接触和掌握。
倒推法,顾名思义,是从结果出发,向前推导出达到这个结果所需的条件和过程。
它是一种逆向思维的方式,能够帮助孩子更好地理解问题,找到解决问题的关键。
二、倒推法的应用实例在实际数学问题中,倒推法的应用非常广泛。
例如,当我们需要计算一个四位数的各位数字之和时,我们可以先将这个四位数按照千位、百位、十位、个位的顺序分别提取出来,然后将这四个数字相加,得到的结果就是四位数的各位数字之和。
这就是一个典型的倒推法应用实例。
三、倒推法在数学中的意义倒推法在数学中的意义主要体现在以下几点:1.培养孩子的逻辑思维能力:通过倒推法,孩子们能够更加清晰地看到问题背后的逻辑关系,从而提高他们的逻辑思维能力。
2.提高孩子的解决问题的能力:倒推法能够帮助孩子从不同角度审视问题,找到问题的关键,从而提高他们解决问题的能力。
3.培养孩子的逆向思维能力:逆向思维是一种非常重要的思维方式,它能够帮助孩子们在面对问题时,有更广阔的思路和更多的解决方法。
四、如何培养孩子掌握倒推法要培养孩子掌握倒推法,家长和老师可以从以下几点入手:1.引导孩子多角度思考问题:当孩子遇到问题时,引导他们从不同角度去思考问题,尝试用倒推法解决问题。
2.提供丰富的倒推法实例:通过提供丰富的倒推法实例,让孩子在实际操作中掌握倒推法。
3.鼓励孩子多进行数学游戏:数学游戏是培养孩子数学思维的很好方式,家长和老师可以鼓励孩子多进行数学游戏,从而提高他们掌握倒推法的技能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十六讲:倒推法示例
爱学教育蔡老师奥数2015·四年级·竞赛集训·秋
●竞赛与集训题●
1、小华在荷塘里种了一棵莲藕,开始时它只有1片荷叶,以后每天都增加1倍的荷叶。
假如现在它有1024片荷叶,在4周前它有片荷叶。
2、喜羊羊和懒羊羊做游戏,喜羊羊说:你随便想一个数,并记住这个数,但不要说出来。
然后用这个数加上70,减去32,再减去所想的数,再乘以5,再除以2,我就能猜出答案。
小朋友你能猜出最终的答案是多少吗?请说出其中的奥秘。
3、甲乙丙三人手中各有苹果若干个.现在甲把手中苹果的一部分分给乙,使得乙的苹果个数变为原来的2倍,乙在得到苹果之后再将手中的苹果的一部分分给丙,使得丙的苹果个数变为原来的2倍.这样一来,3人手中的苹果就一样多了.如果再分的过程中,每人手中的苹果都是整数个.那么三人手中的苹果总数至少是个。
4、有一类4位数,任意相邻两位数字之和均不大于2,这样的数从小到大排列,倒数第二个是。
5、电脑按照指示进行运算:如果数据是偶数,就将它除以2;如果数据是奇数,就将它加3,这样继续进行了三次得出结果为27,原来的数据可能是〔填出所有可能):。
6、小明在桌上将若干个红球排成一排,然后在每相邻的2个球之间放2个黄球,最后在每相邻的2个球之间再放2个蓝球,这时桌上共有2008个球,那么其中黄球有_____个。
7、老师在黑板上写了三个不同的整数,小明每次先擦掉第一个数,然后在最后写上另两个数的平均数,如此做了7次,这时黑板上三个数的和为159 ,如果老师在黑板上写的三个数之和为2008,且所有写过的数都是整数。
那么开始时老师在黑板上写的第一个数是。
8、有一类多位数,从左数第三位数字开始,每位上的数都等于其左边第2个数减去左边第1个数的差。
如74312,6422。
那么这类数中最大的是。
9、在信息时代信息安全十分重要,往往需要对信息进行加密,若按照"乘3加1取个位"的方式逐渐加密,明码"16"加密之后的密码为"49",若某个四位明码按照上述加密方式,经过两次加密得到的密码是"2445",则明码是。
10、有一个吹泡机,一次恰好吹出100个肥皂泡,肥皂泡吹出后,经过1分钟有一半破了,经过2分钟,还剩110没破,经过3分钟只剩下2%没破,这些肥皂泡不到4分钟全破,如果吹泡机每分钟吹一次,那么到第10次吹出新的肥皂泡时,没有破的肥皂泡至少有多少?.
11、从1克、3克、9克、27克、81克五种砝码中,每次取出一个或几个不同的砝码,放在天平的同一端来称量物体的重量,一共可以称出31种重量。
把它们从小到大依次排列出来是:1克、3克、4克、9克、10克、12克,...。
请问:其中称出的第28个重量是多少克?
12、有三堆棋子。
小明先从第一堆中拿出一部分放入第二堆,使第二堆棋子的棋子数增加一倍;再从第二堆中拿出一部分放入第三堆,使第三堆棋子的棋子数增加一倍;最后从第三堆中拿出一部分放入第一堆,使第一堆棋子的棋子数增加一倍;这时三堆棋子的棋子数相同。
如果第一堆棋子原有2002个,那么另二堆棋子原各有多少个?
13、有一种细胞分裂的很快,每秒增加1倍,在一只密封的瓶子里,如果放进一种细胞,1秒后分裂成2个,2秒后分裂成4个,…….这样经过2分钟后,整个瓶子里就充满了这样的细胞,如果一开始就放进2048个这样的细胞,经过秒后,细胞总数达到半瓶。
14、一长方形纸片的长为1.将它按如图所示的方式折一下,剪下一个边长等于长方形纸片宽的正方形(称为一次操作):再把剩下的长方形纸片继续按相同的方式操作,剪下一个边长等于此时长方形纸片宽的正方形,如此操作下去.若在3次操作后,剩下的长方形纸片恰好为正方形、求原长方形纸片的宽。
15.将长为12厘米,宽为8厘米的长方形剪去4个同样大小的等腰三角形,剩余部分的面积至少是平方厘米。