交流谐振电路(电脑仿真)实验报告模板
交流电路的谐振现象实验报告

交流电路的谐振现象实验报告一、实验目的1、深入理解交流电路中谐振现象的基本原理。
2、掌握测量谐振频率、品质因数等参数的方法。
3、观察并分析串联谐振和并联谐振的特点及差异。
二、实验原理在交流电路中,当电感、电容和电阻串联或并联时,在一定的电源频率下,可能会出现谐振现象。
串联谐振时,电路的阻抗最小,电流达到最大值,且电感和电容两端的电压可能远大于电源电压。
其谐振频率$f_0$可由公式$f_0 =\frac{1}{2\pi\sqrt{LC}}$计算得出,其中$L$为电感值,$C$为电容值。
并联谐振时,电路的阻抗最大,电流达到最小值,且电感和电容中的电流可能远大于总电流。
品质因数$Q$是衡量谐振电路性能的重要参数,对于串联谐振,$Q =\frac{\omega_0 L}{R}$;对于并联谐振,$Q =\frac{R}{\omega_0 L}$。
三、实验仪器1、信号发生器2、示波器3、电阻箱4、电感箱5、电容箱四、实验步骤1、串联谐振实验按照电路图连接好串联电路,包括电阻、电感和电容。
调节信号发生器的输出频率,从低到高逐渐变化,同时观察示波器上的电流波形,当电流达到最大值时,记录此时的频率,即为串联谐振频率$f_{0s}$。
测量此时电阻、电感和电容两端的电压,并计算品质因数$Q_s$。
2、并联谐振实验按照电路图连接好并联电路,包括电阻、电感和电容。
同样调节信号发生器的频率,从低到高逐渐变化,观察示波器上的电流波形,当电流达到最小值时,记录此时的频率,即为并联谐振频率$f_{0p}$。
测量此时电阻、电感和电容中的电流,并计算品质因数$Q_p$。
五、实验数据记录与处理1、串联谐振实验数据|实验次数|电阻$R$(Ω)|电感$L$(mH)|电容$C$(μF)|谐振频率$f_{0s}$(kHz)|电阻电压$U_R$(V)|电感电压$U_L$(V)|电容电压$U_C$(V)|品质因数$Q_s$ ||::|::|::|::|::|::|::|::|::|| 1 | 500 | 100 | 01 | 50 | 50 | 150 | 150 | 30 || 2 | 800 | 150 | 008 | 40 | 80 | 240 | 240 | 60 |2、并联谐振实验数据|实验次数|电阻$R$(Ω)|电感$L$(mH)|电容$C$(μF)|谐振频率$f_{0p}$(kHz)|电阻电流$I_R$(mA)|电感电流$I_L$(mA)|电容电流$I_C$(mA)|品质因数$Q_p$ ||::|::|::|::|::|::|::|::|::|| 1 | 1000 | 80 | 006 | 60 | 60 | 180 | 180 | 18 || 2 | 1200 | 100 | 005 | 50 | 50 | 250 | 250 | 25 |根据实验数据,计算出串联谐振和并联谐振的平均谐振频率、品质因数等参数。
交流电路的谐振现象实验报告

交流电路的谐振现象实验报告交流电路的谐振现象实验报告引言交流电路的谐振现象是电子学中的重要概念之一。
谐振是指当电路中的电感和电容元件达到特定的数值时,电路会发生共振现象,电流和电压的幅值会达到最大值。
本实验旨在通过搭建交流电路并观察其谐振现象,加深对谐振现象的理解。
实验材料和方法材料:电感线圈、电容器、电阻器、交流电源、示波器等。
方法:首先,我们按照实验要求搭建交流电路,将电感线圈、电容器和电阻器连接在一起,并接入交流电源。
然后,使用示波器测量电路中的电压和电流,并记录下来。
实验结果与分析在实验过程中,我们通过调节电感线圈和电容器的数值,观察到了电路的谐振现象。
当电感和电容的数值达到一定的比例时,电路中的电流和电压会达到最大值。
谐振频率的计算根据实验数据,我们可以计算出电路的谐振频率。
