沪科版八年级数学期中复习试卷含答案
沪科版八年级上册数学期中考试试卷带答案

沪科版八年级上册数学期中考试试卷一、单选题1.下列式子中,表示y 是x 的正比例函数的是( )A .2x y =B .2y x =C .2y xD .y =【答案】A2.点P (3,-1)在平面直角坐标系中所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D3.将点P(–4,3)先向左平移2个单位长度,再向下平移2个单位长度后得到点P ',则点P '的坐标为( )A .(–2,5)B .(–6,1)C .(–6,5)D .(–2,1)【答案】B4.已知ABC 的三个内角的大小关系为A B C ∠-∠=∠,则这个三角形是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .无法确定【答案】B5.已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .()1,2-B .()1,2-C .()2,3D .()3,4【答案】B6.下列命题中,假命题是( )A .如果|a|=a ,则a≥0B .如果a 2=b 2,那么a =b 或a =﹣bC .如果ab >0,则a >0,b >0D .若a 3<0,则a 是一个负数【答案】C7.下列说法正确的是( )①三角形的角平分线是射线;①三角形的三条角平分线都在三角形内部;①三角形的一条中线把该三角形分成面积相等的两部分;①三角形的三条高都在三角形内部. A .①① B .①① C .①① D .①①【答案】B8.若一次函数3y kx =+(k 为常数且0k ≠)的图像经过点(-2,0),则关于x 的方程()530k x -+=的解为( )A .5x =-B .3x =-C .3x =D .5x =【答案】C9.如图,函数y=kx+b (k≠0)的图象经过点B (2,0),与函数y=2x 的图象交于点A ,则不等式0<kx+b <2x 的解集为( )A .12x <<B .2x >C .0x >D .01x <<【答案】A10.①ABC 的两条中线AD 、BE 交于点F ,连接CF ,若①ABC 的面积为24,则①ABF 的面积为( )A .10B .8C .6D .4【答案】B二、填空题11.函数y x 的取值范围是____________. 【答案】x≤4且x≠212.如果点P 在第二象限内,点P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为______.【答案】()3,4-13.若一次函数y=(2-m)x+m 的图像不经过第三象限,则m 的取值范围是________.【答案】m>214.如图,直线AB①CD ,OA①OB ,若①1=142°,则①2=____________度.【答案】5215.已知A 点()26,a a -+在一三象限夹角平分线上,则a 的值为___________.【答案】216.如图,E 为①ABC 的BC 边上一点,点D 在BA 的延长线上,DE 交AC 于点F ,①B =46°,①C =30°,①EFC =70°,则①D =______.【答案】34°17.我们把连接三角形两边中点的线段叫做三角形的中位线,已知三角形的任一条中位线都平行于第三边,并且等于第三边的一半.如图,在ABC 中,3BC =,将ABC 平移5个单位长度得到111A B C △,点P 、Q 分别是AB 、11A C 的中点,PQ 的最小值等于___.【答案】7218.将函数2y x b =+(b 为常数)的图象位于x 轴下方的部分沿x 轴翻折至其上方后,所得的折线是函数2y x b =+(b 为常数)的图象.若该图象与直线2y =的两个交点的横坐标都满足04x <<,则b 的取值范围为______.【答案】-6≤b≤-2三、解答题19.已知y -1与x 成正比例,且当x=-2时,y=5.(1)求y 与x 之间的函数关系式.(2)若点(m -1,3)在这个函数图象上,求m.【答案】(1) y=-2x+1;(2)m=0.【分析】(1)设y -1=kx ,把已知条件代入可求得k ,则可求得其函数关系式;(2)把点的坐标代入可得到关于m 的方程,可求得m 的值.【详解】解:设y -1=kx ,①x=-2时,y=5,①5-1=-2k ,解得k=-2,①y -1=-2x,即y=-2x+1;(2)①点(m -1,3)在这个函数的图象上,①-2(m -1)+1=3,解得m=0.20.如图,在ABC 中,D 、E 分别是边AB 、AC 上一点,将ABC 沿DE 折叠,使点A 落在边BC 上.若55A ∠=︒,求1234∠+∠+∠+∠四个角和的度数?【答案】235°【分析】依据三角形内角和定理,可得①ABC中,①B+①C=125°,即可得出①1+①2+①3+①4的度数.【详解】解:①①A=55°,①①ABC中,①B+①C=125°,又①①1+①2+①B=180°,①3+①4+①C=180°,①①1+①2+①3+①4=360°-(①B+①C)=360°-125°=235°.21.已知3m+n=1,且m≥n.(1)求m的取值范围(2)设y=3m+4n,求y的最大值【答案】(1)14m≥(2)74【分析】(1)把n用m表示,再代入m≥n即可求解;(2)先表示为y关于m的函数,再根据一次函数的性质即可求解.【详解】(1)①3m+n=1①n=-3m+1①m≥n①m≥-3m+1解得14 m≥(2)y=3m+4n=3m+4(-3m+1)=-9m+4①-9<0,①y随m的增大而减小,①当m=14时,y 的最大值为-9×14+4=7422.已知a ,b ,c 分别为ABC 的三边,且满足32a b c +=-,26a b c -=-.(1)求c 的取值范围;(2)若ABC 的周长为12,求c 的值.【答案】(1)2<c<6 (2)3.5【解析】(1)根据三角形任意两边之和大于第三边得出3c -2>c ,任意两边之差小于第三边得出|2c -6|<c ,列不等式组求解即可;(2)由①ABC 的周长为12,a+b=3c -2,4c -2=12,解方程得出答案即可.(1)①a ,b ,c 分别为①ABC 的三边,a+b=3c -2,a -b=2c -6,①3226c c c c ->⎧⎨-<⎩,解得:2<c<6.故c 的取值范围为2<c<6;(2)①①ABC 的周长为12,a+b=3c -2,①a+b+c=4c -2=12,解得c=3.5.故c 的值是3.5.23.已知y -4与x 成正比例,且当x=6时,y= —4.(1)求y 与x 的函数关系式(2)(1)中函数图象与x 轴,y 轴分别交于A ,B 两点,P 点在y 轴上,若S ①ABP =9,求P 点坐标.【答案】(1)443y x =-+;(2)P (0,﹣2)或P (0,10) 【分析】(1)根据正比例函数的定义设出函数解析式y -4=kx (k≠0),再把当x=6时,y=-4代入求出k 的值即可;(2)由(1)解析式可求出A 、B 两点的坐标,设点P 的坐标为(0,m )根据①ABP 的面积列方程求出m 的值即可;【详解】(1)①y -4与x 成正比例,①设y -4=kx (k≠0).把x=6,y=-4代入,得-4-4=6k ,解得,k=-43,则y -4=-43x ,①y 与x 的函数关系式为:y=-43x+4; (2)①P 点在y 轴上,①设P 点坐标为(0,m ),①函数图象与x 轴,y 轴分别交于A ,B 两点,①当x=0时,y=4,当y=0时,x=3,①A (3,0),B (0,4),①S ①ABP =124m -⨯3=9解得:m 1=10,m 2=-2,①P 点坐标为(0,10)或(0,-2)24.在平面直角坐标系中,①ABC 的三个顶点的位置如图所示,将①ABC 水平向左平移3个单位,再竖直向下平移2个单位.(1)读出①ABC 的三个顶点坐标;(2)请画出平移后的①A′B′C′,并直接写出点A /、B′、C′的坐标;(3)求平移以后的图形的面积 .【答案】(1) A (2,4)、B (1,1)、C (3,0);(2)见解析, (1,2)(2,1)(0,2)A B C ---'''-、、;(3)3.5 【分析】(1)直接根据平面直角坐标系写出各点坐标即可;(2)利用平移的性质得出对应点坐标,进而得出作出图形;(3)利用①ABC 所在矩形面积减去周围三角形面积进而得出答案.【详解】(1)A (2,4)、B (1,1)、C (3,0),(2)如图:()()()1,22,10,2A B C ---'-''、、;(3)S ①ABC =2×4-12×1×4-12×2×1-12×1×3=8-2-1-32 =72.25.如图P 为①ABC 内部一点,①BAC=70°,①BPC=120°,BD ,CE 分别平分①ABP ,①ACP ,BD 与CE 交于点F ,求①BFC 的度数.【答案】95°【分析】根据①BAC 的度数可求出①ABC 与①ACB 的度数的和,同理可求出①PBC 与①PCB 的和,进而求出①ABP 与①ACP 的和,根据角平分线可求出①FBP 与①FCP 的和,即可求出①FBC 与①FCB 的和,根据三角形内角和定理求出①BFC 的度数即可.【详解】①①BAC=70°,①①ABC+①ACB=110°,①①BPC=120°,①①PBC+①PCB=60°,①①ABP+①ACP=50°,①BD ,CE 分别平分①ABP 、①ACP ,①①FBP+①FCP=25°,①①FBC+①FCB=60°+25°=85°①①BFC=180°-85°=95°.【点睛】本题考查三角形内角和定理,三角形的三个内角的和等于180°,熟练掌握并灵活运用三角形内角和定理是解题关键.26.A 、B 两地相距60km ,甲从A 地去B 地,乙从B 地去A 地,图中1l 、2l 分别表示甲、乙两人到B 地的距离()km y 与甲出发时间()x h 的函数关系图象.(1)根据图象,求乙的行驶速度;(2)求出点A 的坐标,并解释交点A 的实际意义;(3)求甲出发多少时间,两人之间恰好相距5km ?【答案】(1)20km/h(2)点A 的坐标为(1.4,18),点A 的实际意义是在甲出发1.4小时时,甲乙两车相遇,此时距离B 地18km(3)当甲出发1.3h 或1.5h 时,两人之间的距离恰好相距5km【解析】(1)由图象得知乙从B 地去A 地共用3小时,从而求乙的速度;(2)根据函数图象中的数据可以求出点A 的坐标,并说出点A 的实际意义;(3)根据(1)中的函数解析式,可以列出相应的等式,从而可以求得甲出发多少时间,两人之间的距离恰好相距5km .(1)解:由图象可得,乙的行驶速度为:60÷(3.5-0.5)=20km/h ,(2)解:设l 1对应的函数解析式为y 1=k 1x+b 1,把(0,60)(2,0)代入得:1116020b k b =⎧⎨+=⎩ ,得1160-30b k =⎧⎨=⎩, 即l 1对应的函数解析式为y 1=-30x+60,设l 2对应的函数解析式为y 2=k 2x+b 2,把(0.5,0)(3.5,60)代入得:22220.503.560k b k b +=⎧⎨+=⎩,得22-1020b k =⎧⎨=⎩, 即l 2对应的函数解析式为y 2=20x -10,①联立30602010y x y x =-+⎧⎨=-⎩, 解得 1.418x y =⎧⎨=⎩ , 即点A 的坐标为(1.4,18),①点A 的实际意义是在甲出发1.4小时时,甲乙两车相遇,此时距离B 地18km ;(3)解:由题意得当125y y -=时(-30x+60)-(20x -10)=5,解得x=1.3 当215y y -=时,(20x -10)-(-30x+60)=5,解得x=1.5,答:当甲出发1.3h 或1.5h 时,两人之间的距离恰好相距5km ;。
沪科版八年级上册数学期中考试试题带答案

沪科版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1.若点A (3,n )在x 轴上,则点B (n-2,n+1)在( )A .第一象限B .第二象限C .第三象限D .第四象限2.平面直角坐标系中,点P (-2,1)先向左平移1个单位,再向上平移2个单位,所得的点为Q ,则Q 的坐标为( )A .(-3,-1)B .(-1,-1)C .(-3,3)D .(-1,3)3.点A(-5, 1y ),B (-2, 2y )都在直线443y x =-+上,则1y 与2y 的大小关系为( ) A .1y =2yB .1y >2yC .1y <2yD .不能确定413x -在实数范围内有意义,则x 的取值范围是( ) A .2x ≤ B .3x = C .2x <且3x ≠ D .2x ≤且3x ≠ 5.函数36y x =-+中,若自变量x 增加2,则函数值y 就( )A .增加3B .减少3C .增加6D .减少66.现有3cm ,4cm ,7cm ,9cm 长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是( )A .1个B .2个C .3个D .4个7.在△ABC 中,∠A=30°,∠B=∠C ,则△ABC 是( )A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形8.若等腰三角形的一个外角是80°,则底角是( ).A .40°B .80°或50°C .100°D .100°或40° 9.已知△ABC 的两条高分别为4和12,第三条高也为整数,则第三条高所有可能值为( ) A .3和4 B .1和2 C .2和3 D .4和510.甲、乙两车从A 地出发,匀速驶向B 地.甲车以80km/h 的速度行驶1h 后,乙车才沿相同路线行驶.乙车先到达B 地并停留1h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y (km )与乙车行驶时间x (h )之间的函数关系如图所示.下列说法:①乙车的速度是120km/h ;②m =160;③点H 的坐标是(7,80);④n =7.5.其中说法正确的是( )A.①②③B.①②④C.①③④D.①②③④11.下列选项中,给出的三条线段不能组成三角形的是()A.a+1,a+2,a+3 B.三边之比为2:3:4 C.30cm,8cm ,10cm D.3k ,4k ,5k 12.一次函数的图象过点(0,2),且随的增大而增大,则m=()A.-1 B.3 C.1 D.-1或3二、填空题13.点M(3,﹣1)到x轴距离是_____.14.命题“相等的两个角是内错角”的逆命题是______命题(填“真”或“假”).15.如图所示,点D.E.F分别在△ABC的三条边上,D为BC中点,CE=2AE,AD,BE,CF 交于一点G,若S△BGD=9,S△AGE=3,则S△ABC=_______16.如图,已知函数y=x-2和y=-2x+1的图象交于点P,根据图象可得方程组221x yx y-=⎧⎨+=⎩的解_______.三、解答题17.一次函数y =kx +b 的自变量x 的取值范围是-3≤x≤6,相应函数值的取值范围是-5≤y≤-2,求这个函数的解析式.18.已知()y k-1kx k =-是一次函数 (1)求k 的值(2)若点(3,a )在这个一次函数的图象上,求a 的值19.如图,在△ABC 中,∠A=12∠C =12∠ABC ,BD 是角平分线,求∠A 与∠ADB 的度数.20.已知直线26x y k -=-+ 和341x y k +=+,如果它们的交点在第三象限,求实数k 的取值范围.21.已知y -4与x 成正比例,且当x=6时,y= —4.(1)求y 与x 的函数关系式(2)(1)中函数图象与x 轴,y 轴分别交于A ,B 两点,P 点在y 轴上,若S △ABP =9,求P 点坐标.22.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x 千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?23.