2013郑州高三三模文科数学试题及答案word版
河南省三市(平顶山、许昌、新乡)2013届高三第三次调研(三模)考试数学(文)试题(扫描版,有答案).pdf

2013年高三模拟试题——文科数学参考答案 选择题 1----5 6-----10 11—12 二、填空题(本大题共4小题,每小题5分,共20分.) 14. 15. 16. 三、 解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.解答应写出文字说明,证明过程或演算步骤.) 18(本题满分12分) 解:(Ⅰ)依题意良好学生的人数是,优秀学生人数是 4分 (Ⅱ)优秀与良好的人数之比是,所以采用分层抽样抽取的10人中优秀人数是3,良好人数是7 7分 (Ⅲ) 将(Ⅱ)中选取的优秀学生记作甲,乙,丙,则从这3人中选取2人的基本事件是甲乙,乙丙,甲丙共3个,其中含甲的基本事件是甲乙,甲丙共2个,所以甲被选中的概率是 12分 19(本题满分12分) (Ⅰ)由已知, 设,所以, ,,。
6分 (Ⅱ)由, 在平面内作, , , 且由三角形的等面积法的 . 12分 (Ⅱ)直线的斜率不存在时,的方程为,直线抛物线, 不满足题意 …….…………6分 当直线斜率存在时,假设存在直线过抛物线焦点,设其方程为,与的交点坐标为. 由消去并整理得 ,于是 ,.① ….…….………………8分 . 即.② .…………9分 由,即,得(*). 将①、②代入(*)式,得,解得, 所以存在直线满足条件,且的方程为:或. ……12分 21.I), ,又,所以切点坐标为 所求的切线方程为即..…………3分 (III)依题意,不等式恒成立,等价于 在上恒成立 可得在上恒成立………………………………8分 设,则 令得或(舍去),当时,当时, 当变化时,变化情况如下表: 1+0-单调递增2单调递减当时,取得最大值,, 的取值范围是………………………………………………………………12分 23. (本题满分10分) 24. (本题满分10分) (I)当时,要使函数有意义, 则 ①当时,原不等式可化为,即; ②当时,原不等式可化为,即,显然不成立; ③当时,原不等式可化为,即. 综上所求函数的定义域为…….….…….………….…5分 (II)函数的定义域为,则恒成立,即恒成立,构造函数=,求得函数的最小值为3,所以.…….……….…….………10分。
河南中原名校高三数学上学期第三次(12月)联考试题 文 新人教版

河南省中原名校2013届高三第三次联考数学(文)试题(考试时间:1 2 0分钟 试卷满分:1 5 0分)注意事项:1.本试卷分第1卷(选择题)和第1I 卷(非选择题)两部分,答卷前,考生务必将自己的姓名、准考证号填写在答题卡上. 2.回答第1卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效. 3.回答第II 卷时,将答案写在答题卡上,写在本试卷上无效.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合,题目要求的.1.i 是虚数单位,复数z 满足z (1+i )= 1-i ,则复数z= A .i B .一i C .1 D .一l2.已知集合A ,B ,C ,且A ⊆B ,A ⊆C .若B={0,1,2,3,4},C={0,2,4,8},则集合A 中的元素最多有 A .5个 B .4个 C .3个D .2个3.下列说法正确的是A .“a>b ”是“a 2>b 2”的充分条件 B .命题“x ∀∈R ,20x x +>”的否定是“2000,0x R x x ∃∈+>" C .“a=1”是“函数2()f x ax =—2x+1只有一个零点”的充要祭件D .所有二次函数的图象都与少轴有交点4.抛物线24x y =的焦点坐标是A .(2,0)B .(0,2)C .(l ,0)D .(0,1)5.某流程图如图所示,现输入如下四个函数,则可以输出的函数是A .||()x f x x=B .11()221x f x =-+C .()x xx xe ef x e e--+=-D .221()1x f x x-=+ 6.已知cos 33,(,),52πααπ=-∈则cos()4πα-=A .210 B .-210C .210D .-72107.如图正方体ABCD – A 1B 1C 1D 1中,异面直线A 1B 和B 1C 所成的角是 A .30° B .45° C .60° D .90°8.已知实数x ,y 满足条件220,240,330.x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩则z=22x y +的最小值是A .45B .55C .1D .549.平行四边形ABCD 中,AB =(1,0),AC =(2,2),则AD BD ⋅等于A .4B .-4C .2D .-210.已知数列{}n a 满足:111,3,64,23, 3.n nn n n a a a a a a +⎧>⎪==⎨⎪-≤⎩其中,n ∈N +,那么a 1 l = A .0 B .lC .2D .311.若△ABC 的周长等于20,面积是3°,则BC 边的长是A .5B . 6C .7D .812.已知定义在R 上的函数(),f x 当x ∈[一1,1]时,22()231f x x x =++,且对任意的x 满足(2)()f x Mf x -=(常数M ≠0),则函数()f x 在区间[3,5]上的最小值与最大值之比是A .16B .14C .13D .12第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填在指定的答题卷上.13.如图,矩形ABCD 的边长分别为2和1,阴影部分是直线y=1和抛物线y=x 2围成的部分,在矩形ABCD 中随机撒100粒豆子,落到阴影部分70粒,据此可以估计出阴影部分的面积是 .14.双曲线22221(0,0)x y a b a b-=>>的一条渐近线与直线x+3y-2=0垂直,那么该双曲线的离心率为 .1 5.某正四面体的俯视图是如图所示的边长为2正方形ABCD ,个正四面体外接球的体积是 .16.设函数()sin cos ,f x a b x =+其中,,0a b R ab ∈≠.若()|()|3f x f π≤对一切x ∈R 恒成立,则 ①5()0;6f π= ②4|()||()|212f f ππ>;③存在a ,b 使f (x )是奇函数; ④f (x )的单调增区间是[2k 4,2],;33k k Z ππππ++∈ ⑤经过点(a ,b )的所有直线与函数f (x )的图象都相交, 以上结论正确的是 .三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 1 7.(本小题满分1 2分) 在等差数列{}n a 中,a 1=1,a m =15,前m 项的和64m S =. (I )求数列{}n a 的通项公式;(II )若数列{}n b 满足1()2n an b =,且数列{}n b 的前n 项和n T M <对一切n ∈N +恒成立,求实数M 的取值范围.18.(本小题满分1 2分)某市为了解采用阶梯水价后居民用水情况,采用抽样调查的方式获得了该市100位居民一年的月均用水量(单位:t),并以此为样本数据得到了如下的频率分布直方图.(I)根据频率分布直方图提供的信息,求这1 00位居民中月均用水量在区间[1,1.5)内的人数,并估计该样本数据的众数和中位数;(II)从月均用水量不低于3.5t的居民中随机选取2人调查他们的用水方式,求所选的两人月均用水量都低于4t的概率.19.