3.4 浮阀精馏塔设计实例

合集下载

分离乙醇-水浮阀精馏塔设计(11万吨)

分离乙醇-水浮阀精馏塔设计(11万吨)

分离乙醇-水混合液的浮阀精馏塔设计1 设计题目:分离乙醇-水混合液的浮阀精馏塔设计2 原始数据及条件生产能力:年处理乙醇-水混合液11.0万吨(开工率300天/年) 原料:乙醇含量为20%(质量百分比,下同)的常温液体 分离要求:塔顶乙醇含量不低于95% 塔底乙醇含量不高于0.2% 建厂地址:沈阳3.4.2 塔板的工艺设计1 精馏塔全塔物料衡算F :原料液流量(kmol/s ) x F :原料组成(摩尔分数,下同) D :塔顶产品流量(kmol/s ) x D :塔顶组成 W :塔底残液流量(kmol/s ) x W :塔底组成原料乙醇组成: %91.818/8046/2046/20=+=F x塔顶组成: %14.8818/546/9546/95=+=D x 塔底组成: %078.018/8.9946/2.046/2.0=+=W x 进料量: ()[]s mol F /k 2071.036002430018/2.0146/2.0101011/0.1134=⨯⨯-+⨯⨯==年万吨物料衡算式: W D F += W DF Wx DxFx +=联立代入求解:D = 0.0208kmol/s , W = 0.1863kmol/s 2 常压下乙醇-水气液平衡组成(摩尔)与温度关系温度/℃ 液相 气相 温度/℃ 液相 气相 温度/℃ 液相 气相 100 0 0 82.7 23.37 54.45 79.3 57.32 68.41 95.5 1.90 17.00 82.3 26.08 55.80 78.74 67.63 73.85 89.0 7.21 38.91 81.5 32.73 59.26 78.41 74.72 78.15 86.7 9.66 43.75 80.7 39.65 61.22 78.15 89.43 89.43 85.3 12.38 47.04 79.8 50.79 65.64 84.116.6150.8979.751.9865.991温度利用表中数据由拉格朗日插值可求得t F 、t D 、t W ①t F :21.70.890.8966.921.77.860.89--=--F t t F = 87.41℃②t D :43.8914.8815.7872.7443.8941.7815.78--=--D t t D = 78.17℃③t W :0078.010090.105.95100--=--W t t W = 99.82℃④精馏段平均温度:79.82217.7841.8721=+=+=D F t t t ℃ ⑤提馏段平均温度:61.9322=+=WF t t t ℃ 2 密度已知:混合液密度:BBAALa a ρρρ+=1(a 为质量分数,M 为平均相对分子质量)混合气密度:004.22Tp p T v M =ρ⑴精馏段:⎺t 1=82.79℃液相组成x 1:(84.1-82.7)/(16.61-23.37)=(82.79-82.7)/(x 1-23.37) x 1=22.94% 气相组成y 1:(84.1-82.7)/(50.89-54.45)=(82.79-82.7)/(y 1-54.45) y 1=54.22% 所以 ⎺M L1=46*0.2294+18*(1-0.2294)=24.42kg/kmol ⎺M V1=46*0.5422+18*(1-0.5422)=33.18 kg/kmol ⑵提馏段⎺t 2=93.61℃液相组成x 2:(95.5-89.0)/(1.9-7.21)=(93.61-89.0)/(x 2-7.21) x 2=3.44% 气相组成y 2:(95.5-89.0)/(17.00-38.91)=(93.61-89.0)/(y 2-38.91) y 2=23.37% 所以 ⎺M L1=46*0.0344+18*(1-0.0344)=18.96kg/kmol ⎺M V1=46*0.2337+18*(1-0.2337)=24.54 kg/kmol由不同温度下乙醇和水的密度温度/℃)/(3-⋅mkg c ρ)/(3-⋅mkg w ρ80 735 971.8 85 730 968.6 90 724 965.395 720 961.85 100716958.4求得在⎺t 1与⎺t 2下的乙醇和水的密度(单位:3-⋅m kg )。