如图P为△ABC内部一点,∠BAC=70°,∠BPC=120°,BD,CE分别平分∠ABP,∠ACP,BD与CE交于点F,求∠BFC的度数.24.如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一直线上.(1)求证:△BAD≌△CAE;(2)猜想BD,CE有何特殊位置关系,并说明理由.25.现从A,B向甲、乙两地运送蔬菜,A,B两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,从A到甲地运费50元/吨,到乙地30元/吨;从B地到甲运费60元/吨,到乙地45元/吨.(1)设A地到甲地运送蔬菜x吨,请完成下表:(2)设总运费为W元,请写出W与x的函数关系式(3)怎样调运蔬菜才能使运费最少?参考答案1.B【解析】由点在x轴的条件是纵坐标为0,得出点A(-2,n)的n=0,再代入求出点B的坐标及象限即可.【详解】∵点A(3,n)在x轴上,∴n=0,∴n-2=-2,n+1=1,∴点B坐标为(-2,1)∴点B在第二象限,故选B.【点睛】本题考查四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负,在x轴上的点的纵坐标为0,在y轴上的点的横坐标为0,熟练掌握相关知识是解题关键.2.C【分析】根据向上平移纵坐标加;向左平移横坐标减,求出平移后的点的坐标即可.【详解】∵点P(-2,1),∴先向左平移个单位长度,再向上平移2个单位长度后得到的点的坐标是(-2-1,1+2),即(-3,3),故选C.【点睛】本题考查了坐标与图形变化-平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.3.B【解析】【分析】先根据一次函数的解析式判断出函数的增减性,再根据两点横坐标的大小即可得出结论.∵k=43-<0,∴y随x的增大而减小.∵-5<-2,∴y1>y2.故选B.【点睛】本题考查的是一次函数图象上点的坐标特点,先根据题意判断出一次函数的增减性是解答此题的关键.4.A【分析】根据分式的分母不为零、二次根式的被开方数是非负数列出关于x的不等式组,然后求得x 的取值范围.【详解】解:根据题意,得2030xx解之得:2x≤,故选:A.【点睛】本题综合考查了分式有意义的条件、二次根式有意义的条件,解答该题时,需要注意分式的分母不为零这一条件.5.D【解析】【分析】当自变量x增加2时,原方程变为y=-3(x+2)+6=-3x;即可求得y的变化.【详解】∵自变量x增加2,∴y=-3(x+2)+6=-3x,∴函数值减少6,故选D.本题考查求函数值,当已知函数解析式时,求函数值就是求代数式的值.6.B【详解】四条木棒的所有组合:3,4,7和3,4,9和3,7,9和4,7,9,根据三角形两边之和大于第三边,两边之差小于第三边的构成条件,只有3,7,9和4,7,9能组成三角形.故选B.7.A【解析】【分析】根据三角形内角和定理求出∠B和∠C的度数,判断△ABC的形状即可.【详解】∵∠A=30°,∠A+∠B+∠C=180°,∴∠B+∠C=150°∵∠B=∠C,∴∠B=∠C=75°,∴△ABC是锐角三角形,故选A.【点睛】本题考查了三角形的内角和定理的应用,三角形的三个内角的和等于180°;熟练掌握三角形内角和定理是解题关键.8.A【解析】试题分析:若这个80度是等腰三角形底角的外角,则可算出两个底角都是100度,这和三角形内角和180度矛盾,此种情况舍去;所以80度是顶角的外角,则这个等腰三角形的两个底角相等,三角形的一个外角等于和它不相邻的内角和,所以两个底角都是80÷2=40度.故选A.考点:1.三角形内角和定理;2.三角形外角性质.9.D【解析】先设长度为4、12的高分别是a 、b 边上的,边c 上的高为h ,△ABC 的面积是S ,根据三角形面积公式,可求a=24S ;b=212S ;c=2S h,结合三角形三边的不等关系,可得关于h 的不等式,解不等式即可.【详解】设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,那么a=24S ;b=212S ;c=2S h∵a-b <c <a+b , ∴24S -212S <c <24S +212S , 即3S <2S h <23S , 解得3<h <6,∴h=4或h=5,故选D.【点睛】主要考查三角形三边关系;利用三角形面积的表示方法得到相关等式是解决本题的关键. 10.A【分析】根据乙追上甲的时间求出乙的速度可判断①,根据乙由相遇点到达B 点所用时间可确定m 的值,即可判断②,根据乙休息1h 甲所行驶的路程可判断③,由乙返回时,甲乙相距80km ,可求出两车相遇的时间即可判断④.【详解】由图象可知,乙出发时,甲乙相距80km ,2小时后,乙车追上甲.则说明乙每小时比甲快40km ,则乙的速度为120km/h .①正确;由图象第2﹣6小时,乙由相遇点到达B ,用时4小时,每小时比甲快40km ,则此时甲乙距离4×40=160km ,则m=160,②正确; 当乙在B 休息1h 时,甲前进80km ,则H 点坐标为(7,80),③正确;乙返回时,甲乙相距80km ,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.所以正确的有①②③,故选A.【点睛】本题考查通过分段函数图像解决问题,根据题意明确图像中的信息是解题关键.11.C【解析】【分析】根据三角形的三边关系即可判断.【详解】∵C选项8+10<30,所以不能构成三角形,故选C.【点睛】此题主要考查三角形的三边关系,解题的关键是熟知三角形两边的和大于第三边,三角形两边的差小于第三边.12.B【详解】∵一次函数y=mx+|m-1|的图象过点(0,2),∴|m-1|=2,∴m-1=2或m-1=-2,解得m=3或m=-1,∵y随x的增大而增大,∴m>0,∴m=3.故选B.13.1【分析】点到x轴的距离是该点纵坐标的绝对值,根据点坐标即可得到答案.【详解】解:M(3,﹣1)到x轴距离是1.故答案为:1.【点睛】此题考查点到坐标轴的距离,正确理解距离与点坐标的关系是解题的关键.14.假【解析】【分析】先写出原命题的逆命题,再判断其是真假命题即可.【详解】∵原命题的条件为:两个角相等,结论为:这两个角是内错角,∴逆命题为两个角是内错角,那么这两个角相等,此命题是假命题,故答案为:假【点睛】本题考查了互逆命题的知识和命题的真假判断,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.正确的命题叫真命题,错误的命题叫做假命题.15.36【解析】【分析】由于CE=2AE,结合三角形面积公式可得S△CGE=2S△AGE,由D是BC中点,可得到S△BGD=S△CGD,于是可得求S△ADC,根据S△ABC=2S△ADC可求得S△ABC.【详解】∵CE=2AE,∴S△CGE=2S△AGE=6,∵D是BC中点,∴S△BGD=S△CGD=9,S△ABC=2S△ADC∴S△ABC=2S△ADC=2(S△CGD+ S△CGE+ S△AGE)=2(9+6+3)=36.故答案为:36【点睛】本题考查了三角形的面积公式、三角形之间的面积加减计算.等底等高的三角形面积相等;面积相等、同高的三角形底相等.16.11x y =⎧⎨=-⎩ 【分析】根据一次函数交点的意义可知,交点的横坐标即为方程组的解x 的值,纵坐标即为方程组的解y 的值.【详解】解:∵由图象可知:函数y=x-2和y=-2x+1的图象的交点P 的坐标是(1,-1), 又∵由y=x-2,移项后得出x-y=2,由y=-2x+1,移项后得出2x+y=1,∴方程组221x y x y -=⎧⎨+=⎩的解是11x y =⎧⎨=-⎩ 【点睛】本题考查根据图像求方程组的解,掌握交点横纵坐标就是方程组的解中x 、y 的值是关键. 17.【解析】解:当k >0时,依题意知,解得1,{34.k b ==- 当k <0时,依题意知65,{32,k b k b +=--+=-解得1,{33,k b =-=- ∴这个函数的解析式为143y x =-或133y x =--. 18.(1)k=﹣1;(2)a=﹣5.【解析】【分析】(1)由一次函数的定义可知:k-1≠0且|k|=1,从而可求得k 的值即可;(2)把点(3,a )代入一次函数解析式求出a 的值即可.【详解】(1)∵()ky k-1x k =-是一次函数, ∴k =1,k-1≠0,解得:k=-1,∴此一次函数的解析式为y=-2x+1,(2)∵点(3,a)在这个一次函数的图象上,∴a=-2⨯3+1=-5.【点睛】本题主要考查的是一次函数的定义,依据一次函数的定义求得k的值是解题的关键. 19.∠A=36°,∠BDC=72°.【详解】试题分析:设∠A为x,根据已知可得∠C=∠ABC=2x,由三角形的内角和定理可得x+2x+2x=180°,解方程即可得∠A=36°.再由角平分线的性质及三角形的内角和定理即可求得∠BDC的度数.试题解析:解:设∠A为x,∵∠A=∠C=∠ABC,所以∠C=∠ABC=2x,∴x+2x+2x=180°解得,x=36°.即∠A=36°.又∵BD是角平分线,∠ABC=72°,∴∠DBC=36°,∴∠BDC=180°-∠DBC-∠C=72°.考点:三角形的内角和定理.20.k<﹣4【解析】【分析】根据已知直线x-2y=-k+6和直线x+3y=4k+1,解出交点坐标,根据交点在第三象限即可解出k的范围.【详解】由题可得:26341x y kx y k-=-+⎧⎨+=+⎩,解得:41x ky k=+⎧⎨=-⎩,∴两直线的交点坐标为(k+4,k-1),∵交点在第三象限,∴4010kk+<⎧⎨-<⎩,解得:k<-4.【点睛】本题考查了一次函数与一元一次不等式及解二元一次方程,先用k表示出交点坐标并列出不等式组是解题关键.21.(1)443y x=-+;(2)P(0,﹣2)或P(0,10)【解析】【分析】(1)根据正比例函数的定义设出函数解析式y-4=kx(k≠0),再把当x=6时,y=-4代入求出k的值即可;(2)由(1)解析式可求出A、B两点的坐标,设点P的坐标为(0,m)根据△ABP的面积列方程求出m的值即可;【详解】(1)∵y-4与x成正比例,∴设y-4=kx(k≠0).把x=6,y=-4代入,得-4-4=6k,解得,k=-43,则y-4=-43x,∴y与x的函数关系式为:y=-43x+4;(2)∵P点在y轴上,∴设P点坐标为(0,m),∵函数图象与x轴,y轴分别交于A,B两点,∴当x=0时,y=4,当y=0时,x=3,∴A(3,0),B(0,4),∴S△ABP=124m-⨯3=9解得:m1=10,m2=-2,∴P点坐标为(0,10)或(0,-2)【点睛】本题考查了一次函数图象上点的坐标特征,待定系数法求一次函数解析式.点在直线上,则它的坐标满足直线的解析式.22.答案见解析【详解】试题分析:(1)根据“甲公司的费用=起步价+超出重量×续重单价”可得出y甲关于x的函数关系式,根据“乙公司的费用=快件重量×单价+包装费用”即可得出y乙关于x的函数关系式;(2)分0<x≤1和x>1两种情况讨论,分别令y甲<y乙、y甲=y乙和y甲>y乙,解关于x的方程或不等式即可得出结论.试题解析:(1)由题意知:当0<x≤1时,y甲=22x;当1<x时,y甲=22+15(x﹣1)=15x+7.y乙=16x+3;∴22?(01){157?(1)x xyx x甲<<=+>,=163y x+乙;(2)①当0<x≤1时,令y甲<y乙,即22x<16x+3,解得:0<x<12;令y甲=y乙,即22x=16x+3,解得:x=12;令y甲>y乙,即22x>16x+3,解得:12<x≤1.②x>1时,令y甲<y乙,即15x+7<16x+3,解得:x>4;令y甲=y乙,即15x+7=16x+3,解得:x=4;令y甲>y乙,即15x+7>16x+3,解得:0<x<4.综上可知:当12<x<4时,选乙快递公司省钱;当x=4或x=12时,选甲、乙两家快递公司快递费一样多;当0<x<12或x>4时,选甲快递公司省钱.考点:一次函数的应用;分段函数;方案型.23.95°【解析】【分析】根据∠BAC 的度数可求出∠ABC 与∠ACB 的度数的和,同理可求出∠PBC 与∠PCB 的和,进而求出∠ABP 与∠ACP 的和,根据角平分线可求出∠FBP 与∠FCP 的和,即可求出∠FBC 与∠FCB 的和,根据三角形内角和定理求出∠BFC 的度数即可.【详解】∵∠BAC=70°,∴∠ABC+∠ACB=110°,∵∠BPC=120°,∴∠PBC+∠PCB=60°,∴∠ABP+∠ACP=50°,∵BD ,CE 分别平分∠ABP 、∠ACP ,∴∠FBP+∠FCP=25°,∴∠FBC+∠FCB=60°+25°=85°∴∠BFC=180°-85°=95°.【点睛】本题考查三角形内角和定理,三角形的三个内角的和等于180°,熟练掌握并灵活运用三角形内角和定理是解题关键.24.(1)证明见解析;(2)BD ⊥CE ,理由见解析.【分析】(1)要证△BAD ≌△CAE ,现有AB=AC ,AD=AE ,需它们的夹角∠BAD=∠CAE ,而由∠BAC=∠DAE=90°很易证得;(2)BD 、CE 有何特殊位置关系,从图形上可看出是垂直关系,可向这方面努力.要证BD ⊥CE ,需证∠BDC=90°,需证∠DBC+∠DCB =90°,可由直角三角形提供.【详解】(1)∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠EAD+∠CAD ,∴∠BAD=∠CAE ,在△BAD 和△CAE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△BAD≌△CAE(SAS);(2)BD⊥CE,理由如下:由(1)知,△BAD≌△CAE,∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,∴∠BDC=90°,即BD⊥CE.【点睛】本题考查了全等三角形的判定和性质;全等问题要注意找条件,有些条件需在图形中仔细观察,认真推敲方可.做题时,有时需要先猜后证.25.(1)见解析(2)W=5x+1275(3)当x最小为1时,W有最小值1280元【分析】(1)根据题意A,B两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,可得解.(2)根据从A到甲地运费50元/吨,到乙地30元/吨;从B地到甲运费60元/吨,到乙地45元/吨可列出总费用,从而可得出答案.(3)首先求出x的取值范围,再利用w与x之间的函数关系式,求出函数最值即可.【详解】解:(1)完成填表:(2)W=50x+30(14-x)+60(15-x)+45(x-1),整理得,W=5x+1275.(3)∵A,B到两地运送的蔬菜为非负数,∴x014x0{15x0x10≥-≥-≥-≥,解不等式组,得:1≤x≤14.在W=5x+1275中,W随x增大而增大,∴当x最小为1时,W有最小值1280元.∴当x=1时,A:x=1,14−x=13,B:15−x=14,x−1=0,即A向甲地运1吨,向乙地运13吨,B向甲地运14吨,向乙地运0吨才能使运费最少.。
2022-2023学年沪科新版八年级上册数学期中复习试卷(有答案)