(本小题满分1 2分)一块边长为10cm的正方形铁片按图(1)中所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个如图(2)所示的正四棱锥形容器.在图(1)中,x表示等腰三角形的底边长;在图(2)中,点E、F分别是四棱锥P- ABCD的棱BC,PA的中点,(I)证明:EF∥平面PDC;(II)把该容器的体积V表示为x的函数,并求x=8cm时,三棱锥A一BEF的体积,20.(本小题满分1 2分)如图,A,B两点的坐标分别为(-2,0),(2,0),直线AM,BM相交于点M,且它们的斜率之积是一34.(I)求点M的轨迹C的方程;( II)是否存在斜率为l直线l与曲线C交于P,Q两点,且使△OPQ的面积等于127?若存在,求出直线l的方程;若不存在,说明理由.21.(本小题满分12分)已知函数2()xkxf xe,其中k∈R且k≠0.(I)求函数f (x)的单调区间;(II)当k=l时,若存在x>0,使Inf (x)>ax成立,求实数a的取值范围.【选考题】请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题计分。
2013郑州高三三模理科数学试题及答案word版

郑州市2013年高三第三次调研考试理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~23题为选考题,其它题为必考题.考生作答时,将答案答在答题卡上,在本试卷上答题无效.注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上.2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其它答案的标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚.3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.4.保持卡面清洁,不折叠,不破损.5.做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑.第Ⅰ卷一、选择题:本大题共12小题.每小题5分.在每小题给出的四个选项中.只有一项是符合题目要求的.1.已知集合{}R ,,01|),(∈=-+=y x y x y x A ,{}R ,,1|),(2∈+==y x x y y x B ,则集合B A ⋂的元素个数是A.0B. 1 C 2 D.32.已知x ,y ∈R ,i 为虚数单位,若iiyi x +=+-121,则y x +的值为 A.2 B.3 C.4 D.53.下列命题中的假命题是 A.0,R 2≥∈∀x x B.02,R 1>∈∀-x x C.1lg ,R <∈∃x x D.2cos sin ,R =+∈∃x x x4.设a 为实数,函数x a ax x x f )3()(23-++=的导函数为)(x f ',且)(x f '是偶函数,则曲线)(x f y =在点))2(,2(f 处的切线方程为A.0169=--y xB.0169=-+y xC.0126=--y xD.0126=-+y x 5.已知实数x ,y 取值如下表x 0 1 4 5 6 8 y 1.3 1.85.66.17.49.3从所得的散点图分析可知:y 与x 线性相关,且a x y +=∧95.0,则a 的值是A.1.30B.1.45C. 1.65D.1.806.已知直线l ⊥平面α,直线m ⊂平面β,给出下列命题:①α∥β⇒l ⊥m ;②α⊥β⇒l ∥m ;③l ∥m ⇒α⊥β;④l ⊥m ⇒α∥β 其中正确的命题的序号是A.①②③B.②③④C.①③D.②④7.如图给出了一个程序框图,其作用是输入x 的值,输出相应的y 值,若要使输入的x 的值与输出相应的y 值相等,则这样的x 值有A.1个B.2个C.3个D.4个8.函数)cos(2ϕω+=x y (0>ϕ且2πϕ<),在区间⎥⎦⎤⎢⎣⎡-6,3ππ上单调递增,且函数值从-2增大到2,那么此函数图像与y 轴交点的纵坐标为 A.1 B.2 C.3 D.226+ 9.设⎰=πsin xdx a 则二项式8)1(xax -的展开式中2x 项的系数是 A.-1120 B.1120 C.-1793 D.179210.抛物线x y 122=的准线与双曲线112422=-y x 的两条渐近线围成的三角形的面积为 A.6 B.36 C.9 D.3911.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,6=a ,2=b ,且0)cos(21=++C B ,则△ABC 的BC 边上的高等于A.2B.26 C.226+ D.213+12.已知椭圆有这样的光学性质,从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点,今有一水平放置的椭圆形台球盘,点A 、B 是它的两个焦点,长轴长为a 2,焦距为c 2,当静止放置点A 的小球(半径不计),从点A 沿直线出发,经椭圆壁反弹后再回到点A ,则小球经过的路径为 A.a 4 B.)(2c a - C.)(2c a + D.以上答案都有可能第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第2l 题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题.每小题5分.13.已知正项等比数列{}n a 的前n 项和为n S ,且221=a a ,823=a a ,则10S = . 14.已知长方体的一个顶点上的三条棱长分别是4,8,h ,且它的8个顶点都在同一个球面上,这个球面的表面积为π100,则h = .15.已知函数)(x f y =的图像与函数12--=-xy 的图像关于直线x y =对称,则)3(f = .16.已知⎪⎩⎪⎨⎧≥≤-+≤+-101553034x y x y x ,则x y z =的范围是 .三、解答题:(12+12+12+12+12+10=70分)解答应写出文字说明.证明过程或演算步骤.17.已知数列{}n a 是公差不为0的等差数列,21=a ,且2a ,3a ,14+a 成等比数列。
河南省郑州市盛同学校2013届高三模拟考试数学(文)试题.pdf

则以 A、B 为焦点,且过 D、E 的椭圆与双曲线的离心率的倒数和为
()
A. 3
B.1
C.2 3
D.2
10、设函数 f (x)
=
− 1, 1,
x x
0 ,
0
则 (a + b) − (a − b) f (a − b) (a b) 的值为 ( ) 2
A. a, b 中较大的数
B. a, b 中较小的数 C. a D. b
x = −1 + x1 , y = y1 , 即 x1=2x+1,y1=2y.……………………………………………(10 分)
2
2
代入 x12 + y12 =1 得 (2x + 1)2 + (2 y)2 =1.
43
4
3
即 (x + 1 )2 + 4 y 2 = 1 为所求的轨迹方程.……………………………(14 分) 23
19、解:(Ⅰ) 分数在[50,60)的频率为 0.008×10=0.08,
2 由茎叶图知:分数在[50,60)之间的频数为 2,所以全班人数为0.08=25,-------3 分 (Ⅱ) 分数在[80,90)之间的频数为 25-2-7-10-2=4;
频率分布直方图中[80,90)间的矩形的高为245÷10=0.016.