浮阀精馏塔设计-苯和甲苯

浮阀精馏塔设计-苯和甲苯

理论塔板计算
相对挥发度α 回流比R 精馏塔的气、液相负荷V’、L’
操作线方程
理论板计算 实际板数计算
理论塔板计算
1.相对挥发度的求取
苯的沸点为 80.1℃,甲苯沸点为 110.6℃ ① 当温度为 80.1℃时
1206 .35 2.006 80.1 220 .24 1343 .94 lg P B 6.078 1.593 80.1 219 .58 lg P A 6.023
物料衡算
2.原料液、塔顶、塔底产品的平均摩尔质量
精馏段的平均摩尔质量 Mvm=(78.35+84.34)/2=81.34 kg/kmol MLm=(78.68+87.43)/2=83.06kg/kmol 提馏的平均摩尔质量 Mvm=(91.49+84.34)/2=87.92 kg/kmol MLm=(91.80+87.43)/2=89.62kg/kmol
1.000 0.922 0.830 0.720 0.596 0.453 0.304 0.128 0
由上表可有 origin 作出如图 1(t-x)曲线
实际板的计算
图1
t-x-y 图
由 t-x-y 图可查得 tD=80.40℃,tW=111.52℃,tF=97.33℃ 全塔平均温度
t td tw 95.96℃ 2
物料衡算
2.原料液、塔顶、塔底产品的平均摩尔质量
进料板平均摩尔质量 由XF =0.336代入气液平衡方程得yF=0.556 MvFm= yFMA+(1-yF)MB =0.556×78.11+(1-0.556)×92.14=84.34kg/kmol MLFm= xFMA+(1-xF)MB =0.336×78.11+(1-0.336)×92.14=87.43kg/kmol 塔底平均摩尔质量 由xw=0.024代入气液平衡方程得yw=0.046 MvFm= ywMA+(1-yw)MB =0.046×78.11+(1-0.046)×92.14=91.49kg/kmol MLFm= xwMA+(1-xw)MB =0.024×78.11+(1-0.024)×92.14=91.80kg/kmol

浮阀塔的设计示例

浮阀塔的设计示例

浮阀塔的设计示例浮阀塔是一种常见的化工设备,用于气体和液体之间的质量传递,尤其是在蒸馏和萃取过程中。

下面是一个浮阀塔的设计示例,重点介绍了它的结构和操作原理。

1.设计目标:本浮阀塔的设计目标是实现高效的质量传递,提高分离效果和产品纯度。

同时,保证设备的安全和可靠性,减少设备的能耗和维护成本。

2.结构设计:该浮阀塔采用垂直立式结构,内部分为多个塔板,每个塔板上安装有浮阀。

塔板之间通过气体和液体的穿孔连接。

在塔顶设置有进料口和出料口,而在塔底则设置有底流液收集器。

此外,还设计了塔壳和塔盖,用于保证设备的结构完整性。

3.操作原理:浮阀塔的操作原理基于浮阀的作用。

浮阀由一个密封球和一个杆连接组成。

当从塔底喷射的气体或液体经过塔板时,浮阀的球会被上升的气体或液体推起,从而打开通道,使气体或液体通过浮阀孔进入上方的塔板。

当上方的塔板上积聚足够的液体时,浮阀球会被液体推下,关闭通道,使液体停留在上方的塔板上。

通过不断重复这个过程,气体和液体之间的质量传递就得以实现。

4.浮阀的设计:浮阀的设计关键是选择合适的密封球和杆的材料,并确定其尺寸和重量。

一般来说,密封球和杆的材料要具有耐腐蚀和耐高温的特性,以满足不同工艺的要求。

此外,密封球的尺寸和重量需要根据气体和液体的流速和密度来确定,以保证浮阀的正常运行。

5.设备的操作与维护:为了确保浮阀塔的高效运行,需要进行定期的检查和维护工作。

首先,要检查浮阀是否正常工作,如有必要,需要更换损坏的浮阀。

其次,要及时清理塔板上的沉积物,以保证通道的畅通。

此外,还需要定期检查塔壳和塔盖的密封性,以防止气体或液体的泄漏。

6.设备的优化改进:针对该浮阀塔的优化改进措施主要包括以下几个方面:一是改善塔板的结构,增加塔板的布置密度,减小气液间的传质距离,从而提高质量传递效果。

二是采用节能技术,如加热和冷凝剂回收,减少能耗和环境污染。

三是引入自动控制系统,实现设备的自动化运行和监控,提高生产效率和安全性。

(完整版)浮阀塔的设计示例

(完整版)浮阀塔的设计示例

浮阀塔设计示例设计条件拟建一浮阀塔用以分离某种液体混合物,决定采用F1型浮阀(重阀),试按下述条件进行浮阀塔的设计计算.气相流量 Vs = 1.27m3/s;液相流量 Ls= 0。