2022-2023学年沪科新版八年级上册数学期中复习试卷一.选择题(共10小题,满分40分,每小题4分)1.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cm B.5cm,10cm,6cmC.1cm,1cm,3cm D.3cm,9cm,4cm2.若点A(5,y1),B(1,y2)都在直线y=3x﹣1上,则y1与y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.无法比较大小3.已知一次函数y=kx+b,y随x的增大而减小,且b<0,则在直角坐标系内它的大致图象是()A.B.C.D.4.已知函数y=x+m与y=mx﹣1,当x=3时,y值相等,那么m的值是()A.1B.2C.3D.45.如图,在四边形ABCD中,AD∥BC,E是AB的中点,BC⊥CD,则△CDE的形状是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形6.如图,D是BC的中点,E是AC的中点,△ADE的面积为2,则△ABC的面积为()A.4B.8C.10D.127.下列关系中,符合正比例函数关系的是()A.边长一定时,三角形的面积与该边上的高B.质量一定时,体积与密度C.路程一定时,速度与时间D.长方形的面积一定时,它的长与宽8.已知△ABC≌△DEF,且AB=DE,AB=2,AC=4,△DEF的周长为偶数,则EF的长为()A.3B.4C.5D.69.如图,直线y1=k1x+a与y2=k2x+b的交点坐标为(2,4),则使y1<y2的x的取值范围为()A.x>4B.x>2C.x<4D.x<210.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若CD=1,AB=4,则△ABD的面积是()A.1.5B.2.5C.2D.3二.填空题(共4小题,满分20分,每小题5分)11.如图,在正方形网格中,每个小正方形的边长均为1,每个小正方形顶点叫做格点,△ABC的顶点都在格点上,以AB为一边作△ABP,使之与△ABC全等,从P1、P2、P3、P4四点中找出符合条件的点P,则点P有个.12.等腰三角形的两边长为3和7,则第三边长为.13.直线AB的解析式为y=2x+4,交x轴于点A,交y轴于点B,则△AOB的面积为.14.如图,在△ABC中,AB=AC,CD平分∠ACB,DE∥BC交AC于点E,已知∠A=84°,则∠CDE=°.三.解答题(共8小题,满分90分)15.(10分)已知,一次函数的y=﹣2x+4的图象与x轴、y轴分别交于A、B两点.(1)求△ABO的面积;(2)将这条直线平移后与x轴负半轴、y轴负半轴分别交于C、D两点,使DA=DC,求直线CD的解析式.16.(10分)如图,已知AC⊥AB,DB⊥AB,AC=BE,AE=BD,试猜想线段CE与DE 的相等吗?说明理由.CE与DE互相垂直吗?说明理由.17.(10分)A、B两地相距90km,甲、乙两人从两地出发相向而行,甲先出发.图中l1,l2表示两人离A地的距离S(km)与时间t(h)的关系,结合图象回答下列问题(1)表示甲离A地的距离与时间关系的图象是(填l1或l2);(2)甲的速度是km/h;乙的速度是km/h(3)甲出发后多少时间两人相遇?18.(12分)在平面直角坐标系xOy中,已知一次函数的图象经过点A(5,0),B(1,4).(1)求这个一次函数的表达式;(2)直线AB、直线y=2x﹣4与y轴所围成的三角形的面积为.19.(12分)如图,已知△ABC≌△DBE,连接AD,若∠DBE=70°,∠EBC=40°,求证:AD∥BC.20.(12分)甲乙两人分别驾车从A、B同时出发,沿同一条线路相向而行,甲从A地以速度52km/h匀速去B地,乙开始以速度v1km/h匀速行驶,中途速度改为v2km/h匀速行驶,到A恰好用时0.7h,两人距离A地的路程与各自离开出发地的时间之间的图象如图所示,求(1)A、B两地之间的路程为多少km及乙开始的速度v1;(2)当两人相距6km时,求t的值.21.(12分)已知:如图,AC⊥BC于C,DE⊥AC于E,AD⊥AB于A,BC=AE.若AB =5,求AD的长.22.(12分)某工厂计划生产A、B两种产品共50件,需购买甲、乙两种材料.生产一件A产品需甲种材料30千克、乙种材料10千克;生产一件B产品需甲、乙两种材料各20千克.经测算,购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元.(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不超过38000元,且生产B产品不少于28件,问符合条件的生产方案有哪几种?(3)在(2)的条件下,若生产一件A产品需加工费200元,生产一件B产品需加工费300元,应选择哪种生产方案,使生产这50件产品的成本最低?(成本=材料费+加工费)参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.解:根据三角形的三边关系,得,A.2+3=5,不能组成三角形,故该选项不合题意;B.5+6=11>10,能够组成三角形,故该选项符合题意;C.1+1=2<3,不能组成三角形,故该选项不合题意;D.3+4=7<9,不能组成三角形,故该选项不符合题意.故选:B.2.解:当x=5时,y1=3×5﹣1=14;当x=1时,y2=3×1﹣1=2.∵14>2,∴y1>y2.故选:C.3.解:∵一次函数y=kx+b,y随x的增大而减小,且b<0,∴k<0,b<0,∴该函数图象经过第二、三、四象限,故选:B.4.解:∵当x=3时,两个函数的y值相等,即:3+m=3m﹣1解得:m=2故选:B.5.解:如图,延长DE交CB的延长线于F.∵AD∥BC,∴∠F=∠ADE,∵BE=AE,∠FEB=∠AED,∴△BEF≌△AED,∴EF=ED,∵BC⊥DC,∴∠DCF=90°,∴CE=EF=DE,∴△DEC是等腰三角形.故选:A.6.解:∵D是BC的中点,E是AC的中点,△ADE的面积为2,∴△ADC的面积=4,∴△ABC的面积=8,故选:B.7.解:A.边长一定时,三角形的面积与该边上的高是正比例函数关系;符合题意;B.质量一定时,体积与密度不是正比例函数关系;不符合题意;C.路程一定时,速度与时间不是正比例函数关系;不符合题意;D.长方形的面积一定时,它的长与宽不是正比例函数关系;不符合题意.故选:A.8.解:∵△ABC≌△DEF,且AB=DE,∴DE=AB=2,DF=AC=4,又DF﹣DE<EF<DF+DE,即2<EF<6,且△DEF的周长为偶数,∴EF为偶尔,∴EF=4,故选:B.9.解:由图象可知,使y1<y2的x的取值范围为x<2.故选:D.10.解:过D作DE⊥AB于E,∵在△ABC中,∠C=90°,AD是∠BAC的角平分线,CD=1,∴DE=CD=1,∵AB=4,∴△ABD的面积是==2,故选:C.二.填空题(共4小题,满分20分,每小题5分)11.解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P2,P4三个,故答案为:3.12.解:当3为底时,其它两边为7、7可以构成三角形,当3为腰时,其它两边为3和7,∵3+3=6<7,所以不能构成三角形,故舍去,故答案为:7.13.解:∵直线y=2x+4交x轴于点A,交y轴于点B,∴令y=0,则x=﹣2,令x=0,则y=4,∴A(﹣2,0),B(0,4),∴△AOB的面积=×2×4=4.故答案为4.14.解:∵AB=AC,∠A=84°,∴∠B=∠ACB==48°.∵CD平分∠ACB,∴∠DCB=∠ACB=24°.∵DE∥BC,∴∠CDE=∠DCB=24°.故答案为:24.三.解答题(共8小题,满分90分)15.解:(1)当y=0时,﹣2x+4=0,解得:x=2,∴点A的坐标为(2,0);当x=0时,y=﹣2×0+4=4,∴点B的坐标为(0,4).画出该一次函数的图象,如图所示.S=•OA•OB=×2×4=4.△AOB(2)设直线CD的函数解析式:y=﹣2x+n,∵DA=DC,∴CO=AO=2,∴C(﹣2,0),代入y=﹣2x+n得,0=4+n,解得n=﹣4,∴直线CD:y=﹣2x﹣4.16.解:CE=DE,CE⊥DE,理由是:∵AC⊥AB,DB⊥AB,∴∠A=∠B=90°,∵在△CAE和△EBD中∴△CAE≌△EBD(SAS),∴CE=DE,∠C=∠DEB,∵∠A=90°,∴∠C+∠CEA=90°,∴∠DEB+∠CEA=90°,∴∠CED=180°﹣90°=90°,∴CE⊥DE.17.解:(1)∵甲先出发,∴表示甲离A地的距离与时间关系的图象是l1,故答案为:l1;(2)甲的速度是:90÷2=45km/h,乙的速度是:90÷(3.5﹣0.5)=90÷3=30km/h,故答案为:45,30;(3)设甲对应的函数解析式为y=ax+b,,解得,∴甲对应的函数解析式为y=﹣45x+90,设乙对应的函数解析式为y=cx+d,,解得,即乙对应的函数解析式为y=30x﹣15,,解得.答:甲出发1.4小时后两人相遇.18.解:(1)设一次函数的解析式为y=kx+b,∵一次函数的图象经过点A(5,0),B(1,4).∴,解得,∴一次函数的表达式为y=﹣x+5,(2)解得,∴两直线的交点为(3,2),直线y=2x﹣4中,令x=0,则y=﹣4,直线y=﹣x+5中,令x=0,则y=5,∴两直线与y轴的交点为(0,﹣4)和(0,5),∴直线AB、直线y=2x﹣4与y轴所围成的三角形的面积为×3=,故答案为:.19.证明:∵△ABC≌△DBE,∠DBE=70°,∴∠DBE=∠ABC=70°,AB=DB,∴∠BAD=∠BDA,∴∠ABD=∠EBC=40°,∴∠BAD=∠BDA===70°,∴∠BAD=∠ABC,∴AD∥BC.20.解:(1)由图象可得A、B两地之间的路程为26km,乙开始的速度v1:(26﹣16)÷0.2=50(km/h),(2)甲走完全程所用时间为:26÷52=0.5(h);如图,点A、B、C、D的坐标分别为:(0,26),(0.2,16),(0.7,0),(0.5,26),由甲从A地以速度52km/h匀速去B地,可知直线OD的解析式为:y1=52t(0≤t≤0.5);设直线AB的解析式为y2=kt+26,将(0.2,16)代入得:16=0.2k+26,解得:k=﹣50,∴y2=﹣50t+26(0≤t≤0.2),设直线BC的解析式为y3=mt+n,将(0.2,16),(0.7,0)代入得:,解得:,∴直线BC的解析式为y3=﹣32t+22.4(0.2<≤t≤0.7).①当0≤t≤0.2时,﹣50t+26﹣52t=6,解得:t=(h).②当0.2<≤t≤0.5时,52t﹣(﹣32t+22.4)=6,解得:t=(h),综上,当t=或(h)时,两人相距6km.21.解:∵AC⊥BC于C,DE⊥AC于E,∴∠C=∠AED=90°,∠CAB+∠B=90°,∵AD⊥AB于A,∴∠CAB+∠EAD=90°,∴∠B=∠EAD(同角的余角相等)∵BC=AE,∠C=∠AED=90°,∠B=∠EAD,∴△ABC≌△DAE(AAS),∴AD=AB=5.22.解:(1)设甲材料每千克x元,乙材料每千克y元,则,解得,所以甲材料每千克15元,乙材料每千克25元;(2)设生产A产品m件,生产B产品(50﹣m)件,则生产这50件产品的材料费为15×30m+25×10m+15×20(50﹣m)+25×20(50﹣m)=﹣100m+40000,由题意:﹣100m+40000≤38000,解得m≥20,又∵50﹣m≥28,解得m≤22,∴20≤m≤22,∴m的值为20,21,22,共有三种方案,如下表:A(件)202122B(件)302928(3)设总生产成本为W元,加工费为:200m+300(50﹣m),则W=﹣100m+40000+200m+300(50﹣m)=﹣200m+55000,∵W随m的增大而减小,而m=20,21,22,∴当m=22时,总成本最低.答:选择22件A和28件B,总成本最低.。
2024-2025学年沪科版八年级数学上册期中复习试卷

2024-2025学年沪科版八年级数学上册期中复习试卷1.在平面直角坐标系中,点在()A.第一象限B.第二象限C.第三象限D.第四象限2.若是第二象限内的点,且点到轴的距离是,到轴的距离是,则点的坐标是()A.B.C.D.3.已知两点,都在直线(为常数)上,则、的大小关系是()A.B.C.D.不能确定4.如图,△ABC中,∠A=30°,D为CB延长线上的一点,DE⊥AB于点E,∠D=40°,则∠C为()A.20°B.15°C.30°D.25°5.下列命题中,①如果,那么;②如果两个角相等,那么这两个角为内错角;③如果,那么;④如果与互补,那么,真命题有()A.1个B.2个C.3个D.4个6.如图所示的网格由边长相同的小正方形组成,点、、、、、、在小正方形的顶点上,则的重心是()A.点B.点C.点D.点7.如图,已知于点,于点,,则的度数是()A.B.C.D.8.正比例函数y=2kx和一次函数y=kx-的大致图象是()A.B.C.D.9.下列命题:①在同一平面内,已知直线a、b,若,则;②在同一平面内,两条直线的位置关系只有相交和平行两种;③过直线上一点有且只有一条直线与已知直线垂直;④已知直线a,b,如果,那么,其中真命题是()A.①②③B.②④C.②③④D.③④10.如图,一个粒子在第一象限内及x轴、y轴上运动,在第一分钟它从原点运动到点,第二分钟,它从点运动到点,而后它接着按图中箭头所示在与x 轴,y轴平行的方向上来回运动,且每分钟移动1个单位长度,那么在第2023分钟时,这个粒子所在位置的坐标是()A.B.C.D.11.在函数中,自变量的取值范围是______.12.如图,在的顶点在网格点上,过点作,垂足为点,则点的坐标为_____.13.如图,在中,点是上两点,点分别是上的点,将和分别沿着折叠,它们的对应三角形分别是和.若,则______︒.14.已知直线和直线(其中均为非零常数)位于同一平面直线坐标系内.(1)若这两条直线与轴交于同一点,则______;(2)若自变量取一切实数时,不等式恒成立,则的取值范围是_____.15.已知点P(8–2m,m–1).(1)若点P在x轴上,求m的值.(2)若点P到两坐标轴的距离相等,求P点的坐标.16.如图,在平面直角坐标系xOy中,三角形ABC三个顶点的坐标分别为A(-2,-2),B(3,1),C(0,2).点P(a,b)是三角形ABC的边AC上任意一点,三角形ABC 经过平移后得到三角形A′B′C′,点P的对应点为P′(a-2,b+3).(1)写出点A′的坐标:点A′.(2)在图中画出平移后的三角形A′B′C′;(3)三角形ABC的面积为.17.用一条长为的铁丝围成一个等腰三角形.(1)如果腰长是底边长的3倍,那么底边长是多少?(2)能用这根铁丝围成一个边长为的等腰三角形吗?如果能,请求出另外两条边的长度;如果不能,请说明理由.18.如图所示方格纸中,每个小正方形的边长均为1,点,点,点在小正方形的顶点上.(1)画出中边上的高;(2)画出中边上的中线;(3)直接写出的面积为________.19.已如三角形的三条边长为3、5和.(1)若3是该三角形的最短边长,求的取值范围;(2)若为整数,求三角形周长的最大值.20.在中,平分,.(1)如图1,若于点,,,求的度数.(2)如图2在线段上任取一点(不与,重合),过点作于点,若,,试求出的度数.(用含有、的代数式表示即可)21.如图,已知函数=2x+b和=ax﹣3的图象交于点P(﹣2,﹣5),这两个函数的图象与x轴分别交于点A、B.(1)分别求出这两个函数的解析式;(2)求△ABP的面积;(3)根据图象直接写出不等式2x+b<ax﹣3的解集.22.22.如图甲是一个大长方形剪去一个小长方形后形成的图形,已知动点以每秒的速度沿图甲的边框按从的路径移动,相应的的面积与时间之间的关系如图乙中的图象表示.若,试回答下列问题.图甲图乙(1)填空:图甲中的__________,__________;(2)求:图乙中的的值;(3)求:图乙中的的值.23.在平面直角坐标系中,点为坐标原点,直线交轴于点,交轴于点,且.(1)求直线的解析式;(2)①若另一条直线与直线有唯一交点,求点的坐标;②直接写出的取值范围.(3)若直线只与轴的交点在线段上(不与,重合),试写出取值范围.。
沪科版八年级上册数学期中考试试题带答案