(1)若 M = {1, x,3, 4,5,6} 为“完并集合”,则 x 的一个可能值为
.(写出一个即可)
(2)对于“完并集合” M = {1, 2,3, 4,5,6,7,8,9,10,11,12} ,在所有符合条件的集合 C 中,其元素乘
积最小的集合是
学海无涯
.
三、解答题:解答应写出文字说明、证明过程或演算步骤。
2013高三文科数学第三次联考试题(河南十所名校附答案)

2013高三文科数学第三次联考试题(河南十所名校附答案)2013年河南省十所名校高三第三次联考试题数学(文科)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.考生作答时,将答案答在答题卡上(答题注意事项见答题卡),在本试题卷上答题无效.考试结束后,将本试题卷和答题卡一并交回.第Ⅰ卷选择题一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U是实数集R,集合M={x|≥2x},N={x|≤0},则M∩N=A.{1,2}B.{2}C.{1}D.1,2]2.i为虚数单位,若复数=,则|z|=A.1B.2C.D.23.双曲线的离心率为A.B.C.D.4.某学生在一门功课的22次考试中,所得分数如下茎叶图所示,则此学生该门功课考试分数的极差与中位数之和为A.117B.118C.118.5D.119.55.在△ABC中,M是AB边所在直线上任意一点,若=-2+λ,则λ=A.1B.2C.3D.46.“m=-1”是“函数f(x)=ln(mx)在(-∞,0)上单调递减”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.公差不为0的等差数列{}的前21项的和等于前8项的和.若,则k =A.20B.21C.22D.238.在如图所示的程序框图中,若U=•,V=,则输出的S=A.2B.C.1D.9.在几何体的三视图如图所示,则该几何体的体积为A.B.2C.D.10.e,π分别是自然对数的底数和圆周率,则下列不等式中不成立的是A.>B.+>1C.+>2D.-e>-π11.在△ABC中,a,b,c分别是角A,B,C的对边,若=2014,则的值为A.0B.1C.2013D.201412.四面体ABCD中,AD与BC互相垂直,且AB+BD=AC+CD.则下列结论中错误的是A.若分别作△BAD和△CAD的边AD上的高,则这两条高所在直线异面B.若分别作△BAD和△CAD的边AD上的高,则这两条高长度相等C.AB=AC且DB=DCD.∠DAB=∠DAC第Ⅱ卷非选择题本卷包括必考题和选考题两部分.第13题~第21题为必考题。
2013年高考数学试题及答案(全国卷文数3套)

2013年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本大题共12小题.每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的.1.(5分)(2013•新课标Ⅱ)已知集合M={x|﹣3<x<1,x∈R},N={﹣3,﹣2,﹣1,0,1},则M∩N=()A.{﹣2,﹣1,0,1}B.{﹣3,﹣2,﹣1,0}C.{﹣2,﹣1,0}D.{﹣3,﹣2,﹣1}2.(5分)(2013•新课标Ⅱ)=()A.2B.2C.D.13.(5分)(2013•新课标Ⅱ)设x,y满足约束条件,则z=2x﹣3y的最小值是()A.﹣7B.﹣6C.﹣5D.﹣34.(5分)(2013•新课标Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c,已知b=2,B =,C=,则△ABC的面积为()A.2+2B.C.2﹣2D.﹣15.(5分)(2013•新课标Ⅱ)设椭圆C:=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点PF2⊥F1F2,∠PF1F2=30°,则C的离心率为()A.B.C.D.6.(5分)(2013•新课标Ⅱ)已知sin2α=,则cos2(α+)=()A.B.C.D.7.(5分)(2013•新课标Ⅱ)执行如图的程序框图,如果输入的N=4,那么输出的S=()A.1+++B.1+++C.1++++D.1++++8.(5分)(2013•新课标Ⅱ)设a=log32,b=log52,c=log23,则()A.a>c>b B.b>c>a C.c>a>b D.c>b>a 9.(5分)(2013•新课标Ⅱ)一个四面体的顶点在空间直角坐标系O﹣xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为()A.B.C.D.10.(5分)(2013•新课标Ⅱ)设抛物线C:y2=4x的焦点为F,直线l过F且与C交于A,B两点.若|AF|=3|BF|,则l的方程为()A.y=x﹣1或y=﹣x+1B.y=(x﹣1)或y=﹣(x﹣1)C.y=(x﹣1)或y=﹣(x﹣1)D.y=(x﹣1)或y=﹣(x﹣1)11.(5分)(2013•新课标Ⅱ)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是()A.∃x0∈R,f(x0)=0B.函数y=f(x)的图象是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(﹣∞,x0)上单调递减D.若x0是f(x)的极值点,则f′(x0)=012.(5分)(2013•新课标Ⅱ)若存在正数x使2x(x﹣a)<1成立,则a的取值范围是()A.(﹣∞,+∞)B.(﹣2,+∞)C.(0,+∞)D.(﹣1,+∞)二、填空题:本大题共4小题,每小题4分.13.(4分)(2013•新课标Ⅱ)从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是.14.(4分)(2013•新课标Ⅱ)已知正方形ABCD的边长为2,E为CD的中点,则•=.15.(4分)(2013•新课标Ⅱ)已知正四棱锥O﹣ABCD的体积为,底面边长为,则以O为球心,OA为半径的球的表面积为.16.(4分)(2013•新课标Ⅱ)函数y=cos(2x+φ)(﹣π≤φ<π)的图象向右平移个单位后,与函数y=sin(2x+)的图象重合,则φ=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)(2013•新课标Ⅱ)已知等差数列{a n}的公差不为零,a1=25,且a1,a11,a13成等比数列.(Ⅰ)求{a n}的通项公式;(Ⅱ)求a1+a4+a7+…+a3n﹣2.18.