01m3/s;气相密度ρV = 3.62kg/m3;液相密度ρL= 734kg/m3;混合液表面张力σ= 16.3mN/m,平均操作压强 p = 1.013×105Pa.设计计算过程(一)塔径欲求出塔径应先计算出适宜空塔速度.适宜空塔速度u一般为最大允许气速uF的0.6~0.8倍即: u=(0.6~0.8)uF式中C可由史密斯关联图查得,液气动能参数为:取板间距HT =0。

6m,板上液层高度hL=0。

083m,图中的参变量值HT-hL=0。

6-0。

083 =0.517m。

根据以上数值由图可得液相表面张力为20mN/m时的负荷系数C20=0.1。

由所给出的工艺条件校正得:最大允许气速:取安全系数为0。

7,则适宜空塔速度为:由下式计算塔径:按标准塔径尺寸圆整,取D = 1.4m;实际塔截面积:实际空塔速度:安全系数: 在0。

6~0。

8范围间,合适.(二) 溢流装置选用单流型降液管,不设进口堰。

1)降液管尺寸取溢流堰长lw =0.7D,即lw/D=0。

7,由弓形降液管的结构参数图查得:Af/AT=0。

09,Wd/D=0。

15因此:弓形降液管所占面积:Af=0.09×1.54=0.139(m2)弓形降液管宽度:Wd=0.15×1.4=0。

21(m2)验算液体在降液管的停留时间θ,由于停留时间θ>5s,合适。

2)溢流堰尺寸由以上设计数据可求出:溢流堰长 lw=0。

7×1。

4=0.98m采用平直堰,堰上液层高度可依下式计算,式中E近似取1,即溢流堰高:hw =hL-how=0。

083—0.033=0.05m液体由降液管流入塔板不设进口堰,并取降液管底隙处液体流速u′= 0。

228m/s;降液管底隙高度:浮阀数及排列方式:1)浮阀数初取阀孔动能因数F= 11,阀孔气速为:每层塔板上浮阀个数:(个)2)浮阀的排列按所设定的尺寸画出塔板,并在塔板的鼓泡区内依排列方式进行试排,确定出实际的阀孔数。

化工原理课程设计——乙醇——水精馏塔设计(浮阀塔)

化工原理课程设计——乙醇——水精馏塔设计(浮阀塔)