沪科版八年级上册数学期中考试试卷一、单选题1.要从直线3x y =-得到函数53x y +=-的图象,那么直线3x y =-必须( ) A .向上平移5个单位 B .向下平移5个单位C .向上平移53个单位D .向下平移53个单位 【答案】D2.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比( )A .向右平移了3个单位B .向左平移了3个单位C .向上平移了3个单位D .向下平移了3个单位【答案】D3.若m <﹣2,则一次函数()11y m x m =++-的图象可能是( )A .B .C .D .【答案】D4.如图,一个弹簧不挂重物时长6cm ,挂上重物后,在弹性限度内弹簧伸长的长度与所挂重物的质量成正比.弹簧总长y (单位:cm )关于所挂物体质量x (单位:kg )的函数图象如图所示,则图中a 的值是( )A .3B .4C .5D .6【答案】A5.函数11y x =+的自变量x 的取值范围是( ) A .1x >- B .1x <- C .1x ≠- D .1x ≠【答案】C6.下列分别是三根小木棒的长度,其中能组成三角形的是( )A .3cm,4cm,8cmB .8cm,7cm,15cmC .5cm,5cm,11cmD .13cm,12cm,12cm【答案】D7.已知一次函数(3)5y m x m =+++,y 随x 的增大而减小,且其图象与y 轴的交点在y 轴的正半轴上,则m 的取值范围是( )A .5m >-B .3m <-C .53m -<<-D .3m >-【答案】C8.一副三角板有两个直角三角形,如图叠放在一起,则α∠的度数是( )A .165°B .120°C .150°D .135°【答案】A9.已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .()1,2-B .()1,2-C .()2,3D .()3,4【答案】B10.一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返同,且往返速度的大小不变,两车离甲地的距离y (单位:km )与慢车行驶时间t (单位:h )的函数关系如图,则两车先后两次相遇的间隔时间是( )A .5h 3B .3h 2C .7h 5D .4h 3 【答案】B二、填空题11.在坐标系内,点P (2,-2)和点Q (2,4)之间的距离等于_______个单位长度【答案】612.点()3,2P m m -+在y 轴上,则点P 的坐标为_________.【答案】(0,5)13.在△ABC 中,△A=55°,△B 比△C 大25°,则△B 的度数为_____.【答案】75°14.已知一次函数()324y m x m =-++的图象过直线143y x =-+与y 轴的交点M ,则此一次函数的表达式为_________.【答案】34y x =-+15.在直线132y x =-+,且与y 轴的距离是2个单位长度的点的坐标是_________. 【答案】(2,2)或(2,4)-16.如图,直线()0y kx b k =+<经过点()1,1P ,当kx b x +≥时,则x 的取值范围为_________.【答案】1x ≤17.若以二元一次方程20x y b +-=的解为坐标的点(x ,y ) 都在直线112y x b =-+-上,则常数b =_______.【答案】2.18.如图,已知长方形ABCD 顶点坐标为A (1,1),B (3,1),C (3,4),D (1,4),一次函数y =2x +b 的图像与长方形ABCD 的边有公共点,则b 的变化范围是__________.【答案】52b -≤≤三、解答题19.已知函数y=(m+1)x 2-|m |+n+4.(1)当m ,n 为何值时,此函数是一次函数?(2)当m ,n 为何值时,此函数是正比例函数?【答案】(1)当m=1,n 为任意实数时,这个函数是一次函数;(2)当m=1,n=−4时,这个函数是正比例函数.【详解】(1)根据一次函数的定义,得:2−|m|=1,解得:m=±1.又△m+1≠0即m≠−1,△当m=1,n 为任意实数时,这个函数是一次函数;(2)根据正比例函数的定义,得:2−|m|=1,n+4=0,解得:m=±1,n=−4,又△m+1≠0即m≠−1,△当m=1,n=−4时,这个函数是正比例函数.20.如图,在边长为1的小正方形网格中,AOB 的顶点均在格点上.(1)将AOB 向左平移3个单位,再向下平移1个单位长度得到111AO B ,请画出111AO B ,并写出点1A 的坐标;(2)求111AO B 的面积.【答案】(1)图见解析,1(2,2)A - (2)72【解析】(1) 解:如图,111AO B 即为所求,点A 的坐标为(1,3)A ,∴点1A 的坐标为1(13,31)A --,即为1(2,2)A -.(2) 解:111AO B 的面积为1117333212312222⨯-⨯⨯-⨯⨯-⨯⨯=.21.设三角形的三边长为正整数,,a b c ,且a b c ≤≤,当4b =时,满足条件的三角形共有多少个?其中等腰三角形有多少个?等边三角形有多少个?(要求写出分析、判断的过程)【答案】满足条件的三角形共有10个,其中等腰三角形有7个,等边三角形有1个.【详解】 解:三角形的三边长为正整数,,a b c ,且a b c ≤≤,4b =,4,c a c a当1a =时,则14+1,c c此时45,c 则4,c =三角形的三边分别为:1,4,4,a b c此时,三角形有1个,等腰三角形1个;当2a =时,则242,c c此时46,c 则4,5,c三角形的三边分别为:2,4,4a b c 或2,4,5,a b c此时,三角形有2个,等腰三角形1个;当3a =时,则343,c c此时47,c 则4,5,6,c三角形的三边分别为:3,4,4a b c 或3,4,5a b c ===或3,4,6,a b c 此时,三角形有3个,等腰三角形1个;当4a =时,则444,c c此时48,c 则4,5,6,7c ,三角形的三边分别为:4,4,4a b c ===或4,4,5a b c 或4,4,6a b c 或4,4,7a b c ,此时,三角形有4个,等腰三角形有4个,等边三角形有1个;由题意知:5a ≥不合题意,舍去.综上:满足条件的三角形共有10个,其中等腰三角形有7个,等边三角形有1个.22.如图,直线2y x =-与直线y kx b =+相交于点,2A a ,并且直线y kx b =+经过x 轴上点()2,0(1)求直线y kx b =+的表达式;(2)直接写出不等式()20k x b ++≥的解集.【答案】(1)2433y x =-+ (2)1x ≥- 【解析】(1)解:把A (a ,2)代入y=-2x 中,得-2a=2,△a=-1, △A (-1,2)把A (-1,2),B (2,0)代入y=kx+b 中得△一次函数的解析式是2433y x =-+; (2)不等式(k+2)x+b≥0可以变形为kx+b≥-2x ,结合图象得到解集为:x≥-1.23.如图,在平面直角坐标系中,点M 是直线y x =-上的动点,过点M 作MN x ⊥轴,交直线y x =于点N ,当8MN ≤时,设点M 的横坐标为m ,求m 的取值范围.【答案】44m -≤≤【详解】解:对于直线y x =-,当x m =时,y m =-,即(,)M m m -,MN x ⊥轴,交直线y x =于点N ,∴点N 的横坐标为m ,对于直线y x =,当x m =时,y m =,即(,)N m m ,2MN m m m ∴=--=,8MN ≤,28m ∴≤,解得44m -≤≤.24.现从A ,B 向甲、乙两地运送蔬菜,A ,B 两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,从A 到甲地运费50元/吨,到乙地30元/吨;从B 地到甲运费60元/吨,到乙地45元/吨.(1)设A 地到甲地运送蔬菜x 吨,请完成下表:(2)设总运费为W 元,请写出W 与x 的函数关系式(3)怎样调运蔬菜才能使运费最少?【答案】(1)见解析(2)W=5x +1275(3)当x 最小为1时,W 有最小值 1280元【详解】解:(1)完成填表:(2)W=50x +30(14-x )+60(15-x )+45(x -1),整理得,W=5x +1275.(3)△A ,B 到两地运送的蔬菜为非负数,△x 014x 0{15x 0x 10≥-≥-≥-≥,解不等式组,得:1≤x≤14.在W=5x+1275中,W随x增大而增大,△当x最小为1时,W有最小值1280元.△当x=1时,A:x=1,14−x=13,B:15−x=14,x−1=0,即A向甲地运1吨,向乙地运13吨,B向甲地运14吨,向乙地运0吨才能使运费最少.25.已知△ABC中,△ACB=90°,CD为AB边上的高,BE平分△ABC,分别交CD、AC于点F、E,求证:△CFE=△CEF.【答案】证明见解析.【详解】试题分析:根据互余、角平分线及对顶角等相关知识即可得出答案.证明:如图,△△ACB=90°,△△1+△3=90°,△CD△AB,△△2+△4=90°,又△BE平分△ABC,△△1=△2,△△3=△4,△△4=△5,△△3=△5,即△CFE=△CEF.。
沪科版八年级上册数学期中考试试题及答案

沪科版八年级上册数学期中考试试卷一、单选题1.下列数据中不能确定物体的位置的是()A .南偏西40°B .红旗小区3号楼701号C .龙山路461号D .东经130°,北纬54°2.下列函数(1)y =πx ;(2)y =-2x ﹣1;(3)y =1x;(4)y =22﹣x ;(5)y =x 2﹣1中,一次函数的个数是()A .4个B .3个C .2个D .1个3.如图,下列各曲线中表示y 是x 函数的是()A .B .C .D .4.根据如图所示的计算程序计算变量y 的值,若输入m =4,n =3时,则输出y 的值是A .13B .7C .10D .115.若一次函数y =(1-2k )x +1的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1<x 2时,y 1<y 2,则k 的取值范围是()A .k <0B .k >0C .k <12D .k >126.如图,ABC 中,30A ∠=︒,将ABC 沿DE 折叠,点A 落在F 处,则FDB FEC ∠∠+的度数为()A.140︒B.60︒C.70︒D.80︒7.已知点A(m,n),且有mn≤0,则点A一定不在()A.第一象限B.第二象限C.第四象限D.坐标轴上8.一次函数y=kx﹣b与y=﹣bkx(k,b为常数,且kb≠0),它们在同一坐标系内的图象可能为()A.B.C.D.9.下列说法中,正确的是()A.三角形的高都在三角形内B.三角形的三条中线相交于三角形内一点C.三角形的一个外角大于任何一个内角D.三角形最大的一个内角的度数可以小于60度10.甲、乙两位同学周末相约骑自行车去游玩,沿同一路线从A地出发前往B地,甲、乙分别以不同的速度匀速骑行,甲比乙早出发5分钟.甲骑行20分钟后,乙以原速的1.5倍继续骑行,经过一段时间,乙先到达B地,甲一直保持原速前往B地.在此过程中,甲、乙两人相距的路程y(单位:m)与甲骑行的时间x(单位:min)之间的关系如图所示,则下列说法中错误..的是()A.甲的骑行速度是250m/min B.A B,两地的总路程为22.5kmC.乙出发60min后追上甲D.甲比乙晚5min到达B地二、填空题11.在函数21y x =-中,自变量x 的取值范围是_____________.12.把命题“不能被2整除的数是奇数”改写成“如果…那么…”的形式__________.13.已知2y -与x 成正比,且当1x =时,6y =-,则y 与x 的关系式是___________14.八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l 将这八个正方形分成面积相等的两部分,设直线l 和八个正方形的最上面交点为A ,则直线l 的解析式是_____________.三、解答题15.如图,在边长均为1个单位的正方形网格图中,建立了直角坐标系xOy ,按要求解答下列问题:(1)写出△ABC 三个顶点的坐标;(2)画出△ABC 向右平移6个单位,再向下平移2个单位后的图形△A 1B 1C 1;(3)求△ABC 的面积.16.已知一次函数y =kx -4,当x =2时,y =-3.(1)求一次函数的表达式;(2)将该函数的图像向上平移6个单位长度,求平移后的图像与x 轴交点的坐标.17.用一条长为18cm 的细绳围成一个等腰三角形.(1)如果腰长是底边长的2倍,求三角形各边的长.(2)能围成有一边的长是4cm 的等腰三角形吗?若能,求出其他两边的长;若不能,请说明理由.18.如图,已知直线1:2l y x n =+-与直线2:l y mx n =+相交于点()1,2P .(1)求m 、n 的值;(2)请结合图象直接写出不等式2mx n x n +>+-的解集.19.如图,在△ABC 中,∠1=100°,∠C=80°,∠2=12∠3,BE 平分∠ABC .求∠4的度数.20.已知:如图,在 AOB 中,A(3,2),B(5,0),E(4,m),且点A 、E 、B 在同一条直线上,求:(1)m 的值;(2) AOE 的面积.21.如图1,∠MON =90°,点A 、B 分别在OM 、ON 上运动(不与点O 重合).(1)若BC 是∠ABN 的平分线,BC 的反方向延长线与∠BAO 的平分线交于点D .①若∠BAO =60°,则∠D =°.②猜想:∠D 的度数是否随A ,B 的移动发生变化?并说明理由.(2)若∠ABC=13∠ABN,∠BAD=13∠BAO,则∠D=°.(3)若将“∠MON=90°”改为“∠MON=α(0°<α<180°)”,∠ABC=1n∠ABN,∠BAD=1n∠BAO,其余条件不变,则∠D=°(用含α、n的代数式表示)22.某中学计划购买A型和B型课桌凳共200套,经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1820元.(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳的总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳数量的23,求该校本次购买A型和B型课桌凳共有几种购买方案?怎样的方案使总费用最低?并求出最低消费.23.已知直线AB∥CD,(1)如图1,直接写出∠BME、∠E、∠END的数量关系为;(2)如图2,∠BME与∠CNE的角平分线所在的直线相交于点P,试探究∠P与∠E之间的数量关系,并证明你的结论;(3)如图3,∠ABM=1n∠MBE,∠CDN=1n∠NDE,直线MB、ND交于点F,则FE∠∠=.参考答案1.A【解析】【分析】确定一个物体的位置,要用一个有序数对,即用两个数据.找到一个数据的选项即为所求.【详解】解:A.南偏西40︒,不是有序数对,不能确定物体的位置,故本选项符合题意;B.红旗小区3号楼701号,相当于一个数据,是有序数对,能确定物体的位置,故本选项不合题意;C.龙山路461号,是有序数对,能确定物体的位置,故本选项不合题意;D.东经130︒,北纬54︒,是有序数对,能确定物体的位置,故本选项不合题意;故选:A.【点睛】本题考查了坐标确定点的位置,解题的关键是要明确,一个有序数对才能确定一个点的位置.2.B【解析】【分析】根据一次函数的定义条件进行逐一分析即可.【详解】解:(1)y=πx是正比例函数,是特殊的一次函数;(2)y=2x﹣1是一次函数;(3)y=1x不是一次函数;(4)y=22﹣x是一次函数;(5)y=x2﹣1不是一次函数.故选:B.【点睛】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.3.B【分析】设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.函数的意义反映在图象上简单的判断方法是:作垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.