(12分)(2013•新课标Ⅱ)如图,直三棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点(Ⅰ)证明:BC1∥平面A1CD;(Ⅱ)AA1=AC=CB=2,AB=,求三棱锥C﹣A1DE的体积.19.(12分)(2013•新课标Ⅱ)经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(Ⅰ)将T表示为X的函数;(Ⅱ)根据直方图估计利润T不少于57000元的概率.20.(12分)(2013•新课标Ⅱ)在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为2,在y轴上截得线段长为2.(Ⅰ)求圆心P的轨迹方程;(Ⅱ)若P点到直线y=x的距离为,求圆P的方程.21.(12分)(2013•新课标Ⅱ)已知函数f(x)=x2e﹣x(Ⅰ)求f(x)的极小值和极大值;(Ⅱ)当曲线y=f(x)的切线l的斜率为负数时,求l在x轴上截距的取值范围.选做题.请考生在第22、23、24题中任选择一题作答,如果多做,则按所做的第一部分,作答时请写清题号.22.(2013•新课标Ⅱ)【选修4﹣1几何证明选讲】如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E、F分别为弦AB 与弦AC上的点,且BC•AE=DC•AF,B、E、F、C四点共圆.(1)证明:CA是△ABC外接圆的直径;(2)若DB=BE=EA,求过B、E、F、C四点的圆的面积与△ABC外接圆面积的比值.23.(2013•新课标Ⅱ)已知动点P、Q都在曲线(β为参数)上,对应参数分别为β=α与β=2α(0<α<2π),M为PQ的中点.(1)求M的轨迹的参数方程;(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.24.(14分)(2013•新课标Ⅱ)【选修4﹣﹣5;不等式选讲】设a,b,c均为正数,且a+b+c=1,证明:(Ⅰ)(Ⅱ).2013年全国统一高考数学试卷(文科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题.每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的.1.(5分)(2013•新课标Ⅱ)已知集合M={x|﹣3<x<1,x∈R},N={﹣3,﹣2,﹣1,0,1},则M∩N=()A.{﹣2,﹣1,0,1}B.{﹣3,﹣2,﹣1,0}C.{﹣2,﹣1,0}D.{﹣3,﹣2,﹣1}【分析】找出集合M与N的公共元素,即可求出两集合的交集.【解答】解:∵集合M={x|﹣3<x<1,x∈R},N={﹣3,﹣2,﹣1,0,1},∴M∩N={﹣2,﹣1,0}.故选:C.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)(2013•新课标Ⅱ)=()A.2B.2C.D.1【分析】通过复数的分子与分母同时求模即可得到结果.【解答】解:===.故选:C.【点评】本题考查复数的模的求法,考查计算能力.3.(5分)(2013•新课标Ⅱ)设x,y满足约束条件,则z=2x﹣3y的最小值是()A.﹣7B.﹣6C.﹣5D.﹣3【分析】先画出满足约束条件:,的平面区域,求出平面区域的各角点,然后将角点坐标代入目标函数,比较后,即可得到目标函数z=2x﹣3y的最小值.【解答】解:根据题意,画出可行域与目标函数线如下图所示,由得,由图可知目标函数在点A(3,4)取最小值z=2×3﹣3×4=﹣6.故选:B.【点评】用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.4.(5分)(2013•新课标Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c,已知b=2,B =,C=,则△ABC的面积为()A.2+2B.C.2﹣2D.﹣1【分析】由sin B,sin C及b的值,利用正弦定理求出c的值,再求出A的度数,由b,c 及sin A的值,利用三角形的面积公式即可求出三角形ABC的面积.【解答】解:∵b=2,B=,C=,∴由正弦定理=得:c===2,A=,∴sin A=sin(+)=cos=,=bc sin A=×2×2×=+1.则S△ABC故选:B.【点评】此题考查了正弦定理,三角形的面积公式,以及两角和与差的余弦函数公式,熟练掌握正弦定理是解本题的关键.5.(5分)(2013•新课标Ⅱ)设椭圆C:=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点PF2⊥F1F2,∠PF1F2=30°,则C的离心率为()A.B.C.D.【分析】设|PF2|=x,在直角三角形PF1F2中,依题意可求得|PF1|与|F1F2|,利用椭圆离心率的性质即可求得答案.【解答】解:|PF2|=x,∵PF2⊥F1F2,∠PF1F2=30°,∴|PF1|=2x,|F1F2|=x,又|PF1|+|PF2|=2a,|F1F2|=2c∴2a=3x,2c=x,∴C的离心率为:e==.故选:D.【点评】本题考查椭圆的简单性质,求得|PF1|与|PF2|及|F1F2|是关键,考查理解与应用能力,属于中档题.6.(5分)(2013•新课标Ⅱ)已知sin2α=,则cos2(α+)=()A.B.C.D.【分析】所求式子利用二倍角的余弦函数公式化简,再利用诱导公式变形,将已知等式代入计算即可求出值.【解答】解:∵sin2α=,∴cos2(α+)=[1+cos(2α+)]=(1﹣sin2α)=×(1﹣)=.故选:A.【点评】此题考查了二倍角的余弦函数公式,以及诱导公式的作用,熟练掌握公式是解本题的关键.7.(5分)(2013•新课标Ⅱ)执行如图的程序框图,如果输入的N=4,那么输出的S=()A.1+++B.1+++C.1++++D.1++++【分析】由程序中的变量、各语句的作用,结合流程图所给的顺序可知当条件满足时,用S+的值代替S得到新的S,并用k+1代替k,直到条件不能满足时输出最后算出的S 值,由此即可得到本题答案.【解答】解:根据题意,可知该按以下步骤运行第一次:S=1,第二次:S=1+,第三次:S=1++,第四次:S=1+++.此时k=5时,符合k>N=4,输出S的值.∴S=1+++故选:B.【点评】本题主要考查了直到型循环结构,循环结构有两种形式:当型循环结构和直到型循环结构,以及表格法的运用,属于基础题.8.(5分)(2013•新课标Ⅱ)设a=log32,b=log52,c=log23,则()A.a>c>b B.b>c>a C.c>a>b D.c>b>a【分析】判断对数值的范围,然后利用换底公式比较对数式的大小即可.【解答】解:由题意可知:a=log32∈(0,1),b=log52∈(0,1),c=log23>1,所以a=log32,b=log52=,所以c>a>b,故选:C.