化工原理课程设计——乙醇——水精馏塔设计(浮阀塔)化工传质与分离过程课程设计乙醇——水精馏塔设计天津大学目录1 目录 (1)2 设计任务书 (4)3 设计方案的确定及流程说明 (5)3.1 塔的类型选择 (5)3.2 塔板类型的选择 (5)3.3 塔压确定 (5)3.4 进料热状况的选择 (5)3.5 塔釜加热方式的确定 (5)3.6 塔顶冷凝方式 (6)3.7 塔板溢流形式 (6)3.8 塔径的选取 (6)3.9 适宜回流比的选取 (6)3.10 操作流程 (6)4 塔的工艺设计 (7)4.1 精馏塔全塔物料浓度计算: (7)4.2 理论板的计算 (7)4.2.1 最小回流比的计算 (7)4.2.2 理论板数的计算 (8)4.2.3 塔板效率的计算 (13)4.2.3.1 塔顶的温度t D 的计算 (13)4.2.3.2 塔底的温度t W 和总板效率E T 的计算 (14)4.2.4 实际板数的计算 (16)4.2.5 进料温度的计算 (16)4.3 平均参数的计算 (17)4.3.1 全塔物料衡算 (17)4.3.2 平均温度的计算 (17)4.3.3 平均压力的计算 (17)1化工传质与分离过程课程设计乙醇——水精馏塔设计天津大学24.3.4 气液两相平均密度的计算 (18) 4.3.4.1 气液相组成的计算 (18)4.3.4.2 各液相平均密度的计算 (19) 4.3.4.3 平均相对分子量的计算 (20) 4.3.4.4 各气相平均密度的计算 (21) 4.3.5 平均表面张力的计算 (22)4.3.6 气液两相平均体积流率的计算 (25) 4.4 塔径的初步设计 (26)4.4.1 精馏段塔径的计算 (26)4.4.2 提馏段塔径的计算 (27)4.5 塔高的设计计算 (28)5 塔板结构设计 (30)5.1 溢流装置计算 (30)5.2 塔板及浮阀设计 (31)5.2.1 塔板的结构尺寸 (31)5.2.2 浮阀数目及排列 (32)5.2.2.1 精馏段浮阀数目及排列 (32) 5.2.2.2 提馏段浮阀数目及排列 (34) 5.3 塔板流体力学验算 (35)5.3.1 气相通过浮阀塔板的压降 (35) 5.3.1.1 精馏段压降的计算 (35)5.3.1.2 提馏段压降的计算 (36)5.3.2 液泛 (36)5.3.2.1 精馏段液泛计算 (36)5.3.2.2 提馏段液泛计算 (37)5.3.3 雾沫夹带 (37)5.3.4 漏液 (38)6 塔板负荷性能图 (38)6.1 雾沫夹带线 (38)6.2 液泛线 (38)化工传质与分离过程课程设计乙醇——水精馏塔设计天津大学6.3 液相负荷上限线 (39)6.4 漏液线 (39)6.5 液相负荷下限线 (39)6.6 塔板负荷性能图 (40)6.6.1 精馏段塔板负荷性能图 (40)6.6.2 提馏段塔板负荷性能图 (41)7 附属设备设计 (43)7.1 产品冷却器设计选型 (43) 7.2 接管尺寸计算 (44)7.2.1 进料管 (44)7.2.2 塔顶蒸汽出口管 (44)7.2.3 回流液入口管 (45)7.2.4 塔顶出料管 (45)7.2.5 塔底出料管 (46)7.2.6 塔底蒸汽入口管 (46)8 设计结果汇总 (47)8.1 各主要流股物性汇总 (47) 8.2 浮阀塔设计参数汇总 (47) 8.3 产品冷却器设计结果汇总 (48)8.4 接管尺寸汇总 (48)9 设计评述及感悟 (49)10 参考文献 (50)11 附录 (51)附录1 主要符号说明 (51)附录2 乙醇——水系统的气液平衡数据表 (51)附录3 不同温度下乙醇和水的粘度 (52)附录4 不同温度下乙醇和水的密度 (53)附录5 不同温度下乙醇和水的表面张力 (53)12 附图 (53)3化工传质与分离过程课程设计乙醇——水精馏塔设计天津大学2 设计任务书一、设计题目:乙醇——水体系浮阀式精馏塔设计二、设计任务及条件1.进精馏塔料液含乙醇25%(质量分数),其余为水。

浮阀精馏塔设计

浮阀精馏塔设计

2008年06月03日星期二 19:511苯-甲苯连续精馏浮阀塔设计1.课程设计的目的课程设计是“化工原理”课程的一个总结性教学环节,是培养学生综合运用本门课程及有关先修课程的基本知识去解决某一设计任务的一次训练,在整个教学计划中它也起着培养学生独立工作能力的重要作用,通过课程设计就以下几个方面要求学生加强训练1.查阅资料选用公式和搜集数据的能力2.树立既考虑技术上的先进性与可行性,又考虑经济上的合理性,并注意到操作时的劳动条件和环境保护的正确设计思想,在这种设计思想的指导下去分析和解决实际问题的能力。

3.迅速准确的进行工程计算(包括电算)的能力。

4.用简洁文字清晰表达自己设计思想的能力。

2 课程设计题目描述和要求精馏是分离液体混合物(含可液化的气体混合物)最常用的一种单元操作,在化工,炼油,石油化工等工业中得到广泛应用。

精馏过程在能量剂驱动下(有时加质量剂),使气液两相多次直接接触和分离,利用液相混合物中各组分的挥发度的不同,使易挥发组分由液相向气相转移,难挥发组分由气相向液相转移,实现原料混合液中各组分的分离。