【详解】解:A、作垂直x轴的直线,在左右平移的过程中与函数图象可能有两个交点,故A不符合题意;B、作垂直x轴的直线,在左右平移的过程中与函数图象只会有一个交点,故B符合题意;C、作垂直x轴的直线,在左右平移的过程中与函数图象可能有两个交点,故C不符合题意;D、作垂直x轴的直线,在左右平移的过程中与函数图象可能有两个交点,故D不符合题意;故选:B.【点睛】:主要考查了函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y 都有唯一确定的值与之对应,则y是x的函数,x叫自变量.4.B【解析】【分析】当m<n时用左边的解析式算;当m≥n时用右边的解析式算.【详解】解:∵m=4,n=3,∴m>n,∴y=3n﹣2,当n=3时,y=3×3﹣2=7.故选:B【点睛】本题考查已知自变量的数值求对应函数值,体现了分类讨论的数学思想,仔细审题是解此类题的关键.5.C【解析】由x1<x2时,y1<y2,可知y随x增大而增大,则比例系数1-2k>0,从而求出k的取值范围.【详解】解:当x1<x2时,y1<y2,y随x增大而增大,∴1-2k>0,得k<12.故选:C.【点睛】本题考查一次函数的图象性质:当k>0,y随x增大而增大,掌握一次函数的图象性质是解题的关键.6.B【解析】【分析】由折叠得到∠A与∠F的关系,利用四边形的内角和得到∠ADF+∠AEF=360°-∠A-∠F= 300°,再利用平角得到∠FDB+∠FEC=180°-∠ADF+180°-∠AEF,可得到最终结果.【详解】△DEF是由△DEA折叠而成的,∴∠A=∠F=30°,∠A+∠ADF+∠AEF+∠F=360°,∴∠ADF+∠AEF=360°-∠A-∠F=300°,∴∠BDF=180°-∠ADF,∴∠FEC=180°-∠AEF,∴∠FDB+∠FEC=180°-∠ADF+180°-∠AEF=360°-(∠ADF+∠AEF)=360°-300°=60°.故选:B.【点睛】本题考查了四边形的内角和,掌握折叠的性质及三角形的内角和定理是解决本题的关键.7.A【解析】【分析】由mn≤0可知,m、n不可能同号,再根据四个象限点的特点即可判断.【详解】∵mn≤0,∴mn≥⎧⎨≤⎩或mn≤⎧⎨≥⎩第一象限上的点横纵坐标均为正数,所以A点不可能在第一象限.故选A.【点睛】本题考查坐标系中点的符号特征,熟记四个象限上的点与坐标轴上的点的横纵坐标符号,是解题的关键.8.C【解析】【分析】根据一次函数的图象与系数的关系,由一次函数y=kx﹣b图象分析可得k、b的符号,进而可得bk-的符号,从而判断y=bk-x的图象是否符合,进而比较可得答案.【详解】解:根据一次函数的图象分析可得:A、由一次函数y=kx﹣b图象可知k>0,b>0,bk-<0;正比例函数y=bk-x的图象可知bk->0,故此选项错误;B、由一次函数y=kx﹣b图象可知k<0,b<0,bk-<0;正比例函数y=bk-x的图象可知bk->0,故此选项错误;C、由一次函数y=kx﹣b图象可知k<0,b<0,bk-<0;正比例函数y=bk-x的图象可知bk-<0,故此选项正确;D、由一次函数y=kx﹣b图象可知k>0,b<0,bk->0;正比例函数y=bk-x的图象可知bk <0,故此选项错误;故选:C.【点睛】此题主要考查了一次函数图象,注意:一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.9.B【解析】【分析】根据三角形的有关性质,对选项逐个判断即可.【详解】解:A、锐角三角形的三条高在三角形内部,相交于三角形内一点,钝角三角形的高不都在三角形内部,故本选项错误,不符合题意;B、三角形的三条中线相交于三角形内一点,故本选项正确,符合题意;C、三角形的一个外角大于任何一个不相邻的一个内角,故本选项错误,不符合题意;D、根据三角形内角和等于180°,三角形最大的一个内角的度数大于或等于60度,故本选项错误,不符合题意;故选:B.【点睛】本题考查三角形高线,中线的概念,三角形外角的性质和三角形内角和定理,掌握这些知识点是解题的关键.10.C【解析】【分析】根据函数与图象的关系依次计算即可判断.【详解】甲5min骑行1250m,故速度为1250÷5=250m/min,A正确;设乙的速度为x m /min ,则有20×250-15x=2000解得x=200∴乙的速度为200m /min ,甲骑行20分钟后,乙以原速的1.5倍,即1.5×200=300m /min 继续骑行,∵乙先到达B 地,∴由题意可得A B ,两地的总路程为15×200+(85-20)×300=22500m=22.5km ,B 正确;设乙出发t min 后追上甲依题意可得2000=()()3001525020t t ---解得t=30∴乙出发30min 后追上甲,C 错误;85min 甲的路程为85×250=21250m ∴甲比乙晚22500212505250-=min 到达B 地,D 正确故选C .【点睛】本题考查一次函数的应用,解题的关键是读懂图象信息,灵活运用所学知识解决问题,属于中考的压轴题.11.1x ≠【解析】【分析】根据分式存在的条件求解即可【详解】要使21x -有意义,则10x -≠,解得:1x ≠故答案为:1x ≠【点睛】本题考查了函数的概念,分式的性质,理解分式的性质是解题的关键.12.如果一个数不能被2整除,那么这个数是奇数【解析】【分析】先分清命题“不能被2整除的数是奇数”的题设与结论,然后写成“如果…那么…”的形式.【详解】解:如果一个数不能被2整除,那么这个数是奇数.故答案为:如果一个数不能被2整除,那么这个数是奇数.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.13.82y x =-+【解析】【分析】已知2y -与x 成正比例,即可以设2y kx -=,把1x =,6y =-代入解析式即可求得k 的值,从而求得函数的解析式.【详解】解:设2y kx-=根据题意得:62k--=则8k =-则函数的解析式是:82y x =-+.故答案为:82y x =-+【点睛】本题主要考查了待定系数法求函数的解析式,解题的关键是正确理解2y -与x 成正比例.14.910y x =【解析】【分析】如图,利用正方形的性质得到(0,3)B ,由于直线l 将这八个正方形分成面积相等的两部分,则5AOB S ∆=,然后根据三角形面积公式计算出AB 的长,从而可得A 点坐标.再由待定系数法求出直线l 的解析式.【详解】解:如图,经过原点的一条直线l 将这八个正方形分成面积相等的两部分,415AOB S ∆∴=+=,而3OB =,∴1·352AB =,103AB ∴=,A ∴点坐标为10(3,3).设直线l 的解析式为y kx =,∴1033k =,解得910k =,∴直线l 的解析式为910y x =故答案为910y x =.【点睛】本题考查了坐标与图形性质和待定系数法求函数解析式.由割补法得5AOB S ∆=求分割点A 的位置是解题关键.15.(1)A (﹣1,8),B (-5,3),C (0,6);(2)见解析;(3)6.5【解析】【分析】(1)直接利用已知坐标系得出各点坐标即可;(2)直接利用平移的性质得出对应点位置进而得出答案;(3)利用△ABC 所在矩形面积减去周围三角形面积进而得出答案.【详解】解:(1)A (﹣1,8),B (-5,3),C (0,6);(2)如图所示:△A1B1C1即为所求;(3)S正方形=55=25,所以,S△ABC=25﹣12×4×5﹣12×3×5﹣12×1×2=25﹣10﹣7.5﹣1=6.5【点睛】此题主要考查了平移变换以及三角形面积求法,正确得出对应点位置是解题关键.16.(1)y=12x-4.(2)(-4,0).【解析】【分析】(1)把点(2,-3)代入解析式即可求出k;(2)先得出函数图像向上平移6单位的函数关系式,再令y=0,即可求出与x轴交点的坐标.【详解】解:(1)将x=2,y=-3代入y=kx-4,得-3=2k-4.∴k=1 2 .∴一次函数的表达式为y=12x-4.(2)将y=12x-4的图像向上平移6个单位长度得y=12x+2.当y=0时,x=-4.∴平移后的图像与x轴交点的坐标为(-4,0).【点睛】此题主要考察一次函数的解析式的求法与在坐标轴方向上的平移.17.(1)三角形三边的长为185cm 、365cm 、365cm;(2)能围成等腰三角形,三边长分别为4cm 、7cm 、7cm【解析】【分析】(1)可设出底边xcm ,则可表示出腰长,由条件列出方程,求解即可;(2)分腰长为4cm 和底边长为4cm 两种情况讨论即可.【详解】(1)设底边长为xcm ,则腰长为2xcm ,,依题意,得2218x x x ++=,解得185x =,∴3625x =,∴三角形三边的长为185cm 、365cm 、365cm ;(2)若腰长为4cm ,则底边长为18-4-4=10cm ,而4+4<10,所以不能围成腰长为4cm 的等腰三角形,若底边长为4cm ,则腰长为1842-=7cm ,此时能围成等腰三角形,三边长分别为4cm 、7cm 、7cm .【点睛】本题主要考查等腰三角形的性质,掌握等腰三角形的两腰相等是解题的关键,注意利用三角形三边关系进行验证.18.(1)1m =-,3n =;(2)1x <.【解析】【分析】(1)把点P 的坐标分别代入l 1与l 2的函数关系式,解方程即可;(2)利用函数图象,写出直线2l 在直线1l 的上方所对应的自变量的范围即可.【详解】解:(1)因为点P 是两条直线的交点,所以把点()1,2P 分别代入2y x n =+-与y mx n =+中,得212n =+-,2m n =+,解得1m =-,3n =.(2)当1x <时,2:l y mx n =+的图象在1:2l y x n =+-的上面,所以,不等式2mx n x n +>+-的解集是1x <.【点睛】本题考查了一次函数的交点问题和一次函数与一元一次不等式的关系,读懂图象,弄清一次函数图象的交点与解析式的关系和一次函数与一元一次不等式的关系是解题的关键.19.∠4=45°.【解析】【分析】根据三角形的外角的性质求得∠3,再根据已知条件求得∠2,进而根据三角形的内角和定理求得∠ABD ,再根据角平分线的定义求得∠ABE ,最后根据三角形的外角的性质求得∠4.【详解】∵∠1=∠3+∠C ,∠1=100°,∠C=80°,∴∠3=20°,∵∠2=∠3,∴∠2=10°,∴∠ABC=180°﹣100°﹣10°=70°,∵BE 平分∠BAC ,∴∠ABE=35°,∵∠4=∠2+∠ABE ,∴∠4=45°.【点睛】本题考查了三角形的外角性质、角平分线的定义及三角形内角和定理,熟知三角形的外角等于和它不相邻的两个内角的和及三角形的内角和为180°是解题的关键.20.(1)m =1;(2)52.【解析】【分析】(1)求出直线AB 的解析式,利用待定系数法,可求出m 值;(2)由A 、B 、E 三点坐标可求出△AOE 的面积.【详解】解:(1)设:AB所在直线解析式为:y=kx+b,∵A(3,2),B(5,0),∴直线AB的解析式为y=﹣x+5,∵点E在直线AB上,∴﹣4+5=m,解得:m=1;(2)由上得E坐标为(4,1),S△AEO=S△AOB﹣S△EOB=12×5×2﹣12×5×1=52.∴△AOE的面积是5 2.【点睛】本题主要考查了坐标与图形的性质及三角形的面积公式,关键求出点E的坐标,间接求出△AOE的面积.21.(1)①45;②不变,见解析;(2)30;(3)nα.【解析】【分析】(1)①先求出∠ABN=150°,再根据角平分线得出∠CBA=12∠ABN=75°、∠BAD=12∠BAO=30°,最后由外角性质可得∠D度数;②设∠BAD=α,利用外角性质和角平分线性质求得∠ABC=45°+α,利用∠D=∠ABC﹣∠BAD可得答案;(2)设∠BAD=α,得∠BAO=3α,继而求得∠ABN=90°+3α、∠ABC=30°+α,根据∠D=∠ABC﹣∠BAD可得答案;(3)设∠BAD=β,分别求得∠BAO=nβ、∠ABN=∠AOB+∠BAO=α+nβ、∠ABC=nα+β,由∠D=∠ABC﹣∠BAD得出答案.【详解】解:(1)①∵∠BAO=60°、∠MON=90°,∴∠ABN=150°,∵BC平分∠ABN、AD平分∠BAO,∴∠CBA=12∠ABN=75°,∠BAD=12∠BAO=30°,∴∠D=∠CBA﹣∠BAD=45°,故填45;②∠D的度数不变.理由如下:设∠BAD=α,∵AD平分∠BAO,∴∠BAO=2α,∵∠AOB=90°,∴∠ABN=∠AOB+∠BAO=90°+2α,∵BC平分∠ABN,∴∠ABC=45°+α,∴∠D=∠ABC﹣∠BAD=45°+α﹣α=45°;(2)设∠BAD=α,∵∠BAD=13∠BAO,∴∠BAO=3α,∵∠AOB=90°,∴∠ABN=∠AOB+∠BAO=90°+3α,∵∠ABC=13∠ABN,∴∠ABC=30°+α,∴∠D=∠ABC﹣∠BAD=30°+α﹣α=30°,故填30;(3)设∠BAD=β,∵∠BAD=1n∠BAO,∴∠BAO=nβ,∵∠AOB=α°,∴∠ABN=∠AOB+∠BAO=α+nβ,∵∠ABC=1n∠ABN,∴∠ABC=nα+β,∴∠D=∠ABC﹣∠BAD=nα+β﹣β=nα,故填n α.【点睛】本题主要考查了角平分线和三角形外角的性质等知识点,掌握三角形的外角性质和角平分线的性质是解答本题的关键.22.(1)A 型课桌凳需180元,B 型课桌凳需220元;(2)共3种方案:方案一:A 型78套,B 型为122套;方案二:A 型79套,B 型为121套;方案三:A 型80套,B 型为120套;方案三总费用最低,费用为40880元【解析】【分析】(1)设A 型课桌凳需x 元,则B 型课桌凳需(x+40)元,根据4套A 型+5套B 型课桌凳=1820元,列出方程,解方程即可.(2)设购a 套A 型桌椅,()200a -套B 型桌椅,由购买这两种课桌凳总费用不能超过40880元可得到不等式,求得a 的取值范围,再分情况进行讨论.【详解】(1)设购一套A 型课桌凳需x 元,一套B 型课桌凳需()40x +元.依题意列方程得:()45401820x x ++=解得:180x =:B 18040220+=(元)(2)设购a 套A 型桌椅,()200a -套B 型桌椅,列不等式组得:()()1802202004088022003a a a a ⎧+-≤⎪⎨≤-⎪⎩解得7880a ≤≤∵a 为整数∴78,79,80a =∴共3种方案,分别为方案一:A 型78套,B 型为122套;方案二:A 型79套,B 型为121套;方案三:A 型80套,B 型为120套;方案一:78180122220140402684040880⨯+⨯=+=(元)方案二:79180121220142202662040840⨯+⨯=+=(元)方案三:80180120220144002640040800⨯+⨯=+=(元)∵408004084040880<<∴方案三总费用最低,费用为40880元.【点睛】考查了一元一次方程的应用和不等式组的应用,解题关键是根据已知得出不等式,求出a 的取值.23.(1)∠E=∠END﹣∠BME;(2)∠E+2∠NPM=180°;(3)1 1 n+【解析】【分析】(1)根据平行线的性质和三角形外角定理即可解答.(2)根据平行线的性质,三角形外角定理,角平分线的性质即可解答.(3)根据平行线的性质和三角形外角定理即可解答.【详解】解:(1)如图1,∵AB∥CD,∴∠END=∠EFB,∵∠EFB是△MEF的外角,∴∠E=∠EFB﹣∠BME=∠END﹣∠BME,故答案是:∠E=∠END﹣∠BME;(2)如图2,∵AB∥CD,∴∠CNP=∠NGB,∵∠NPM是△GPM的外角,∴∠NPM=∠NGB+∠PMA=∠CNP+∠PMA,∵MQ平分∠BME,PN平分∠CNE,∴∠CNE=2∠CNP,∠FME=2∠BMQ=2∠PMA,∵AB∥CD,∴∠MFE=∠CNE=2∠CNP,∵△EFM中,∠E+∠FME+∠MFE=180°,∴∠E+2∠PMA+2∠CNP=180°,即∠E+2(∠PMA+∠CNP)=180°,∴∠E+2∠NPM=180°;(3)如图3,延长AB交DE于G,延长CD交BF于H,∵AB∥CD,∴∠CDG=∠AGE,∵∠ABE是△BEG的外角,∴∠E=∠ABE﹣∠AGE=∠ABE﹣∠CDE,①∵∠ABM=1n∠MBE,∠CDN=1n∠NDE,∴∠ABM=11n+∠ABE=∠CHB,∠CDN=11n+∠CDE=∠FDH,∵∠CHB是△DFH的外角,∴∠F=∠CHB﹣∠FDH=11n+∠ABE﹣11n+∠CDE=11n+(∠ABE﹣∠CDE),②由①代入②,可得∠F=11n+∠E,即11FE n∠=∠+.故答案是:11 n+.。