【点评】本题考查对数值的大小比较,换底公式的应用,基本知识的考查.9.(5分)(2013•新课标Ⅱ)一个四面体的顶点在空间直角坐标系O﹣xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为()A.B.C.D.【分析】由题意画出几何体的直观图,然后判断以zOx平面为投影面,则得到正视图即可.【解答】解:因为一个四面体的顶点在空间直角坐标系O﹣xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),几何体的直观图如图,是正方体的顶点为顶点的一个正四面体,所以以zOx平面为投影面,则得到正视图为:故选:A.【点评】本题考查几何体的三视图的判断,根据题意画出几何体的直观图是解题的关键,考查空间想象能力.10.(5分)(2013•新课标Ⅱ)设抛物线C:y2=4x的焦点为F,直线l过F且与C交于A,B两点.若|AF|=3|BF|,则l的方程为()A.y=x﹣1或y=﹣x+1B.y=(x﹣1)或y=﹣(x﹣1)C.y=(x﹣1)或y=﹣(x﹣1)D.y=(x﹣1)或y=﹣(x﹣1)【分析】根据题意,可得抛物线焦点为F(1,0),由此设直线l方程为y=k(x﹣1),与抛物线方程联解消去x,得﹣y﹣k=0.再设A(x1,y1),B(x2,y2),由根与系数的关系和|AF|=3|BF|,建立关于y1、y2和k的方程组,解之可得k值,从而得到直线l的方程.【解答】解:法一:∵抛物线C方程为y2=4x,可得它的焦点为F(1,0),∴设直线l方程为y=k(x﹣1)由消去x,得﹣y﹣k=0设A(x1,y1),B(x2,y2),可得y1+y2=,y1y2=﹣4…(*)∵|AF|=3|BF|,∴y1+3y2=0,可得y1=﹣3y2,代入(*)得﹣2y2=且﹣3y22=﹣4,消去y2得k2=3,解之得k=∴直线l方程为y=(x﹣1)或y=﹣(x﹣1)法二:做出抛物线的准线,以及A、B到准线的垂线段AA'、BB',并设直线l交准线与M,设|BF|=m,由抛物线的定义可知|BB'|=m,|AA'|=|AF|=3m,由BB'∥AA'可知,,即,所以|MB|=2m,则|MA|=6m,故∠AMA'=30°,根据斜率与角度的关系可得选C选项.故选:C.【点评】本题给出抛物线的焦点弦AB被焦点F分成1:3的两部分,求直线AB的方程,着重考查了抛物线的标准方程、简单几何性质和直线与圆锥曲线的位置关系等知识,属于中档题.11.(5分)(2013•新课标Ⅱ)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是()A.∃x0∈R,f(x0)=0B.函数y=f(x)的图象是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(﹣∞,x0)上单调递减D.若x0是f(x)的极值点,则f′(x0)=0【分析】对于A,对于三次函数f(x)=x3+ax2+bx+c,由于当x→﹣∞时,y→﹣∞,当x→+∞时,y→+∞,故在区间(﹣∞,+∞)肯定存在零点;对于B,根据对称变换法则,求出对应中心坐标,可以判断;对于C:采用取特殊函数的方法,若取a=﹣1,b=﹣1,c=0,则f(x)=x3﹣x2﹣x,利用导数研究其极值和单调性进行判断;D:若x0是f(x)的极值点,根据导数的意义,则f′(x0)=0,正确.【解答】解:A、对于三次函数f(x)=x3+ax2+bx+c,A:由于当x→﹣∞时,y→﹣∞,当x→+∞时,y→+∞,故∃x0∈R,f(x0)=0,故A正确;B、∵f(﹣﹣x)+f(x)=(﹣﹣x)3+a(﹣﹣x)2+b(﹣﹣x)+c+x3+ax2+bx+c=﹣+2c,f (﹣)=(﹣)3+a (﹣)2+b (﹣)+c =﹣+c ,∵f (﹣﹣x )+f (x )=2f (﹣),∴点P (﹣,f (﹣))为对称中心,故B 正确.C 、若取a =﹣1,b =﹣1,c =0,则f (x )=x 3﹣x 2﹣x ,对于f (x )=x 3﹣x 2﹣x ,∵f ′(x )=3x 2﹣2x ﹣1∴由f ′(x )=3x 2﹣2x ﹣1>0得x ∈(﹣∞,﹣)∪(1,+∞)由f ′(x )=3x 2﹣2x ﹣1<0得x ∈(﹣,1)∴函数f (x )的单调增区间为:(﹣∞,﹣),(1,+∞),减区间为:(﹣,1),故1是f (x )的极小值点,但f (x )在区间(﹣∞,1)不是单调递减,故C 错误;D :若x 0是f (x )的极值点,根据导数的意义,则f ′(x 0)=0,故D 正确.由于该题选择错误的,故选:C .【点评】本题考查了导数在求函数极值中的应用,利用导数求函数的单调区间,及导数的运算.12.(5分)(2013•新课标Ⅱ)若存在正数x 使2x (x ﹣a )<1成立,则a 的取值范围是()A .(﹣∞,+∞)B .(﹣2,+∞)C .(0,+∞)D .(﹣1,+∞)【分析】转化不等式为,利用x 是正数,通过函数的单调性,求出a 的范围即可.【解答】解:因为2x (x ﹣a )<1,所以,函数y=是增函数,x>0,所以y>﹣1,即a>﹣1,所以a的取值范围是(﹣1,+∞).故选:D.【点评】本题考查不等式的解法,函数单调性的应用,考查分析问题解决问题的能力.二、填空题:本大题共4小题,每小题4分.13.(4分)(2013•新课标Ⅱ)从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是0.2.【分析】由题意结合组合数公式可得总的基本事件数,再找出和为5的情形,由古典概型的概率公式可得答案.【解答】解:从1,2,3,4,5中任意取出两个不同的数共有=10种情况,和为5的有(1,4)(2,3)两种情况,故所求的概率为:=0.2故答案为:0.2【点评】本题考查古典概型及其概率公式,属基础题.14.(4分)(2013•新课标Ⅱ)已知正方形ABCD的边长为2,E为CD的中点,则•=2.【分析】根据两个向量的加减法的法则,以及其几何意义,可得要求的式子为()•(),再根据两个向量垂直的性质,运算求得结果.【解答】解:∵已知正方形ABCD的边长为2,E为CD的中点,则=0,故=()•()=()•()=﹣+﹣=4+0﹣0﹣=2,故答案为2.【点评】本题主要考查两个向量的加减法的法则,以及其几何意义,两个向量垂直的性质,属于中档题.15.(4分)(2013•新课标Ⅱ)已知正四棱锥O﹣ABCD的体积为,底面边长为,则以O为球心,OA为半径的球的表面积为24π.【分析】先直接利用锥体的体积公式即可求得正四棱锥O﹣ABCD的高,再利用直角三角形求出正四棱锥O﹣ABCD的侧棱长OA,最后根据球的表面积公式计算即得.