根据生产上的不同要求,精馏操作可以是连续的或间歇的,有些特殊的物系还可采用衡沸精馏或萃取精馏等特殊方法进行分离。

本设计的题目是苯-甲苯连续精馏浮阀塔的设计,即需设计一个精馏塔用来分离易挥发的苯和不易挥发的甲苯,采用连续操作方式,需设计一板式塔,板空上安装浮阀,具体工艺参数如下:原料苯含量:质量分率= (30+0.5*学号)%原料处理量:质量流量=(10-0.1*学号) t/h [单号](10+0.1*学号) t/h [双号]产品要求:质量分率:xd=98%,xw=2% [单号]xd=96%,xw=1% [双号]2工艺操作条件如下:常压精馏,塔顶全凝,塔底间接加热,泡点进料,泡点回流,R=(1.2~2)Rmin。

3.课程设计报告内容3.1 流程示意图冷凝器→塔顶产品冷却器→苯的储罐→苯↑↓回流原料→原料罐→原料预热器→精馏塔↑回流↓再沸器←→塔底产品冷却器→甲苯的储罐→甲苯3.2 流程和方案的说明及论证3.2.1 流程的说明首先,苯和甲苯的原料混合物进入原料罐,在里面停留一定的时间之后,通过泵进入原料预热器,在原料预热器中加热到泡点温度,然后,原料从进料口进入到精馏塔中。

精馏塔设计实例

精馏塔设计实例

精馏装置的附属设备精馏装置的主要附属设备包括蒸气冷凝器、产品冷凝器、塔底再沸器、原料预热器、物料输送管及泵等。

前四种设备本质上属换热器,并多采用列管式换热器,管线和泵属输送装置。

下面简要介绍。

6.1 回流冷凝器按冷凝器与塔的位置,可分为:整体式、自流式和强制循环式。

(1)整体式如图6-1(a)和(b)所示。

将冷凝器与精馏塔作成一体。

这种布局的优点是上升蒸汽压降较小,蒸汽分布均匀,缺点是塔顶结构复杂,不便维修,当需用阀门、流量计来调节时,需较大位差,须增大塔顶板与冷凝器间距离,导致塔体过高。

该型式常用于减压精馏或传热面较小场合。

图6-1 冷凝器的型式(2)自流式如图6-1(c)所示。

将冷凝器装在塔顶附近的台架上,靠改变台架的高度来获得回流和采出所需的位差。

(3)强制循环式如图6-1(D)、(e)所示。

当冷凝器换热面过大时,装在塔顶附近对造价和维修都是不利的,故将冷凝器装在离塔顶较远的低处,用泵向塔提供回流液。

需指出的是,在一般情况下,冷凝器采用卧式,因为卧式的冷凝液膜较薄,故对流传热系数较大,且卧式便于安装和维修。

6.2 再沸器精馏塔底的再沸器可分为:釜式再沸器、热虹吸式再沸器及强制循环再沸器。

(1)釜式式再沸器如图6-2(a)和(b)所示。

(a)是卧式再沸器,壳方为釜液沸腾,管内可以加热蒸汽。

塔底液体进入底液池中,再进入再沸器的管际空间被加热而部分汽化。

蒸汽引到塔底最下一块塔板的下面,部分液体则通过再沸器内的垂直挡板,作为塔底产物被引出。

液体的采出口与垂直塔板之间的空间至少停留8~10分钟,以分离液体中的气泡。

为减少雾沫夹带,再沸器上方应有一分离空间,对于小设备,管束上方至少有300mm高的分离空间,对于大设备,取再沸器壳径为管束直径的1.3~1.6倍。

(b)是夹套式再沸器,液面上方必须留有蒸发空间,一般液面维持在容积的70%左右。

夹套式再沸器,常用于传热面较小或间歇精馏中。

(2)热虹吸式再沸器如图6-2(c)、(D)、(e)所示。

精馏塔(浮阀塔)的设计(可编辑修改word版)

精馏塔(浮阀塔)的设计(可编辑修改word版)

课程设计(论文)浮阀精馏塔的工艺设计说明书题目名称苯—甲苯溶液精馏装置精馏塔设计课程名称化工原理学生姓名雷素兰学号1040902009系专业生化系2010 级化学工程与工艺指导教师胡建明2012 年12 月25 日目录一、设计任务书 (3)二、概述 (4)三、设计方案的确定和流程说明 (4)四、物料衡算 (5)1.设计条件 (5)2.全塔物料衡算 (6)五、设备设计与选型 (7)1.精馏塔工艺设计 (7)2.塔内气液负荷 (11)3.计算塔径、确定板间距 (13)六、塔板结构设计 (14)1.溢流装置 (14)2.塔板布置 (15)七、浮阀塔流体力学验算 (17)1.塔板压降 (17)2.塔板负荷性能 (19)八、精馏塔结构尺寸设计 (23)九、参考文献 (26)十、总结 (27)十一、致谢 (27)十二、附工程图纸 (28)概述塔设备是化学工业,石油化工,生物化工,制药等生产过程中广泛采用的传质设备。