沪科版八年级上册数学期中考试试卷含答案

沪科版八年级上册数学期中考试试题一、单选题1.在平面直角坐标系中,点(1,-3)所在的象限是()A .第一象限B .第二象限C .第三象限D .第四象限2.如果三角形的两边分别为3和5,那么第三边可能是()A .7B .1C .2D .93.函数=x y x 的自变量x 的取值范围是()A .x≥l 且x≠0B .x≠0C .x≤1且x≠0D .x≤14.已知点P (3,y1)、Q (-2,y 2)在一次函数y=(2m-1)x+2的图象上,且y 1<y 2,则m 的取值范围是()A .m≥1B .m <l C .m >1D .m <125.已知正比例函数y=kx (k≠0)的函数值y 随x 的增大而减小,则一次函数y=x-k 的图象大致是()A .B .C .D .6.如图,BD 为ΔABC 的角平分线,若∠DBA=30°,∠ADB=80°,则∠C 的度数为()A .30°B .40°C .50°D .60°7.已知直线l 1:y=kx+b 与直线l 2:y=-2x+4交于点C (m ,2),则方程组24y kx b y x =+⎧⎨=-+⎩的解是()A .12x y =⎧⎨=⎩B .12x y =-⎧⎨=⎩C.21xy=⎧⎨=⎩D.21xy=⎧⎨=-⎩8.有下列四个命题:①相等的角是对顶角;②同位角相等;③若一个角的两边与另一个角的两边互相平行,则这两个角一定相等;④有两个角是锐角的三角形是直角三角形.其中是真命题的个数有()A.3个B.2个C.1个D.0个9.如图,A(1,0)、B(3,0)、M(4,3),动点P从点A出发,沿x轴以每秒1个单位长的速度向右移动,且过点P的直线y=-x+b也随之平移,设移动时间为t秒,若直线与线段BM有公共点,则t的取值范围()A.3≤t≤7B.3≤t≤6C.2≤t≤6D.2≤t≤510.如图,过点Q(0,3)的一次函数与正比例函数y=2x的图象交于点P,能表示这个一次函数图象的方程是()A.3x﹣2y+3=0B.3x﹣2y﹣3=0C.x﹣y+3=0D.x+y﹣3=0二、填空题11.若函数y=(k+3)x∣k∣-2+3是一次函数,则k的值是____________12.已知点(,)P m n在第2象限,且到x轴的距离为3,到y轴的距离等于5,则点P的坐标是________.13.如图,在△ABC中,点D、E分别AC、BC上,AE、BD交于一点F,D为AC的中点,BF=3DF,若SΔADF=2,则△ABC的面积是___________14.甲、乙两人分别加工100个零件,甲第1个小时加工了10个零件,之后每小时加工30个零件,乙在甲加工前已经加工了40个零件,在甲加工3小时后乙开始追赶甲,结果两人同时完成任务.设甲、乙两人各自加工的零件数为y(个),甲加工零件的时间为x(时),y 与x之间的函数图象如图所示,当甲、乙两人相差15个零件时,甲加工零件的时间为______________15.等腰三角形的一边长是10cm,另一边长是5cm,则它的周长是____________三、解答题16.已知△ABC在8×8方格中,位置如图所示,A(-3,1)、B(-2,4)(1)请你在方格中建立直角坐标系,并写出C点的坐标;(2)把△ABC向下平移1个单位长度,再向右平移2个单位长度,请你画出平移后的△A1B1C1,并写出点B1的坐标.17.一次函数y=kx+b 的图象与直线y=-2x 平行,且经过点(1,6)(1)求k 、b 的值;(2)判断点P (-1,10)是否在该函数的图象上.18.已知:如图,△ABC 中,AD 平分∠BAC .(1)画出△ADC 中DC 边上的高AE .(2)若∠B =30°,∠ACB =110°,求∠DAE 的度数.19.已知y 与2x +成正比例,当3x =时,10y =-(1)求y 与x 之间的函数表达式;(2)当21x -<≤时,求y 的取值范围20.如图,已知:点A 、B 、C 在一条直线上.(1)请从三个论断:①AD ∥BE ;②∠1=∠2;③∠A=∠E 中,选两个作为条件,另一个作为结论构成一个真命题:条件:结论:(2)证明你所构建的命题是真命题.x+1,且l1与x轴交于点D,直线12的函数解析式21.如图,直线l1的函数关系式为y1=12y2=kx+b经过定点A(4,0),B(-1,5),直线l1与l2相交于点C(1)求直线l2函数解析式;(2)若在x轴上存在一点F,使得SΔACF-SΔADC=3,求点F的坐标;22.如图①,在矩形ABCD中,AB=10cm,BC=8cm,点P从A出发,沿A→B→C→D路线运动,到D停止;点Q从D出发,沿D→C→B→A路线运动,到A停止.若点P、点Q 同时出发,点P的速度为每秒lcm,点Q的速度为每秒2cm,a秒时点P、点Q同时改变速度,点P的速度变为每秒bcm,点Q的速度变为每秒lcm,图②是点P出发x秒后△APD 的面积S(cm)与x(秒)的函数关系图象.(1)根据图象得a=;b=;(2)设点P已行的路程为y1(cm),点Q还剩的路程为y2(cm),请分别求出改变速度后,y1、y2和运动时间x(秒)的关系式,井写出自变量取值范围.23.如图,BE平分∠ABD,DF平分∠BDC,FD的延长线交BE于点E(1)若∠BAC=56°,∠DCA=22°,∠EBD=23°,求∠BEF的度数;(2)若∠BAC=α,∠DCA=β,∠BEF=γ,请直接写出α、β、γ三者之间的关系.24.双十一期间,合肥百大电器公司新进了一批空调机和电冰箱共100台,电冰箱是空调机数量的2倍多10台;计划调配给下属的甲、乙两个连锁店销售,其中60台给甲连锁店,40台给乙连锁店,两个连锁店销售这两种电器每台的利润(元)如下表:空调机电冰箱甲连锁店200170乙连锁店160150设公司调配给甲连锁店x台空调机,公司卖出这100台电器的总利润为y(元)(1)求新进空调机和电冰箱各多少台?(2)求y关于x的函数关系式,并求出x的取值范围;(3)为了促销,公司决定仅对甲连锁店的空调机每台让利m元(m>0)销售,其他的销售利润不变,并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该公司应该如何设计调配方案,使总利润达到最大?参考答案1.D【分析】根据各象限内点P(a,b)的坐标特征:①第一象限:a>0,b>0;②第二象限:a<0,b >0;③第三象限:a<0,b<0;④第四象限:a>0,b<0进行判断即可.【详解】解:∵第四象限内的点横坐标>0,纵坐标<0,∴点(1,-3)所在的象限是第四象限,故选D.【点睛】考查点的坐标,掌握每个象限点的坐标特征是解题的关键.2.A【解析】【分析】根据三角形的三边关系:任意两边之和大于第三边,两边之差小于第三边,即可得答案.【详解】解:设第三边为a,根据三角形的三边关系:5﹣3<a<3+5,解得:2<a<8.第三边可能是7,故选:A.【点睛】此题主要考查了三角形的三边关系,题目比较基础,只要掌握三角形的三边关系定理即可.3.C【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【详解】解:根据题意得:1﹣x≥0且x≠0,解得:x≤1且x≠0.故选:C.本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.D【解析】【分析】由题目条件可判断出一次函数的增减性,则可得到关于m 的不等式,可求得m 的取值范围.【详解】解:∵点P (3,y 1)、点Q (-2,y 2)在一次函数y=(2m-1)x+2的图象上,∴当3>-2时,由题意可知y 1<y 2,∴y 随x 的增大而减小,∴2m-1<0,解得m <12,故选D .【点睛】本题主要考查了一次函数的性质,得出一次函数的增减性是解题的关键.5.A【解析】【分析】先根据正比例函数y=kx 的函数值y 随x 的增大而减小,判断出k 的符号,再根据一次函数的性质即可得答案.【详解】解:∵正比例函数y =kx(k≠0)的函数值y 随x 的增大而减小,0k ∴<∴y =x-k 的图象经过一、二、三象限,故选A .【点睛】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b (k≠0)中,当0k >,0b >时,图象经过一、二、三象限.6.C【解析】【分析】根据角平分线的定义得到∠CBD=∠ABD=30°,再由三角形外角的性质即可得到∠C=∠ADB-∠CBD=50°.【详解】解:∵BD 是△ABC 的角平分线,∴∠CBD=∠ABD=30°,∵∠ADB=∠C+∠CBD=80°,∴∠C=∠ADB-∠CBD=50°,故选C .【点睛】本题主要考查了三角形外角的性质,角平分线的定义,解题的关键在于能够熟知角平分线的定义和三角形外角的性质.7.A【解析】【分析】根据直线解析式求出点C 坐标,根据两函数交点坐标与方程组的解得关系即可求解.【详解】解:∵y=-2x+4过点C (m ,2),∴224m =-+,解得1m =,∴点C (1,2),∴方程组24y kx b y x =+⎧⎨=-+⎩的解12x y =⎧⎨=⎩.故选择A .【点睛】本题考查两函数的交点坐标与方程组的解的关系,掌握两函数的交点坐标与方程组的解是解题关键.8.D【解析】【分析】①根据对顶角的定义进行判断;②根据同位角的知识判断;③一个角的两边与另一个角的两边分别互相平行,这两个角相等或互补;根据直角三角形的定义对④进行判断.【详解】解:①对顶角相等,相等的角不一定是对顶角,①假命题;②两直线平行,同位角相等;②假命题;③一个角的两边与另一个角的两边分别互相平行,这两个角相等或互补;③假命题;④有两个角是锐角且互余的三角形是直角三角形,所以④假命题;真命题的个数为0,故选:D.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.9.C【解析】【分析】分别求出直线经过点B、点M时的t值,即可得到t的取值范围.【详解】解:当直线y=-x+b过点B(3,0)时,∴3121t-==,当直线y=-x+b过点M(4,3)时,3=-4+b,解得:b=7,∴7y x =-+,当y=0时,07x =-+,解得:x=7,∴7161t -==,∴若直线与线段BM 有公共点,t 的取值范围是:2≤t≤6,故选:C .【点睛】此题考查了一次函数的图像和性质,解题的关键是根据题意求出直线经过点B 、点M 时的t 的值.10.D【解析】【分析】如果设这个一次函数的解析式为y=kx+b ,那么根据这条直线经过点P (1,2)和点Q (0,3),用待定系数法即可得出此一次函数的解析式.【详解】解:设这个一次函数的解析式为y=kx+b .∵这条直线经过点P (1,2)和点Q (0,3),∴2b 3k b +=⎧⎨=⎩,解得k=-1b=3⎧⎨⎩.故这个一次函数的解析式为y=-x+3,即:x+y-3=0.故选D .【点睛】本题主要考查了一次函数与方程组的关系及用待定系数法求一次函数的解析式.两个一次函数图象的交点坐标就是对应的二元一次方程组的解,反之,二元一次方程组的解就是对应的两个一次函数图象的交点坐标.11.k=3【解析】根据一次函数的定义可得:k+3≠0且|k|﹣2=1,求出k即可.【详解】解:由函数y=(k+3)x|k|﹣2+4是一次函数得:k+3≠0且|k|﹣2=1,解得:k≠-3且k=±3,∴k=3.故答案为:3.【点睛】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.12.(-5,3)【解析】【分析】根据到x轴的距离得到点P的纵坐标的绝对值,到y轴的距离得到横坐标的绝对值,进而根据所在象限判断出具体坐标即可.【详解】解:∵到x轴的距离为3,到y轴的距离为5,∴纵坐标的绝对值为3,横坐标的绝对值为5,∵点P在第二象限,∴点P的坐标为(-5,3).故答案为(-5,3).【点睛】本题考查点的坐标的确定;用到的知识点为:点到x轴的距离得到点的纵坐标的绝对值,到y轴的距离得到横坐标的绝对值.13.16【解析】【分析】根据BF=3DF,若SΔADF=2,求出S△ABD,再根据D为AC的中点,即可求出△ABC的面积.解:∵BF=3DF ,若S ΔADF=2,∴S △ABF =3S △ADF =6,S △ABD =S △ABF+S △ADF =8,∵点D 是AC 的中点,∴S △ABC =2S △ABD =16,故答案为:16.【点睛】本题考查了三角形中线的性质和三角形面积,解题关键是根据边的关系得出面积之间的关系.14.32或52或72【解析】【分析】结合题意,首先计算得甲加工到100个零件需要的时间、乙在3小时后的每小时加工零件数;再根据一次函数的性质,分别得甲、乙两人各自加工的零件数和加工零件的时间的函数解析式;再结合函数图像,通过列一元一次方程并求解,即可得到答案.【详解】根据题意,甲加工到100个零件,需要的时间为:100101430-+=(小时)∴甲加工零件的时间04x ≤≤(时)∴甲加工的零件数为()()()10,110301,14x x x ⎧≤⎪⎨+-<≤⎪⎩,即()()10,13020,14x x x ⎧≤⎪⎨-<≤⎪⎩∵乙在甲加工前已经加工了40个零件,在甲加工3小时后乙开始追赶甲,结果两人同时完成任务∴乙在3小时后,每小时加工零件数为:100406043-=-(个)∴乙加工的零件数为()()()40,340603,34x x x ⎧≤⎪⎨+-<≤⎪⎩,即()()40,360140,34x x x ⎧≤⎪⎨-<≤⎪⎩甲、乙两人相差15个零件,分甲比乙少15个零件和甲比乙多15个零件两种情况;根据y 与x 之间的函数图象,当甲比乙少15个零件时,得:30204015x -=-∴32x =;当甲比乙多15个零件时,分3x <和3x >两种情况;当3x <时,得30204015x --=∴52x =当3x >时,()30206014015x x ---=∴72x =;故答案为:32或52或72.【点睛】本题考查了一次函数、一元一次方程的知识;解题的关键是熟练掌握一次函数的性质,从而完成求解.15.25cm【解析】【分析】题目给出等腰三角形有两条边长为5cm 和10cm ,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:分两种情况:当腰为5时,5+5=10,所以不能构成三角形;当腰为10时,5+10>10,所以能构成三角形,周长是:10+10+5=25cm .故答案为:25cm .【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.16.(1)图见解析,C (1,1);(2)图见解析,(0,3)【解析】【分析】(1)根据点A 、B 的坐标和直角坐标系的特点建立直角坐标系;(2)分别将点A 、B 、C 向下平移1个单位长度,再向右平移2个单位长度,然后顺次连接各点,并写出点B 1的坐标;【详解】(1)直角坐标系如图所示,C 点坐标(1,1);(2)△A 1B 1C 1如图所示,点B 1坐标(0,3);【点睛】本题考查了利用平移变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.17.(1)k=-2,b=8;(2)在该函数的图象上【解析】【分析】(1)根据平行即可得出k 的值,再将点(1,6)代入函数解析式即可求出b 的值.(2)根据(1)可求出函数解析式,再令1x =-时,求出y 的值,即可判断.【详解】解:(1)根据题意两直线平行可知其斜率相等,∴2k =-.∴一次函数的解析式为2y x b =-+.