【解答】解:如图,正四棱锥O﹣ABCD的体积V=sh=(×)×OH=,∴OH=,在直角三角形OAH中,OA===所以表面积为4πr2=24π;故答案为:24π.【点评】本题考查锥体的体积、球的表面积计算,考查学生的运算能力,属基础题.16.(4分)(2013•新课标Ⅱ)函数y=cos(2x+φ)(﹣π≤φ<π)的图象向右平移个单位后,与函数y=sin(2x+)的图象重合,则φ=.【分析】根据函数图象平移的公式,可得平移后的图象为y=cos[2(x﹣)+φ]的图象,即y=cos(2x+φ﹣π)的图象.结合题意得函数y=sin(2x+)=的图象与y=cos(2x+φ﹣π)图象重合,由此结合三角函数的诱导公式即可算出φ的值.【解答】解:函数y=cos(2x+φ)(﹣π≤φ<π)的图象向右平移个单位后,得平移后的图象的函数解析式为y=cos[2(x﹣)+φ]=cos(2x+φ﹣π),而函数y=sin(2x+)=,由函数y=cos(2x+φ)(﹣π≤φ<π)的图象向右平移个单位后,与函数y=sin (2x+)的图象重合,得2x+φ﹣π=,解得:φ=.符合﹣π≤φ<π.故答案为.【点评】本题给出函数y=cos(2x+φ)的图象平移,求参数φ的值.着重考查了函数图象平移的公式、三角函数的诱导公式和函数y=A sin(ωx+φ)的图象变换等知识,属于基础题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)(2013•新课标Ⅱ)已知等差数列{a n}的公差不为零,a1=25,且a1,a11,a13成等比数列.(Ⅰ)求{a n}的通项公式;(Ⅱ)求a1+a4+a7+…+a3n﹣2.【分析】(I)设等差数列{a n}的公差为d≠0,利用成等比数列的定义可得,,再利用等差数列的通项公式可得,化为d(2a1+25d)=0,解出d即可得到通项公式a n;=﹣2(3n﹣2)+27=﹣6n+31,可知此数列是以25为首项,﹣6(II)由(I)可得a3n﹣2为公差的等差数列.利用等差数列的前n项和公式即可得出a1+a4+a7+…+a3n﹣2.【解答】解:(I)设等差数列{a n}的公差为d≠0,由题意a1,a11,a13成等比数列,∴,∴,化为d(2a1+25d)=0,∵d≠0,∴2×25+25d=0,解得d=﹣2.∴a n=25+(n﹣1)×(﹣2)=﹣2n+27.=﹣2(3n﹣2)+27=﹣6n+31,可知此数列是以25为首项,﹣6(II)由(I)可得a3n﹣2为公差的等差数列.∴S n=a1+a4+a7+…+a3n﹣2===﹣3n2+28n.【点评】熟练掌握等差数列与等比数列的通项公式及其前n项和公式是解题的关键.18.(12分)(2013•新课标Ⅱ)如图,直三棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点(Ⅰ)证明:BC1∥平面A1CD;(Ⅱ)AA1=AC=CB=2,AB=,求三棱锥C﹣A1DE的体积.【分析】(Ⅰ)连接AC1交A1C于点F,则DF为三角形ABC1的中位线,故DF∥BC1.再根据直线和平面平行的判定定理证得BC1∥平面A1CD.(Ⅱ)由题意可得此直三棱柱的底面ABC为等腰直角三角形,由D为AB的中点可得CD ⊥平面ABB1A1.求得CD的值,利用勾股定理求得A 1D、DE和A1E的值,可得A1D⊥DE.进而求得的值,再根据三棱锥C﹣A1DE的体积为••CD,运算求得结果.【解答】解:(Ⅰ)证明:连接AC1交A1C于点F,则F为AC1的中点.∵直棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点,故DF为三角形ABC1的中位线,故DF∥BC1.由于DF⊂平面A1CD,而BC1不在平面A1CD中,故有BC1∥平面A1CD.(Ⅱ)∵AA1=AC=CB=2,AB=2,故此直三棱柱的底面ABC为等腰直角三角形.由D为AB的中点可得CD⊥平面ABB1A1,∴CD==.∵A1D==,同理,利用勾股定理求得DE=,A1E=3.再由勾股定理可得+DE2=,∴A1D⊥DE.∴==,∴=••CD=1.【点评】本题主要考查直线和平面平行的判定定理的应用,求三棱锥的体积,体现了数形结合的数学思想,属于中档题.19.(12分)(2013•新课标Ⅱ)经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(Ⅰ)将T表示为X的函数;(Ⅱ)根据直方图估计利润T不少于57000元的概率.【分析】(I)由题意先分段写出,当X∈[100,130)时,当X∈[130,150)时,和利润值,最后利用分段函数的形式进行综合即可.(II)由(I)知,利润T不少于57000元,当且仅当120≤X≤150.再由直方图知需求量X∈[120,150]的频率为0.7,利用样本估计总体的方法得出下一个销售季度的利润T 不少于57000元的概率的估计值.【解答】解:(I)由题意得,当X∈[100,130)时,T=500X﹣300(130﹣X)=800X﹣39000,当X∈[130,150]时,T=500×130=65000,∴T=.(II)由(I)知,利润T不少于57000元,当且仅当120≤X≤150.由直方图知需求量X∈[120,150]的频率为0.7,所以下一个销售季度的利润T不少于57000元的概率的估计值为0.7.【点评】本题考查用样本的频率分布估计总体分布及识图的能力,求解的重点是对题设条件及直方图的理解,了解直方图中每个小矩形的面积的意义.20.(12分)(2013•新课标Ⅱ)在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为2,在y轴上截得线段长为2.(Ⅰ)求圆心P的轨迹方程;(Ⅱ)若P点到直线y=x的距离为,求圆P的方程.【分析】(Ⅰ)由题意,可直接在弦心距、弦的一半及半径三者组成的直角三角形中利用勾股定理建立关于点P的横纵坐标的方程,整理即可得到所求的轨迹方程;(Ⅱ)由题,可先由点到直线的距离公式建立关于点P的横纵坐标的方程,将此方程与(I)所求的轨迹方程联立,解出点P的坐标,进而解出圆的半径即可写出圆P的方程.【解答】解:(Ⅰ)设圆心P(x,y),由题意得圆心到x轴的距离与半径之间的关系为2=﹣y2+r2,同理圆心到y轴的距离与半径之间的关系为3=﹣x2+r2,由两式整理得x2+3=y2+2,整理得y2﹣x2=1即为圆心P的轨迹方程,此轨迹是等轴双曲线(Ⅱ)由P点到直线y=x的距离为得,=,即|x﹣y|=1,即x=y+1或y =x+1,分别代入y2﹣x2=1解得P(0,﹣1)或P(0,1)若P(0,﹣1),此时点P在y轴上,故半径为,所以圆P的方程为(y+1)2+x2=3;若P(0,1),此时点P在y轴上,故半径为,所以圆P的方程为(y﹣1)2+x2=3;综上,圆P的方程为(y+1)2+x2=3或(y﹣1)2+x2=3【点评】本题考查求轨迹方程的方法解析法及点的直线的距离公式、圆的标准方程与圆的性质,解题的关键是理解圆的几何特征,将几何特征转化为方程21.