根据塔内气液接触构件的结构形式,可分为板式塔和填料塔两大类。

板式塔为逐级接触式气液传质设备,塔内设置一定数量的塔板,气体以鼓泡形式或喷射形式通过塔板上的液层,正常条件下,气相为分散相,液相为连续相,气相组成呈阶梯变化,它具有结构简单,安装方便,压降低,操作弹性大,持液量小等优点,被广泛的使用。

本设计的目的是分离苯—甲苯的混合液,故选用板式塔。

设计方案的确定和流程说明1.塔板类型:精馏塔的塔板类型共有三种:泡罩塔板,筛孔塔板,浮阀塔板。

浮阀塔板具有结构简单,制造方便,造价低等优点,且开孔率大,生产能力大,阀片可随气流量大小而上下浮动,故操作弹性大,气液接触时间长,因此塔板效率较高。

本设计采用浮阀塔板。

2.加料方式:加料方式共有两种:高位槽加料和泵直接加料。

采用泵直接加料,具有结构简单,安装方便等优点,而且可以引入自动控制系统来实时调节流量及流速。

故本设计采用泵直接加料。

3.进料状况:进料方式一般有两种:冷液进料及泡点进料。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.4 浮阀精馏塔设计实例3.4.1 化工原理课程设计任务书1 设计题目:分离乙醇-水混合液的浮阀精馏塔设计2 原始数据及条件生产能力:年处理乙醇-水混合液14.0万吨(开工率300天/年)原料:乙醇含量为20%(质量百分比,下同)的常温液体分离要求:塔顶乙醇含量不低于95%塔底乙醇含量不高于0.2%建厂地址:江苏常州3.4.2 塔板的工艺设计1 精馏塔全塔物料衡算F:原料液流量(kmol/s)x F:原料组成(摩尔分数,下同)D:塔顶产品流量(kmol/s)x D:塔顶组成W:塔底残液流量(kmol/s)x W:塔底组成原料乙醇组成:塔顶组成:塔底组成:进料量:物料衡算式:F = D + WF x F= D x D+ W x W联立代入求解:D = 0.0264 kmol/s,W = 0.2371 kmol/s2 常压下乙醇-水气液平衡组成(摩尔)与温度关系在示例中对表格、图和公式未编号,在设计说明书中要求严格编号。

表3-11 乙醇-水气液平衡组成(摩尔)与温度关系液相气相温度/℃液相气相温度/℃液相气相温度/℃100 0 0 82.7 23.37 54.45 79.3 57.32 68.4195.5 1.90 17.00 82.3 26.08 55.80 78.74 67.63 73.8589.0 7.21 38.91 81.5 32.73 59.26 78.41 74.72 78.1586.7 9.66 43.75 80.7 39.65 61.22 78.15 89.43 89.4385.3 12.38 47.04 79.8 50.79 65.6484.1 16.61 50.89 79.7 51.98 65.99(1)温度利用表中数据由拉格朗日插值可求得t F、t D、t W①t F :t F = 87.41℃②t D :t D = 78.17℃③t W :t W = 99.82℃④精馏段平均温度:⑤提馏段平均温度:(2)密度已知:混合液密度:混合气密度:①精馏段:液相组成x1:x1 = 22.94% 气相组成y1:y1 = 54.22%所以②提馏段液相组成x2:x2 = 3.44%气相组成y2:y2 = 23.37%所以表3-12 不同温度下乙醇和水的密度ρ乙ρ水温度/℃ρ乙ρ水温度/℃80 735 971.8 95 720 961.8585 730 968.6 100 716 958.490 724 965.3求得在与下的乙醇和水的密度,,,同理:,,在精馏段:液相密度:气相密度:在提馏段:液相密度:气相密度:(3)混合液体表面张力二元有机物-水溶液表面张力可用下列各式计算公式:注:,,,,,,式中下角标,w,o,s分别代表水、有机物及表面部分,x w、x o指主体部分的分子数,V w、V o主体部分的分子体积,δw、δo为纯水、有机物的表面张力,对乙醇q = 2。