谐振频率的计算公式为:f=1/(2π√(LC)),其中f为谐振频率,L为电感的值,C为电容的值。
实验误差的分析在实验中,由于仪器的精度和实验条件的限制,可能会产生一定的误差。
例如,电感线圈和电容器的实际数值与标称数值可能存在一定的偏差,导致计算出的谐振频率与理论值有所差别。
谐振现象的应用谐振现象在电子学中有着广泛的应用。
例如,在无线通信中,天线的谐振频率与传输信号的频率相匹配,可以实现信号的传输和接收。
此外,谐振现象还应用于音响设备、电子滤波器等领域。
实验总结通过本次实验,我们深入了解了交流电路的谐振现象。
通过观察和测量实验数据,我们验证了谐振频率的计算公式,并分析了实验误差的来源。
谐振现象在电子学中有着重要的应用,对于我们理解和应用电路具有重要意义。
结语交流电路的谐振现象是电子学中的基础概念之一,通过本次实验,我们对谐振现象有了更深入的了解。
通过实验数据的分析和计算,我们验证了谐振频率的计算公式,并探讨了实验误差的来源。
谐振现象在电子学中有着广泛的应用,对于我们理解和应用电路具有重要意义。
通过本次实验,我们不仅提高了实验操作的能力,还加深了对交流电路谐振现象的理解。
仿真实验报告模板

結品文档电路计算机辅助设计院系:电力工程学院专业年级(班级):电力工程与管理2011192班学生姓名:_________ 学号:201129 ________扌旨导教师:_____ 杨尔滨、杨欢红_______________成绩:_________________2013年07月06日教师评语:精品文档目录仿真实验一节点电压法分析直流稳态电路 (1)仿真实验二戴维宁定理的仿真设计 (5)仿真实验三叠加定理的验证 (8)仿真实验四正弦交流电路一一谐振电路的仿真 (11)仿真实验五两表法测量三相电路的功率 (14)仿真实验六含受控源的RL电路响应的研究 (18)仿真实验七含有耦合互感的电路的仿真实验................................. -21仿真实验八二阶电路零输入响应的三种状态轨迹............................. -27仿真实验九二端口电路的设计与分析. (32)=G2(M1-M2)实验一节点电压法分析电路一、电路课程设计目的(1)通过较简易的电路设计初步接触熟悉Multisniill.Oo(2)学会用Multisimll.O获取某电路元件的某个参数。
(3)通过仿真实验加深对节点分析法的理解及应用。
二、实验原理及实例节点分析法是在电路中任意选择一个节点为非独立节点,称此节点为参考点。
其它独立节点与参考点之间的电压,称为该节点的节点电压。
节点分析法是以节点电压为求解电路的未知量,利用基尔霍夫电流定律和欧姆定律导出(n ・1)个独立节点电压为未知量的方程,联立求解,得出各节点电压。
然后进一步求出各待求量。
卜•图所示是具有三个节点的电路,下面以该图为例说明用节点分析法进行的电路分析方法和求解步骤,导出节点电压方程式的一般形式。
图1—1首先选择节点③为参考节点,则u3 = 0。
设节点①的电压为ul、节点②的电压为u2,各支路电流及参考方向见图中的标示。
谐振电路试验实验报告

一、实验目的1. 理解谐振电路的基本原理和特性。
2. 掌握RLC串联谐振电路的谐振频率、品质因数等参数的测量方法。
3. 通过实验验证谐振电路在不同频率下的电流和电压响应。
4. 学习使用示波器和信号发生器等实验仪器。
二、实验原理谐振电路是由电感(L)、电容(C)和电阻(R)组成的电路,其工作原理基于电磁感应和电容器充放电现象。
当电路中的交流电压频率等于电路的自然谐振频率时,电路中的电流和电压达到最大值,这种现象称为谐振。
RLC串联谐振电路的谐振频率由以下公式确定:\[ f_0 = \frac{1}{2\pi\sqrt{LC}} \]其中,\( f_0 \) 是谐振频率,\( L \) 是电感值,\( C \) 是电容值。