∵该一次函数又经过点(1,6),∴62b =-+,解得:8b =.(2)根据(1)可知该一次函数解析式为28y x =-+,对于28y x =-+,当1x =-时,2(1)810y =-⨯-+=,∴点P(-1,10)在该函数图象上.【点睛】本题考查一次函数的性质,掌握一次函数图象上的点的坐标满足其解析式是解答本题的关键.18.(1)见解析;(2)40°【解析】【分析】(1)利用三角形高线的作法进而得出AE 即可;(2)利用三角形内角和定理得出∠BAC 的度数,再利用角平分线的性质得出∠DAC 的度数,进而得出∠CAE 的度数,即可得出答案.【详解】解:(1)如图所示:AE 即为所求;(2)∵∠B =30°,∠ACB =110°,∴∠ECA =70°,∠BAC =40°,∵AD 平分∠BAC ,∴∠BAD =∠DAC =20°,∵∠E =90°,∠ECA =70°,∴∠EAC =20°,∴∠DAE =20°+20°=40°.【点睛】此题主要考查了复杂作图以及角平分线的性质以及三角形内角和定理等知识,得出∠DAC 的度数是解题关键.19.(1)24y x =--;(2)60y -≤<.【解析】【分析】(1)设(2)(0)y k x k =+≠,把x 、y 的值代入求出k 的值,即可求得函数表达式;(2)由(1)可得24y x =--,再根据21x -<≤,可得6240x ---<≤,即可得结果.【详解】解:(1)设(2)(0)y k x k =+≠,把3x =,10y =-代入得:510k =-,解得:2k =-,24y x ∴=--,y ∴与x 之间的函数表达式为:24y x =--;(2)∵21x -<≤,∴224x --<≤,∴6240x ---<≤即60y -≤<,y ∴的取值范围为:60y -≤<.【点睛】本题考查了待定系数法求一次函数表达式,理解题意根据x 的取值范围求得y 的范围,得出关于k 的方程是解决问题的关键.20.(1)AD ∥BE ,12∠=∠;A E ∠=∠;(2)见解析【解析】【分析】(1)根据命题的概念,写出条件、结论;(2)根据平行线的判定的礼盒性质定理证明.【详解】解:(1)条件:①AD ∥BE ;②∠1=∠2;结论:③∠A =∠E ,故答案为:①AD ∥BE ,②∠1=∠2;③∠A =∠E ;(2)证明:∵AD ∥BE ,∴∠A =∠EBC ,∵∠1=∠2,∴DE ∥BC ,∴∠E =∠EBC ,∴∠A =∠E .【点睛】本题考查的是命题的概念、平行线的性质,掌握平行线的判定定理和性质定理是解题的关键.21.(1)y=-x+4;(2)F (-5,0)或(13,0)【解析】【分析】(1)直接把A 、B 两点坐标代入直线l 2解析式进行求解即可;(2)设F 的坐标为(m ,0),则4AF m =-,然后求出D (-2,0),得到()426AD =--=,再求出C (2,2),得到1=62ADC C S AD y ⋅=△,142ACF C S AF y m =⋅=-△,再由3ACF ADC S S -=△△进行求解即可.【详解】解:(1)把A (4,0),B (-1,5)代入直线l 2的解析式得:405k b k b +=⎧⎨-+=⎩,解得14k b =-⎧⎨=⎩,∴直线l 2的解析式为4y x =-+;(2)设F 的坐标为(m ,0),∴4AF m =-,∵D 是直线l 1:112y x =+与x 轴的交点,∴D (-2,0),∴()426AD =--=,联立4112y x y x =-+⎧⎪⎨=+⎪⎩,解得22x y =⎧⎨=⎩,∴C (2,2),∴1=62ADC C S AD y ⋅=△,142ACF C S AF y m =⋅=-△,∵3ACF ADC S S -=△△,∴463m --=,解得5m =-或13m =,∴F 的坐标为(-5,0)或(13,0).【点睛】本题主要考查了待定系数法求一次函数解析式,两直线交点问题,三角形面积,坐标与图形,解题的关键在于能够熟练掌握待定系数法.22.(1)a=6;b=2;(2)y 1=2x-6(6≤x≤17),y 2=22-x (6≤x≤22)【解析】【分析】(1)先判断出P 改变速度时是在AB 上运动,由此即可求出改变速度的时间和位置,从而求出a ,再根据在第8秒P 的面积判断出此时P 运动到B 点,即可求出b ;(2)根据P 和Q 的总路程都是CD+BC+AB=28cm ,然后根据题意进行求解即可.【详解】解:(1)∵当P 在线段AB 上运动时,12APD S AD AP =⋅△,∴当P 在线段AB 上运动时,△APD 的面积一直增大,∵四边形ABCD 是矩形,∴AD=BC=10cm ,∴当P 在线段AB 上运动时,△APD 的面积的最大值即为P 运动到B 点时,此时2140cm 2APD S AD AB =⋅=△,由函数图像可知,当P 改变速度时,此时P 还在AB 上运动,∴1=242APD S AD AP =⋅△,即18242a ⨯=,解得6a =,∴6cm AP =,∴4cmBP AB AP =-=又由函数图像可知当P 改变速度之后,在第8秒面积达到40cm 2,即此时P 到底B 点∴()864b -=,∴2b =,故答案为:6,2;(2)由(1)得再第6秒开始改变速度,∴改变速度时,P 行走的路程为6cm ,Q 行走的路程为12cm ,∵Q 和P 的总路程都为CD+BC+AB=28cm ,∴()()162626617y x x t =+-=-≤≤,()()22812622622y x x x =---=-≤≤【点睛】本题主要考查了从函数图像上获取信息,解题的关键在于能够准确根据函数图像判断出P 点在改变速度时是在AB 上运动.23.(1)39°;(2)22αβγ=+【解析】【分析】(1)连接BC ,根据∠EBD=23°,BE 平分∠ABD ,求出ABD ∠的度数,然后根据∠BAC=56°,∠DCA=22°,求出DBC ∠的度数,然后根据DF 是BDC ∠的平分线,求出BDF ∠的度数,最后根据外角的性质即可求出∠BEF 的度数;(2)连接BC ,首先根据三角形内角和定理和BE 平分∠ABD ,表示出∠BDC 的度数,然后根据DF 平分∠BDC ,表示出∠BDF 的度数,利用BDF BEF EBD ∠=∠+∠,即可得到α、β、γ三者之间的关系.【详解】解:(1)如图所示,连接BC ,23,EBD BE ︒∠= 平分ABD ∠,246ABD EBD ︒∴∠=∠=,56,22BAC DCA ︒︒∠=∠= ,18056DBC DCB BAC ABD DCA ︒∴∠+∠=-∠-∠-∠=︒,180()18056124BDC DBC DCB ︒∴∠=-∠+∠=︒-︒=︒,∵DF 是BDC ∠的平分线,1622BDF BDC ︒∴∠=∠=,632239BEF BDF EBD ︒︒=︒∴∠=∠-∠=-.(2)如图所示,连接BC ,∵BE 是ABD ∠的平分线,∴12EBD ABD ∠=∠,,BAC DCA αβ∠=∠= ,180()BDC DBC DCB ︒∴∠=-∠+∠()180180BAC DCA ABD︒=︒--∠-∠-∠ABD αβ=++∠,∵DF 平分BDC ∠,11112222BDF BDC ABD αβ∴∠=∠=++∠,BDF BEF EBD ∠=∠+∠ ,11112222ABD ABD αβγ∴++∠=+∠,1122γαβ∴=+,∴,,αβγ三者之间的关系是1122γαβ≡+.【点睛】此题考查了角平分线的运用,三角形内角和定理等知识,解题的关键是根据题意表示出∠BDF .24.(1)空凋30台,电冰箱70台;(2)y=20x+16500(0≤x≤30);(3)当0<m <20时,配给甲连锁店空调、电冰箱各30台;配给乙连锁店电冰箱40台;当m=20时,x 的取值在0≤x≤30内的所有方案利润相同;当20<m <30时,调配给甲连锁店空调机0台,电冰箱60台,乙连锁店空调30台,电冰箱10台.【解析】【分析】(1)设空调机数量为m台,列出方程即可得出答案;(2)由题意可知,设公司调配给甲连锁店x台空调机,则调配给甲连锁店电冰箱(60﹣x)台,调配给乙连锁店空调机(30﹣x)台,电冰箱为70﹣(60﹣x)=x+10台,列出函数和不等式组求解即可;(3)依题意得出y与x的关系式,根据m的取值范围利用函数的增减性可得出使利润达到最大的分配方案.【详解】解:(1)设空调机数量为m台,则2m+10+m=100解得:m=30∴空凋30台,电冰箱70台;(2)由题意可知,设公司调配给甲连锁店x台空调机,则调配给甲连锁店电冰箱(60﹣x)台,调配给乙连锁店空调机(30﹣x)台,电冰箱为70﹣(60﹣x)=x+10台,则y=200x+170(60﹣x)+160(30﹣x)+150(x+10),即y=20x+16500.∵0 600 300100 xxxx≥⎧⎪-≥⎪⎨-≥⎪⎪+≥⎩∴0≤x≤30.∴y=20x+16500(0≤x≤30);(3)由题意得:y=(200-m)x+170(60-x)+160(30-x)+150(10+x)=(20-m)x+16500;∵200﹣m>170,∴m<30.①当0<m<20时,即20﹣m>0,函数y随x的增大而增大,当x=30时,y最大,此时配给甲连锁店空调、电冰箱各30台;配给乙连锁店电冰箱40台;②当m=20时,x的取值在0≤x≤30内的所有方案利润相同;③当20<m<30时,即20﹣m<0,函数y随x的增大而减小,故当x=0时,总利润最大,即调配给甲连锁店空调机0台,电冰箱60台,乙连锁店空调30台,电冰箱10台;综上可得:当0<m<20时,配给甲连锁店空调、电冰箱各30台;配给乙连锁店电冰箱40台;当m=20时,x的取值在0≤x≤30内的所有方案利润相同;当20<m<30时,调配给甲连锁店空调机0台,电冰箱60台,乙连锁店空调30台,电冰箱10台.【点睛】本题考查函数和一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题意.。
沪科版八年级下册数学期中考试试卷含答案

沪科版八年级下册数学期中考试试题一、单选题1.下列各式是最简二次根式的是()A BCD 2x 的取值可以是()A .0B .1C .2D .43.下列等式成立的是()A .3+=B =C=D 34.以下列数据为长度的线段中,可以构成直角三角形的是()A .1,2,3B .2,3,4C .3,4,5D .2,3,551的值在()A .3和4之间B .4和5之间C .5和6之间D .6和7之间6.将一元二次方程2850x x --=化成2()x a b +=(a ,b 为常数)的形式,则a ,b 的值分别是()A .4-,21B .4-,11C .4,21D .8-,697.如图,在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,CD ⊥AB 于D ,则CD 的长是()A .5B .7C .125D .2458.如图,从笔直的公路l 旁一点P 出发,向西走6km 到达l ;从P 出发向北走6km 也到达l .下列说法错误..的是()A .从点P 向北偏西45°走3km 到达lB .公路l 的走向是南偏西45°C .公路l 的走向是北偏东45°D .从点P 向北走3km 后,再向西走3km 到达l9.《九章算术》中记载:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,斜之适出.问户高、广、斜各几何?译文是:今有门,不知其高、宽,有竿,不知其长、短.横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为x 尺,则可列方程为()A .222(4)(2)x x x =-+-B .2222(4)(2)x x x =-+-C .2224(2)x x =+-D .222(4)2x x =-+10.直线y x a =+不经过第二象限,则关于x 的方程2210ax x ++=实数解的个数是().A .0个B .1个C .2个D .1个或2个二、填空题11.比较大小:“>”,“<”或“=”).12.一元二次方程4(2)2x x x -=-的解为__________.13.若关于x 的一元二次方程220x kx --=的一个根为1x =,则这个一元二次方程的另一个根为_________.14.对于任意不相等的两个数a ,b ,定义一种运算※如下:3※2=32=-12※4=______________________.15.等腰三角形ABC 中,AB =AC =6,∠BAC =45°,以AC 为腰做等腰直角三角形ACD ,∠CAD 为90°,则点B 到CD 的距离为______.三、解答题1604(1-17.解方程230x x --=18.如图,在4×4的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图①中,画一个直角三角形,使它的三边长都是有理数;(2)在图②中,画一个直角三角形,使它的一边是有理数,另外两边长是无理数.19.已知关于x的一元二次方程x2+(m+2)x+m=0.(1)求证:无论m取何值,此方程总有两个不相等的实数根;(2)若方程有两个实数根x1,x1,且x1+x2+2x1x2=3,求m的值.20.如图,将AB=5cm,AD=4cm的长方形ABCD,沿过顶点A的直线AP为折痕折叠,使顶点B落在边CD上的点q处,(1)求DQ的长;(2)求AP:PB.21.合肥市今年1月份新房销售量约为6000套,3月份销售量约为5400套.(1)如果2、3两个月平均下降率相同,求每月平均下降的百分率是多少?(参考数据:0.9)(2)如果销售继续回落,按此下降百分率,你预测5月份是否会跌破4500套?请说明理由.22.如图所示,已知在△ABC中,∠B=90º,AB=6cm,BC=8cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q同时从点B开始沿边BC向点C以1cm/s的速度移动,若一动点运动到终点,则另一动点也随之停止,设运动时间为t s.(1)当t=1时,△PBQ的周长=cm.(2)当t为多少时,△PBQ的面积等于4cm2?请说明理由.(3)当t=s时,PQ的长度最小,最小值为cm?参考答案1.A【解析】根据最简二次根式的定义即可求出答案.【详解】解:AB=C=,不是最简二次根式,故选项错误;aD=,不是最简二次根式,故选项错误;3故选A.【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型.2.D【分析】根据二次根式有意义的条件可得x-3≥0,再解即可.【详解】解:二次根式要有意义,则x-3≥0,即x≥3,故选:D .【点睛】此题考查二次根式有意义的条件,解题关键在于掌握二次根式定义.3.D 【解析】根据二次根式的运算法则即可逐一判断.【详解】解:A 、3和A 错误;B =B 错误;C==,故C 错误;D 3,正确;故选:D .【点睛】本题考查了二次根式的运算,解题的关键是掌握基本的运算法则.4.C 【解析】【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【详解】解:A 、∵222123+≠,∴该三角形不符合勾股定理的逆定理,故不可以构成直角三角形;B 、∵222234+≠,∴该三角形不符合勾股定理的逆定理,故不可以构成直角三角形;C 、∵222345+=,∴该三角形符合勾股定理的逆定理,故可以构成直角三角形;D 、∵222235+≠,∴该三角形不符合勾股定理的逆定理,故不可以构成直角三角形.故选:C .【点睛】本题考查了勾股定理的逆定理,解题的关键是注意在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.5.C 【解析】【分析】正确估算出67,据此即可求解.【详解】解:∵62=36,72=49,∴67,∴51<6.故选:C .【点睛】6.A 【解析】【分析】根据配方法步骤解题即可.【详解】解:2850x x --=移项得285x x -=,配方得2284516x x -+=+,即()2421x -=,∴a =-4,b =21.