(12分)(2013•新课标Ⅱ)已知函数f(x)=x2e﹣x(Ⅰ)求f(x)的极小值和极大值;(Ⅱ)当曲线y=f(x)的切线l的斜率为负数时,求l在x轴上截距的取值范围.【分析】(Ⅰ)利用导数的运算法则即可得出f′(x),利用导数与函数单调性的关系及函数的极值点的定义,即可求出函数的极值;(Ⅱ)利用导数的几何意义即可得到切线的斜率,得出切线的方程,利用方程求出与x 轴交点的横坐标,再利用导数研究函数的单调性、极值、最值即可.【解答】解:(Ⅰ)∵f(x)=x2e﹣x,∴f′(x)=2xe﹣x﹣x2e﹣x=e﹣x(2x﹣x2),令f′(x)=0,解得x=0或x=2,令f′(x)>0,可解得0<x<2;令f′(x)<0,可解得x<0或x>2,故函数在区间(﹣∞,0)与(2,+∞)上是减函数,在区间(0,2)上是增函数.∴x=0是极小值点,x=2极大值点,又f(0)=0,f(2)=.故f(x)的极小值和极大值分别为0,.(Ⅱ)设切点为(),则切线方程为y﹣=(x﹣x0),令y=0,解得x==,∵曲线y=f(x)的切线l的斜率为负数,∴(<0,∴x0<0或x0>2,令,则=.①当x0<0时,0,即f′(x0)>0,∴f(x0)在(﹣∞,0)上单调递增,∴f(x0)<f(0)=0;②当x 0>2时,令f′(x0)=0,解得.当时,f′(x0)>0,函数f(x0)单调递增;当时,f′(x0)<0,函数f(x0)单调递减.故当时,函数f(x 0)取得极小值,也即最小值,且=.综上可知:切线l在x轴上截距的取值范围是(﹣∞,0)∪.【点评】本题考查利用导数求函数的极值与利用导数研究函数的单调性、切线、函数的值域,综合性强,考查了推理能力和计算能力.选做题.请考生在第22、23、24题中任选择一题作答,如果多做,则按所做的第一部分,作答时请写清题号.22.(2013•新课标Ⅱ)【选修4﹣1几何证明选讲】如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E、F分别为弦AB 与弦AC上的点,且BC•AE=DC•AF,B、E、F、C四点共圆.(1)证明:CA是△ABC外接圆的直径;(2)若DB=BE=EA,求过B、E、F、C四点的圆的面积与△ABC外接圆面积的比值.【分析】(1)已知CD为△ABC外接圆的切线,利用弦切角定理可得∠DCB=∠A,及BC•AE=DC•AF,可知△CDB∽△AEF,于是∠CBD=∠AFE.利用B、E、F、C四点共圆,可得∠CFE=∠DBC,进而得到∠CFE=∠AFE=90°即可证明CA是△ABC外接圆的直径;(2)要求过B、E、F、C四点的圆的面积与△ABC外接圆面积的比值.只需求出其外接圆的直径的平方之比即可.由过B、E、F、C四点的圆的直径为CE,及DB=BE,可得CE=DC,利用切割线定理可得DC2=DB•DA,CA2=CB2+BA2,都用DB表示即可.【解答】(1)证明:∵CD为△ABC外接圆的切线,∴∠DCB=∠A,∵BC•AE=DC•AF,∴.∴△CDB∽△AEF,∴∠CBD=∠AFE.∵B、E、F、C四点共圆,∴∠CFE=∠DBC,∴∠CFE=∠AFE=90°.∴∠CBA=90°,∴CA是△ABC外接圆的直径;(2)连接CE,∵∠CBE=90°,∴过B、E、F、C四点的圆的直径为CE,由DB=BE,得CE=DC,又BC2=DB•BA=2DB2,∴CA2=4DB2+BC2=6DB2.而DC2=DB•DA=3DB2,故过B、E、F、C四点的圆的面积与△ABC面积的外接圆的面积比值==.【点评】熟练掌握弦切角定理、相似三角形的判定与性质、四点共圆的性质、直径的判定、切割线定理、勾股定理等腰三角形的性质是解题的关键.23.(2013•新课标Ⅱ)已知动点P、Q都在曲线(β为参数)上,对应参数分别为β=α与β=2α(0<α<2π),M为PQ的中点.(1)求M的轨迹的参数方程;(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.【分析】(1)利用参数方程与中点坐标公式即可得出;(2)利用两点之间的距离公式、三角函数的单调性即可得出.【解答】解:(1)依题意有P(2cosα,2sinα),Q(2cos2α,2sin2α),因此M(cosα+cos2α,sinα+sin2α).M的轨迹的参数方程为为参数,0<α<2π).(2)M点到坐标原点的距离d=(0<α<2π).当α=π时,d=0,故M的轨迹过坐标原点.【点评】本题考查了参数方程与中点坐标公式、两点之间的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.24.(14分)(2013•新课标Ⅱ)【选修4﹣﹣5;不等式选讲】设a,b,c均为正数,且a+b+c=1,证明:(Ⅰ)(Ⅱ).【分析】(Ⅰ)依题意,由a+b+c=1⇒(a+b+c)2=1⇒a2+b2+c2+2ab+2bc+2ca=1,利用基本不等式可得3(ab+bc+ca)≤1,从而得证;(Ⅱ)利用基本不等式可证得:+b ≥2a ,+c ≥2b ,+a ≥2c ,三式累加即可证得结论.【解答】证明:(Ⅰ)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca 得:a 2+b 2+c 2≥ab +bc +ca ,由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1,所以3(ab +bc +ca )≤1,即ab +bc +ca ≤.(Ⅱ)因为+b ≥2a ,+c ≥2b ,+a ≥2c ,故+++(a +b +c )≥2(a +b +c ),即++≥a +b +c .所以++≥1.【点评】本题考查不等式的证明,突出考查基本不等式与综合法的应用,考查推理论证能力,属于中档题.2013年全国统一高考数学试卷(文科)(大纲版)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•大纲版)设集合U={1,2,3,4,5},集合A={1,2},则∁U A=()A.{1,2}B.{3,4,5}C.{1,2,3,4,5}D.∅2.(5分)(2013•大纲版)若α为第二象限角,sinα=,则cosα=()A.B.C.D.3.(5分)(2013•大纲版)已知向量=(λ+1,1),=(λ+2,2),若(+)⊥(﹣),则λ=()A.﹣4B.﹣3C.﹣2D.﹣14.(5分)(2013•大纲版)不等式|x2﹣2|<2的解集是()A.(﹣1,1)B.(﹣2,2)C.