①精馏段表3-13 不同温度下的表面张力70 80 90 100温度/℃乙醇表面张力/10-2N/m218 17.15 16.2 15.2水表面张力/10-2N/m264.3 62.6 60.7 58.8乙醇表面张力:水表面张力:因为,所以联立方程组,代入求得:,,1.提馏段,乙醇表面张力:解得:水表面张力:解得:因为,所以联立方程组,代入求得:,(4)混合物的粘度,查表得:,,查表得:,精馏段粘度:提馏段粘度:(5)相对挥发度①精馏段挥发度:由,得,所以②提馏段挥发度:由,得,(6)气液相体积流量计算根据x-y图得:取①精馏段:已知:,,则有质量流量:体积流量:②提馏段:因本设计为饱和液体进料,所以已知:,,则有质量流量:体积流量:3 理论塔板的计算理论板:指离开这种板的气液两相互成平衡,而且塔板上液相组成均匀。

理论板的计算方法:可采用逐板计算法,图解法,在本次实验设计中采用图解法。

根据1.01325×105Pa下,乙醇—水的气液平衡组成关系可绘出平衡曲线,即x-y曲线图,泡点进料,所以q = 1,即q为一直线,本平衡具有下凹部分,操作线尚未落到平衡线前,已与平衡线相切,如图(图略):x q = 0.0891, y q = 0.3025,所以,操作回流比已知:精馏段操作线方程:提馏段操作线方程:在图上作操作线,由点(0.8814, 0.8814)起在平衡线与操作线间画阶梯,过精馏段操作线与q线交点,直到阶梯与平衡线交点小于0.00078为止,由此得到理论板N T = 26块(包括再沸器)加料板为第24块理论板。

板效率与塔板结构、操作条件、物质的物理性质及流体力学性质有关,它反映了实际塔板上传质过程进行的程度。

板效率可用奥康奈尔公式计算。

注:α——塔顶与塔底平均温度下的相对挥发度μL——塔顶与塔底平均温度下的液相粘度mPa·s(1)精馏段已知:,所以:,故块(2)提馏段已知:,所以:,故块全塔所需实际塔板数:全塔效率:加料板位置在第53块塔板。

4 塔径的初步设计(1) 精馏段由,,式中C可由史密斯关联图查出:横坐标数值:取板间距:,,则查图可知,横截面积:,空塔气速:(2) 提馏段横坐标数值:取板间距:,,则查图可知,圆整:,横截面积:,空塔气速:5 溢流装置(1) 堰长取出口堰高:本设计采用平直堰,堰上液高度按下式计算近似取①精馏段②提馏段(2)弓形降液管的宽度和横截面查图得:验算降液管内停留时间:精馏段:提馏段:停留时间。

故降液管可使用。

(3) 降液管底隙高度①精馏段取降液管底隙的流速,则②提馏段取,,取因为不小于20mm,故满足要求。

6 塔板布置及浮阀数目与排列(1)塔板分布本设计塔径,采用分块式塔板,以便通过人孔装拆塔板。

(2)浮阀数目与排列①精馏段取阀孔动能因子,则孔速每层塔板上浮阀数目为:取边缘区宽度,破沫区宽度计算塔板上的鼓泡区面积,即:其中所以浮阀排列方式采用等腰三角形叉排,取同一个横排的孔心距则排间距:考虑到塔的直径较大,必须采用分块式塔板,而各分块的支撑与衔接也要占去一部分鼓泡区面积,因此排间距不宜采用81mm,而应小些,故取,按,,以等腰三角形叉排方式作图,排得阀数288个。

按重新核算孔速及阀孔动能因数阀孔动能因数变化不大,仍在9~13范围内塔板开孔率②提馏段取阀孔动能因子,则每层塔板上浮阀数目为:按,估算排间距,取,排得阀数为244块按块重新核算孔速及阀孔动能因数阀孔动能因数变化不大,仍在9~13范围内塔板开孔率浮阀数排列方式如图所示(图略)3.4.3 塔板的流体力学计算1 气相通过浮阀塔板的压降可根据计算(1)精馏段①干板阻力:因,故:②板上充气液层阻力取③液体表面张力所造成的阻力此阻力很小,可忽略不计,因此与气体流经塔板的压降相当的高度为(2) 提馏段①干板阻力:因,故:②板上充气液层阻力取③液体表面张力所造成的阻力此阻力很小,可忽略不计,因此与单板的压降相当的液柱高度为2 淹塔为了防止发生淹塔现象,要求控制降液管中清液高度(1)精馏段①单层气体通过塔板压降所相当的液柱高度②液体通过液体降液管的压头损失③板上液层高度取,已选定则可见所以符合防止淹塔的要求。