故选:A 【点睛】本题考查了配方法解一元二次方程,解题关键是配方:在二次项系数为1时,方程两边同时加上一次项系数一半的平方.7.C【解析】【分析】首先利用勾股定理计算出AB的长,再根据三角形的面积公式计算出CD的长即可.【详解】解:∵在Rt ABC中,∠ACB=90°,AC=4,BC=3,∴5,=∵12×AC×BC=12×CD×AB,∴12×3×4=12×5×CD,解得:CD=12 5.故选C.【点睛】本题主要考查了勾股定理,以及三角形的面积,关键是熟练掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和等于斜边长的平方.8.A【解析】【分析】根据方位角的定义及勾股定理逐个分析即可.【详解】解:如图所示,过P点作AB的垂线PH,选项A:∵BP=AP=6km,且∠BPA=90°,∴△PAB为等腰直角三角形,∠PAB=∠PBA=45°,又PH⊥AB,∴△PAH为等腰直角三角形,∴PH=2=PA,故选项A错误;选项B:站在公路上向西南方向看,公路l的走向是南偏西45°,故选项B正确;选项C :站在公路上向东北方向看,公路l 的走向是北偏东45°,故选项C 正确;选项D :从点P 向北走3km 后到达BP 中点E ,此时EH 为△PEH 的中位线,故EH=12AP=3,故再向西走3km 到达l ,故选项D 正确.故选:A .【点睛】本题考查了方位角问题及等腰直角三角形、中位线等相关知识点,方向角一般以观测者的位置为中心,所以观测者不同,方向就正好相反,但角度不变.9.A 【解析】【分析】根据题中所给的条件可知,竿斜放就恰好等于门的对角线长,可与门的宽和高构成直角三角形,运用勾股定理可求出门高、宽、对角线长.【详解】解:根据勾股定理可得:x 2=(x-4)2+(x-2)2,故选:A .【点睛】本题考查勾股定理的运用,正确运用勾股定理,将数学思想运用到实际问题中是解答本题的关键,难度一般.10.D 【解析】【分析】根据直线y x a =+不经过第二象限,得到0a ≤,再分两种情况判断方程的解的情况.【详解】∵直线y x a =+不经过第二象限,∴0a ≤,∵方程2210ax x ++=,当a=0时,方程为一元一次方程,故有一个解,当a<0时,方程为一元二次方程,∵∆=2444b ac a -=-,∴4-4a>0,∴方程有两个不相等的实数根,故选:D.【点睛】此题考查一次函数的性质:利用函数图象经过的象限判断字母的符号,方程的解的情况,注意易错点是a 的取值范围,再分类讨论.11.>.【解析】【分析】根据根式的性质把根号外的因式移入根号内,再比较即可.【详解】解:∵2827>∴故答案为:>.【点睛】本题考查了平方根的大小比较的应用,能选择适当的方法比较两个数的大小是解此题的关键.12.x =14或x =2【解析】【分析】根据一元二次方程的解法解出答案即可.【详解】4(2)2x x x -=-当x -2=0时,x =2,当x -2≠0时,4x =1,x =14,故答案为:x =14或x =2.【点睛】本题考查解一元二次方程,本题关键在于分情况讨论.13.-2【解析】【分析】由题目已知x =1是方程的根,代入方程后求出k 的值,再利用一元二次方程的求根方法即可答题.【详解】解:将x =1代入一元二次方程220x kx --=有:120k --=,k =-1,方程2+20x x -=(2)(1)0x x +-=即方程的另一个根为x =-2故本题的答案为-2.【点睛】本题主要考查了一元二次方程用已知根求方程未知系数以及利用因式分解法解一元二次方程,其中利用已知根代入方程求出未知系数是解题的关键.14.1.2【解析】【分析】依据新定义进行计算即可得到答案.【详解】解:∴12※4=41,12482==-故答案为:1.2【点睛】本题考查的是新定义下的实数的运算,弄懂定义的含义,掌握求解算术平方根是解题的关键.15.6-【解析】【分析】根据题目描述可以作出两个图形,由ACD △是等腰直角三角形,90CAD ∠=︒,利用等腰直角三角形的性质分别进行求解即可.【详解】本题有两种情况:(1)如图,∵ACD △是等腰直角三角形,90CAD ∠=︒,∴45ACD ∠=︒,∵45BAC ∠=︒,∴//AB CD ,∴点B 到CD 的距离等于点A 到CD 的距离,过点A 作AE CD ⊥于点E ,∴△AEC 为等腰直角三角形,AE =CE ,∴由勾股定理得:222AE CE AC +=,即222AE AC =,∵6AB AC ==,∴AE ==∴点B 到CD 的距离为(2)如图:∵ACD △是等腰直角三角形,90CAD ∠=︒,∴45ACD ∠=︒,∵45BAC ∠=︒,∴90AEC ∠=︒,AE =EC ,∴点B 到CD 的距离即BE 的长,∴由勾股定理得222AE CE AC +=,即222AE AC =,∵6AB AC ==,∴AE ==∴6BE AB AE =-=-B 到CD 的距离为6-.故答案为:6-【点睛】本题考查了等腰直角三角形的性质,解题的关键是根据题目描述正确作出两个图形.16【解析】【分析】根据二次根式的混合运算的运算顺序,先算乘除后算加减即可求解.【详解】4(1-41==【点睛】本题考查了二次根式的混合运算,掌握运算顺序和计算法则准确计算是解题关键.17.1x =2x =.【解析】【分析】根据公式法解一元二次方程的步骤依次计算即可.【详解】解:∵1a =,1b =-,3c =-,∴()2241413112130b ac =-=-⨯⨯-=+= >,∴12x =,∴1x =2x =【点睛】本题考查了公式法解一元二次方程,解题的关键是熟练掌握应用公式法的条件和要求.18.(1)见解析;(2)见解析.【解析】【分析】(1)构造边长3,4,5的直角三角形即可;(2)构造直角边为4的直角三角形即可(答案不唯一).【详解】解:(1)如图①中,△ABC 即为所求作.(2)如图②中,△DEF 即为所求作.【点睛】本题考查作图-应用与设计,无理数以及勾股定理的逆定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.19.(1)见解析;(2)5.【解析】【分析】(1)先计算判别式的值,再利用非负数的性质判断△>0,然后根据判别式的意义得到结论;(2)根据根与系数的关系得到x1+x2=-(m+2),x1x2=m,则由x1+x2+2x1x2=3得到-(m+2)+2m=3,然后解关于m的方程即可.【详解】(1)证明:∵△=(m+2)2-4m=m2+4m+4-4m=m2+4>0,∴无论m取何值,此方程总有两个不相等的实数根;(2)解:根据题意得x1+x2=-(m+2),x1x=m,∵x1+x2+2x1x2=3,∴-(m+2)+2m=3,解得m=5,∴m的值为5.【点睛】本题考查了一元二次方程根与系数的关系及根的判别式,熟练掌握一元二次方程根与系数的关系及利用根的判别式判断方程根的情况是解题的关键.20.(1)3cm;(2【解析】【分析】(1)由折叠的性质可知△ABP≌AQP,根据全等三角形的性质可知AB=AQ=5,利用勾股定理即可求出线段DQ的长度;(2)由(1)可知DQ=6,所以CQ=DC−DQ=4,设PQ=x,则PB=PQ=x,所以CP=BC−BP=8−x,利用勾股定理可建立关于x的方程,解方程求出x的值,然后根据翻性质得PB的长度,计算比值即可.【详解】解:(1)由折叠的性质可知△ABP≌AQP,∴AB=AQ=5,∵四边形ABCD是矩形,∴∠D=90°,∵AD=4cm,∴DQ3cm,∴线段DQ的长度是3cm;(2)由(1)可知DQ=3,∴CQ=DC−DQ=2,设PQ=x,则PB=PQ=x,∴CP=BC−BP=4−x,在Rt△CPQ中,PQ2=CQ2+CP2∴x2=22+(4−x)2,解得:x=2.5,∴线段PQ的长度是2.5.∴PB=2.5,,∴AP2∴AP:PB【点睛】本题主要考查了矩形的性质,勾股定理的运用以及翻折变换前后的两个图形全等的性质,是综合题,但难度不大.21.(1)5%;(2)不会,理由见解析【解析】【分析】(1)根据今年1月份和3月份的住房销售量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)根据(1)下降的百分率继续回落,列出式子,与4500进行对比即可得出结论.【详解】(1)设该公司每月平均下降的百分率是x,则由题意得:26000(1)5400x -=,解得:0.055%x ==,2 1.05x =(不合题意,舍去),答:每月平均下降的百分率是5%.(2)如果按此下降的百分率继续回落,估计5月份的商品房成交量为:225400(1)54000.95=4873.5x -=⨯>4500因此可知5月份的商品房成交量不会跌破4500套.【点睛】本题考查了列方程解决实际问题中的平均降低率问题以及一元二次方程解法,解题的关键是正确理解题意,找到关键的数量关系并列出方程.22.(1);(2)t =2或t =4;见解析;(3)3【解析】【分析】(1)由题意可以得到AP 、PB 、BQ 的值,再由勾股定理得到PQ 的值,即可得到△PBQ 的周长;(2)由题意可以得到关于t 的方程,解方程即可得到t 的值;(3)由题意,可以把PQ 2用关于t 的关系式表示出来,然后用配方法可以得到PQ 2的最小值,从而得到PQ 的最小值.【详解】解:(1)由题意可得:t =1时,AP =1×1=1,BQ =1×1=1,∴PB =AB -PA =6-1=5,∴PQ =,∴△PBQ 的周长=PB +BQ +PQ cm ,故答案为;(2)由题意可得:142PBQ S PB BQ =⨯= ,∴(6-t )t =8,解之可得t =2或t =4,(3)由题意可得:()222226PQ PB BQ t t =+=-+=()22318t -+,∴当t =3时,2PQ 的最小值为18,PQ 的最小值为故答案为3;【点睛】本题考查三角形动点问题的综合应用,熟练掌握动点运动距离的求法、三角形面积的求法、勾股定理的应用及配方法求最值的方法是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学期中复习试卷
一、选择题(每题3分,共30分)
1.如果是二次根式2-x ,那么x 应满足( )
A.x ≥2
B.x>2
C.x ≤2
D.x<2 2.下列计算正确的是( ) A.5252=+ B.523=+
C.0228=-
D.2122423=⨯ 3.关于x 的一元二次方程012
=-+kx x 的根的情况( )
A.有两个不相等的同号实数根
B.有两个不相等的异号实数根
C.有两个相等的实数根
D.没有实数根
4.如图,直线上有三个正方形a b c ,,,若a c ,的面积分别为5和12,则b 的 面积为( ) A .4 B .17 C . 16 D .55
5.如果最简根式a b b -3和22+-a b 是同类二次根式,那么a 、b 的值是( )
A.a =0,b =2
B.a =2,b =0
C.a =-1,b =1
D.a =1,b =-2
6.关于x 的方程(a -5)x 2
-4x -1=0有实数根,则a 满足( ) A.a ≥1 B.a >1且a ≠5 C.a ≥1且a ≠5 D.a ≠5
7.已知一个直角三角形的两边长分别为3和5则第三边长是 ( )
A . 5
B .4
C .34
D .4或34
8.一个直角三角形的斜边长比直角边长大2,另一直角边长为6,则斜边长为 ( )
A.6
B.8
C.10
D.12 9.已知方程2
0x bx a ++=有一个根是(0)a a -≠,则下列代数式的值恒为常数的是( )
A .ab
B .
a
b
C .a b +
D .a b - 10.关于x 的一元二次方程2
210x mx m -+-=的两个实数根分别是12x x 、,且22127x x +=,则
212()x x -的值是( )
A .1
B .12
C .13
D .25
二、填空题(每题4分,共32分)
11.计算 (-m 2n)2
的结果是 。
12.在12,
6
1
,8,27,54中与3是同类二次根式的有 。
13.已知012
=-+x x ,则423+-x x 的值为 。
14.如果代数式1
-x x
有意义,那么x 的取值范围是_____ 。
15.如图一架2.5米长的梯子,斜靠在一竖直的墙上,这时梯足到墙底端的距离为0.7米,如果梯子的顶端下滑0.4米,则梯足将向外移___________。
16.方程(x -1)(x +2)= 2(x +2)的根是 。
17.有一只鸡患了H7N9流感,经过两轮传染后共有100只鸡患了流感,那么每轮传染中,平均一只鸡传染的只数为 。
18.若a 、b 是
7
31- 整数部分和小数部分,则()
ab a 712
+-的值为 。
三、解答题(共58分) 21.(6分)20)21()35(2
25
3
2627-+-+-
- a
b
c
l
22.(每题6分,共12分)解方程:
(1) (x )(x )++=1315 (2) 01322
=-+x x (用配方法)
23.(8分)如图是用硬纸板做成的四个全等的直角三角形(两直角边长分别是a ,b ,斜边长为c )和一个边长为c 的正方形,请你将它们拼成一个能证明勾股定理的图形,并利用此图形证明勾股定理.
a
c
b a
c b a c b a c b
24.(10分)由于自然灾害和人为破坏等因素,某地山林面积连续两年减少,现在的面积比两年前减少了36%,问平均每年减少的百分数是多少?
25.(10分)关于x 的方程04
)2(2
=+
++m
x m mx 有两个不相等的实数根 (1)求m 的取值范围;
(2)是否存在实数m ,使方程的两个实数根的倒数和等于0?若存在,求出m 的值;若不存在,请说明理由.
26.(12分)
如图,︒=∠90XOY ,OW 平分XOY ∠,OW PC OY PB OX PA ⊥⊥⊥,,,其中C B A ,,为垂足,若
1=++OC OB OA
(1)在射线OX,OY 上是否存在点D,使得△OCD 为等腰三角形,如果存在,这样的等腰三角形有几个?如果不存在,说明理由。
(2)求OC 的长。
八年级数学答案
一、选择题
1、A
2、C
3、B
4、 B
5、A
6、A
7、D
8、 C
9、D 10、C 二、填空题
11、m 4n 2 12、12,27
13、3 14、x ≥0且x ≠1 15、0.8m
16、x 1=-2,x 2=3 17、9 18、-2
三、解答题 21、
3
2322
、(1)x 1=-6,x 2=2 (2)x 1317-+,x 2317
--23、方法一
证明:大正方形面积可表示为2)(b a + 大正方形面积也可表示为ab c 2
142⨯+ ∴2)(b a +=ab c 2
142⨯
+ ab c b ab a 222
22+=++, 即222c b a =+.
方法二:
证明:大正方形面积可表示为2c
又可表示为2)(421
a b ab -+⨯
∴22)(42
1
a b ab c -+⨯=.
22222a ab b ab c +-+=,即222b a c +=.
24、解:设两年前的山林面积为a ,平均每年减少的百分数为x ,由题意得:
%)361()1(2-=-a x a …………………………5分 ∴8.01±=-x …………………………7分
∴%202.01==x ,18.12>=x (舍去)…………9分
答:山林面积平均每年减少20%……………………10分
25、解:(1)由04
4)2(2>⋅-+=∆m
m m ,得1->m 又∵0≠m
∴m 的取值范围为1->m 且0≠m ,……………………4分
(2)不存在符合条件的实数m …………5分
设方程两根为1x ,2x 则⎪⎪⎪
⎩⎪⎪
⎪⎨⎧=+=+-=+0
1141221
212
1x x x x m m x x b c
c
c
c
b
a
a
a c
b a
a a c
c
c b
b
b
∴原方程无解,故不存在………………10分
26、(1)存在(2分),6个(2分)
2 (8分)
(2)1。