在谐振频率下,电路的品质因数(Q值)可以表示为:\[ Q = \frac{1}{R\sqrt{\frac{L}{C}}} \]其中,\( Q \) 是品质因数,\( R \) 是电阻值。
三、实验仪器与设备1. RLC串联谐振电路实验板2. 双踪示波器3. 信号发生器4. 数字多用表5. 交流电源四、实验步骤1. 搭建电路:根据实验要求,将电感、电容和电阻按照RLC串联方式连接到实验板上。
2. 设置信号发生器:将信号发生器设置为正弦波输出,并调整频率和幅度。
3. 测量谐振频率:逐渐调整信号发生器的频率,观察示波器上电压和电流的变化。
当电压或电流达到最大值时,记录此时的频率即为谐振频率。
4. 测量品质因数:在谐振频率下,使用数字多用表测量电路中的电流和电压,并根据公式计算品质因数。
5. 测量电流和电压响应:在多个不同频率下,测量电路中的电流和电压,绘制幅频特性曲线。
五、实验结果与分析1. 谐振频率测量:通过实验,测量得到的谐振频率与理论计算值基本一致,误差在可接受范围内。
2. 品质因数测量:实验测得的品质因数与理论计算值相符,说明电路具有良好的谐振特性。
3. 电流和电压响应:通过实验绘制了幅频特性曲线,可以看出在谐振频率下电流和电压达到最大值,而在其他频率下电流和电压明显减小。
交流谐振电路实验报告

交流谐振电路实验报告一.实验目的1.练习三相负载的星形联接和三角形联接;2.了解三相电路线电压与相电压,线电流与相电流之间的关系;3.了解三相四线制供电系统中,中线的作用;4.观察线路故障时的情况。
二.原理说明电源用三相四线制向负载供电,三相负载可接成星形(又称‘Y’形)或三角形(又称‘Δ’形)。
当三相对称负载作‘Y’形联接时,线电压UL是相电压UP的倍,线电流IL等于相电流IP,即:,流过中线的电流IN=0;作‘Δ’形联接时,线电压UL等于相电压UP,线电流IL是相电流IP的倍,即:?不对称三相负载作‘Y’联接时,必须采用‘YO’接法,中线必须牢固联接,以保证三相不对称负载的每相电压等于电源的相电压(三相对称电压)。
若中线断开,会导致三相负载电压的不对称,致使负载轻的那一相的相电压过高,使负载遭受损坏,负载重的一相相电压又过低,使负载不能正常工作;对于不对称负载作‘Δ’联接时,IL≠IP,但只要电源的线电压UL对称,加在三相负载上的电压仍是对称的,对各相负载工作没有影响。
本实验中,用三相调压器调压输出作为三相交流电源,用三组白炽灯作为三相负载,线电流、相电流、中线电流用电流插头和插座测量。
(EEL—ⅤB为三相不可调交流电源)三.实验设备?1.三相交流电源2.交流电压表、电流表3.EEL—17组件或EEL—55组件四.实验内容1.三相负载星形联接(三相四线制供电)实验电路如图24-1所示,将白炽灯按图所示,连接成星形接法。
用三相调压器调压输出作为三相交流电源,具体操作如下:将三相调压器的旋钮置于三相电压输出为0V的位置(即逆时针旋到底的位置),然后旋转旋钮,调节调压器的输出,使输出的三相线电压为220V。
测量线电压和相电压,并记录数据。
(EEL—ⅤB为三相不可调交流电源,输出的三相线电压为380V)(1)在有中线的情况下,测量三相负载对称和不对称时的各相电流、中线电流和各相电压,将数据记入表24-1中,并记录各灯的亮度。
交流谐振电路实验报告

交流谐振电路实验报告交流谐振电路实验报告引言:交流谐振电路是电路中常见的一种特殊电路,它在特定频率下能够实现电流和电压的最大响应。
本实验旨在通过构建交流谐振电路,研究其工作原理和性能特点。
一、实验目的本实验的主要目的是探究交流谐振电路的特性,包括共振频率、谐振频带、频率选择性等。
通过实验,我们希望能够深入了解交流谐振电路的工作原理,并能够通过实际测量和计算验证理论模型。