(2)提馏段①单板压降所相当的液柱高度②液体通过液体降液管的压头损失③板上液层高度取,则可见所以符合防止淹塔的要求。

3 物沫夹带(1)精馏段板上液体流经长度:板上液流面积:查物性系数,泛点负荷系数图对于大塔,为了避免过量物沫夹带,应控制泛点率不超过80%,由以上计算可知,物沫夹带能够满足的要求。

(2)提馏段取物性系数,泛点负荷系数图由计算可知,符合要求。

4 塔板负荷性能图(1)物沫夹带线据此可作出负荷性能图中的物沫夹带线,按泛点率80%计算:①精馏段整理得:由上式知物沫夹带线为直线,则在操作范围内任取两个值算出②提馏段整理得:表3-14精馏段L s (m3/s) 0.002 0.01 V s (m3/s) 4.79 4.39提馏段L′s (m3/s) 0.002 0.01 V′s (m3/s) 5.83 5.33(2)液泛线由此确定液泛线,忽略式中而①精馏段整理得:②提馏段整理得:在操作范围内任取若干个值,算出相应得值:表3-15精馏段L s1 (m3/s) 0.001 0.003 0.004 0.007 V s1 (m3/s) 7.15 6.86 6.93 6.23提馏段L s2 (m3/s) 0.001 0.003 0.004 0.007 V s2 (m3/s) 8.07 7.83 7.72 7.42(3)液相负荷上限液体的最大流量应保证降液管中停留时间不低于3~5s液体降液管内停留时间以作为液体在降液管内停留时间的下限,则(4)漏液线对于F1型重阀,依作为规定气体最小负荷的标准,则①精馏段②提馏段(5)液相负荷下限取堰上液层高度作为液相负荷下限条件作出液相负荷下限线,该线为与气相流量无关的竖直线。

取,则由以上1~5作出塔板负荷性能图(图略)由塔板负荷性能图可以看出:①在任务规定的气液负荷下的操作点p(设计点)处在适宜操作区内的适中位置;②塔板的气相负荷上限完全由物沫夹带控制,操作下限由漏液控制;③按固定的液气比,由图可查出塔板的气相负荷上限,气相负荷下限。

所以:;表3-16 浮阀塔工艺设计计算结果项目符号单位计算数据备注精馏段提馏段塔径D m 1.8 1.8板间距H T m 0.45 0.45塔板类型单溢流弓形降液管分块式塔板空塔气速u m/s 1.54 1.58堰长l w m 1.17 1.17堰高h w m 0.0573 0.0470板上液层高度m 0.07 0.07降液管底隙高h0 m 0.02 0.05浮阀数N288 244 等腰三角形叉排阀孔气速u0 m/s 11.24 11.34 同一横排孔心距浮阀动能因子F0 12.11 12.47 相邻横排中心距离临界阀孔气速u0c m/s 9.78 11.72孔心距t m 0.075 0.075排间距t′m 0.065 0.08单板压降Δp P Pa 683.91 703.77液体在降液管内停留时间θs 30.16 11.30降液管内清液层高度H d m 0.15 0.1525泛点率% 66.30 60.44气相负荷上限(V s)max m3/s 4.90 1.67 物沫夹带控制气相负荷下限(V s)min m3/s 4.80 1.71 漏液控制操作弹性 2.93 2.813.4.4 塔附件设计1 接管(1) 进料管进料管的结构类型很多,有直管进料管、弯管进料管、T型进料管。

本设计采用直管进料管。

管径计算如下:取查标准系列选取(2) 回流管采用直管回流管,取查表取(3) 塔釜出料管取,直管出料,查表取(4) 塔顶蒸气出料管直管出气,取出口气速查表取(5) 塔釜进气管采用直管,取气速查表取(6) 法兰由于常压操作,所有法兰均采用标准管法兰,平焊法兰,由不同的公称直径,选用相应法兰。

相关文档
最新文档