二、实验器材与原理1. 实验器材:本次实验所需的主要器材包括信号发生器、电感、电容、电阻、示波器等。
2. 实验原理:交流谐振电路由电感、电容和电阻组成。
当电感和电容并联时,可以形成一个谐振回路。
在特定频率下,电感和电容的阻抗相互抵消,使得电路呈现出最大的响应。
这个特定频率称为共振频率。
三、实验步骤1. 搭建电路:按照实验要求,搭建交流谐振电路。
将电感、电容和电阻按照电路图连接好,并连接信号发生器和示波器。
2. 测量共振频率:通过调节信号发生器的频率,观察示波器上电压的变化。
当电压达到最大值时,记录此时的频率,即为共振频率。
3. 测量谐振频带:在共振频率附近,逐渐改变信号发生器的频率,并记录示波器上电压的变化。
当电压下降到共振电压的70.7%时,记录此时的频率,即为谐振频带。
4. 计算频率选择性:通过测量共振频率和谐振频带,可以计算出交流谐振电路的频率选择性。
频率选择性是指在谐振频带内,电路对频率变化的敏感程度。
四、实验结果与分析通过实验,我们得到了交流谐振电路的共振频率和谐振频带。
根据实验数据,我们可以计算出频率选择性。
通过比较实验结果和理论模型,我们可以验证交流谐振电路的工作原理。
五、实验误差与改进在实验过程中,由于仪器精度和实验环境等因素的影响,可能会引入一定的误差。
为了减小误差,可以采取以下改进措施:提高仪器的精度、增加实验次数并取平均值、控制实验环境等。
六、实验结论通过本次实验,我们深入了解了交流谐振电路的工作原理和性能特点。
谐振电路实习报告

一、实习背景与目的在电子技术领域,谐振电路是一个基础且重要的组成部分。
为了加深对谐振电路理论知识的理解,提高动手实践能力,我们开展了谐振电路的实习。
本次实习旨在通过实际操作,让学生掌握谐振电路的原理、设计方法、调试技巧,并学会分析电路性能。
二、实习内容与过程1. 理论学习实习前,我们首先对谐振电路的基本概念、原理、特点进行了系统的理论学习。
通过查阅资料、课堂讲解,我们了解了谐振电路的定义、工作原理、谐振频率、品质因数等基本概念。
2. 电路设计根据实习要求,我们设计了两个谐振电路:LC谐振电路和RC谐振电路。
在设计过程中,我们考虑了电路元件的选择、参数的匹配、电路的稳定性等因素。
3. 电路搭建在搭建电路时,我们严格按照电路图进行,注意元件的连接顺序和方向。
在焊接过程中,我们遵循焊接规范,确保电路的可靠性和稳定性。
4. 电路调试搭建完成后,我们对电路进行了调试。
通过调整电路参数,观察电路性能,分析电路的谐振频率、品质因数等指标。
在调试过程中,我们遇到了一些问题,如电路不稳定、谐振频率偏差等,通过查阅资料、请教老师,我们找到了解决问题的方法。
5. 实验数据分析在实验过程中,我们记录了电路的谐振频率、品质因数等数据,并与理论值进行了对比分析。
通过实验数据的处理,我们进一步了解了谐振电路的特性。
三、实习结果与收获1. 理论知识通过本次实习,我们对谐振电路的理论知识有了更深入的理解。
我们掌握了谐振电路的定义、原理、特点,以及谐振频率、品质因数等基本概念。
2. 动手能力在实习过程中,我们学会了电路搭建、调试、分析等基本技能。
通过实际操作,我们的动手能力得到了显著提高。
3. 问题解决能力在实习过程中,我们遇到了一些问题,如电路不稳定、谐振频率偏差等。
通过查阅资料、请教老师,我们学会了如何分析问题、解决问题,提高了自己的问题解决能力。
4. 团队协作本次实习是团队合作完成的。
在实习过程中,我们互相学习、互相帮助,共同完成了实习任务。
电路谐振仿真实验报告

电路谐振仿真实验报告1. 实验目的本实验旨在通过电路谐振仿真实验,了解并掌握电路谐振的基本原理、特性以及相关参数的计算和测量。
2. 实验原理在电路中,当电感和电容按照一定的方式连接时,会出现谐振现象。
谐振是指电路中的电感和电容能够以最大的能量交换频率进行振荡,这种频率称为谐振频率。
在谐振频率下,电路中的电压和电流呈现特殊的相位关系。
该电路由电感、电容和电阻构成。
当电感与电容串联时,谐振频率f可以通过以下公式计算:f = 1 / (2π√(LC))其中,f为谐振频率,L为电感值,C为电容值,π为圆周率。
3. 实验材料与器件•信号发生器•示波器•电感•电容•电阻•连接线4. 实验步骤步骤1:搭建电路根据实验要求,选择合适的电感、电容和电阻,按照电路图连接这些器件。
确保连接正确且紧固可靠。
步骤2:接通电源将电路连接到电源,确保电源稳定并符合实验要求。
步骤3:调节信号发生器使用信号发生器产生符合实验要求的信号,并将其输入到电路中。
调节信号发生器的频率,使其接近谐振频率。
步骤4:观察波形使用示波器观察电路中的波形。
记录并分析波形的幅值、频率、相位等特征参数。
步骤5:测量电路参数根据实验需要,测量电路中的电感、电容和电阻的具体数值。
使用合适的测量仪器,按照操作说明进行测量。
步骤6:计算谐振频率根据实验测得的电感和电容数值,使用之前提供的公式计算谐振频率。
5. 实验结果与分析通过以上步骤,我们可以获取电路中的波形、参数和谐振频率等数据。
根据这些数据,我们可以进一步分析电路的谐振特性,如频率响应、幅频特性等。
6. 实验总结通过本次电路谐振仿真实验,我们深入了解了电路谐振的原理和特性。
通过实验数据的分析和计算,我们得到了电路的谐振频率,并对电路的性能进行了评估和总结。
本实验不仅让我们掌握了电路谐振的实验方法和技巧,还加深了我们对电路理论的理解。
这对于我们今后的学习和工作都具有重要的意义。
7. 参考文献[1] 电路谐振原理与实验,链接:(这里填写参考文献链接)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验时间:2019年月日,第批
签到序号:【进入实验室后填写】
福州大学
【实验八】交流谐振电路
(信息技术实验中心209实验室)
学院
班级
学号
姓名
实验前必须完成【实验预习部分】
登录下载预习资料
携带学生证提前10分钟进实验室
实验预习部分【实验目的】
【实验仪器】(名称)
【实验原理】(文字叙述、主要公式、原理图)
实验预习部分【实验内容和步骤】
实验预习部分
【1】写出示波器以下功能对应的标号
电源开关:,聚焦:,辉度:,
垂直方式开关:,水平位移:,垂直位移:与,【2】示波器校准信号为峰峰值4 V、1 KHz的方波,校准时垂直偏转灵敏度(衰减器开关10/15)应设定为V/DIV,并调节垂直微调旋钮(14/19)让波形垂直方向占大格,扫描时间因数(20)选择ms/DIV,并调节扫描微调(24)让一个波形周期水平方向占大格。
【3】R LC串联谐振电路,当信号源频率与谐振频率相同时,电流与信号源电压位相差;当信号源频率小于谐振频率时,电流位相于信号源电压位相,整个电路呈性;当信号源频率大于谐振频率时,电流位相于信号源电压位相,整个电路呈性。
【4】用示波器器观察和两波形,调节信号源频率,当示波器上显示的两列波时信号源频率为RLC串联电路谐振频率(注2)。
注1:示波器仪器介绍中校准信号为峰峰值2 V,但是仿真实验中是作为峰峰值4 V来校准。
注2:当示波器同时显示两路波形时,按“X-Y”按键(30)两次后两波形按照相同时序显示。
数据记录与处理
观测RLC串联谐振电路的特性
信号源峰峰值:;
电阻取值:,电感取值:,电容取值:;
谐振频率计算值:,品质因数计算值:。
谐振频率测量值
f:。
在图中标出通频带对应两点。
由I -f 图得1f : , 2f : ,
品质因数0
21
f Q f f
-= , 百分偏差: 。
实验预习及操作成绩 实验指导教师签字 日期 实验报告成绩 报告批阅教师签字 日期。