(﹣1,0)∪(0,1)D.(﹣2,0)∪(0,2)5.(5分)(2013•大纲版)(x+2)8的展开式中x6的系数是()A.28B.56C.112D.2246.(5分)(2013•大纲版)函数f(x)=log2(1+)(x>0)的反函数f﹣1(x)=()A.B.C.2x﹣1(x∈R)D.2x﹣1(x>0)7.(5分)(2013•大纲版)已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)8.(5分)(2013•大纲版)已知F1(﹣1,0),F2(1,0)是椭圆C的两个焦点,过F2且垂直于x轴的直线交椭圆于A、B两点,且|AB|=3,则C的方程为()A.B.C.D.9.(5分)(2013•大纲版)若函数y=sin(ωx+φ)(ω>0)的部分图象如图,则ω=()A.5B.4C.3D.210.(5分)(2013•大纲版)已知曲线y=x4+ax2+1在点(﹣1,a+2)处切线的斜率为8,a =()A.9B.6C.﹣9D.﹣611.(5分)(2013•大纲版)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于()A.B.C.D.12.(5分)(2013•大纲版)已知抛物线C:y2=8x的焦点为F,点M(﹣2,2),过点F且斜率为k的直线与C交于A,B两点,若,则k=()A.B.C.D.2二、填空题:本大题共4小题,每小题5分.13.(5分)(2013•大纲版)设f(x)是以2为周期的函数,且当x∈[1,3)时,f(x)=x ﹣2,则f(﹣1)=.14.(5分)(2013•大纲版)从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有种.(用数字作答)15.(5分)(2013•大纲版)若x、y满足约束条件,则z=﹣x+y的最小值为.16.(5分)(2013•大纲版)已知圆O和圆K是球O的大圆和小圆,其公共弦长等于球O的半径,,则球O的表面积等于.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(10分)(2013•大纲版)等差数列{a n}中,a7=4,a19=2a9,(Ⅰ)求{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.18.(12分)(2013•大纲版)设△ABC的内角A,B,C的内角对边分别为a,b,c,满足(a+b+c)(a﹣b+c)=ac.(Ⅰ)求B.(Ⅱ)若sin A sin C=,求C.19.(12分)(2013•大纲版)如图,四棱锥P﹣ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△PAD都是边长为2的等边三角形.(Ⅰ)证明:PB⊥CD;(Ⅱ)求点A到平面PCD的距离.20.(12分)(2013•大纲版)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为,各局比赛的结果都相互独立,第1局甲当裁判.(Ⅰ)求第4局甲当裁判的概率;(Ⅱ)求前4局中乙恰好当1次裁判概率.21.(12分)(2013•大纲版)已知函数f(x)=x3+3ax2+3x+1.(Ⅰ)求a=时,讨论f(x)的单调性;(Ⅱ)若x∈[2,+∞)时,f(x)≥0,求a的取值范围.22.(12分)(2013•大纲版)已知双曲线C:=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为3,直线y=2与C的两个交点间的距离为.(I)求a,b;(II)设过F2的直线l与C的左、右两支分别相交于A、B两点,且|AF1|=|BF1|,证明:|AF2|、|AB|、|BF2|成等比数列.2013年全国统一高考数学试卷(文科)(大纲版)参考答案与试题解析一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•大纲版)设集合U={1,2,3,4,5},集合A={1,2},则∁U A=()A.{1,2}B.{3,4,5}C.{1,2,3,4,5}D.∅【分析】由题意,直接根据补集的定义求出∁U A,即可选出正确选项【解答】解:因为U={1,2,3,4,5,},集合A={1,2}所以∁U A={3,4,5}故选:B.【点评】本题考查补集的运算,理解补集的定义是解题的关键2.(5分)(2013•大纲版)若α为第二象限角,sinα=,则cosα=()A.B.C.D.【分析】由α为第二象限角,得到cosα小于0,根据sinα的值,利用同角三角函数间的基本关系即可求出cosα的值.【解答】解:∵α为第二象限角,且sinα=,∴cosα=﹣=﹣.故选:A.【点评】此题考查了同角三角函数间的基本关系,熟练掌握基本关系是解本题的关键.3.(5分)(2013•大纲版)已知向量=(λ+1,1),=(λ+2,2),若(+)⊥(﹣),则λ=()A.﹣4B.﹣3C.﹣2D.﹣1【分析】利用向量的运算法则、向量垂直与数量积的关系即可得出.【解答】解:∵,.∴=(2λ+3,3),.∵,∴=0,∴﹣(2λ+3)﹣3=0,解得λ=﹣3.故选:B.【点评】熟练掌握向量的运算法则、向量垂直与数量积的关系是解题的关键.4.(5分)(2013•大纲版)不等式|x2﹣2|<2的解集是()A.(﹣1,1)B.(﹣2,2)C.(﹣1,0)∪(0,1)D.(﹣2,0)∪(0,2)【分析】直接利用绝对值不等式的解法,去掉绝对值后,解二次不等式即可.【解答】解:不等式|x2﹣2|<2的解集等价于,不等式﹣2<x2﹣2<2的解集,即0<x2<4,解得x∈(﹣2,0)∪(0,2).故选:D.【点评】本题考查绝对值不等式的解法,考查转化思想与计算能力.5.(5分)(2013•大纲版)(x+2)8的展开式中x6的系数是()A.28B.56C.112D.224【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为6求出x6的系数.【解答】解:(x+2)8展开式的通项为T r+1=x8﹣r2r令8﹣r=6得r=2,∴展开式中x6的系数是22C82=112.故选:C.【点评】本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.6.(5分)(2013•大纲版)函数f(x)=log2(1+)(x>0)的反函数f﹣1(x)=()A.B.C.2x﹣1(x∈R)D.2x﹣1(x>0)【分析】把y看作常数,求出x:x=,x,y互换,得到y=log2(1+)的反函数.注意反函数的定义域.【解答】解:设y=log2(1+),把y看作常数,求出x:。
2013年全国大纲高考数学文科试卷带详解

2013年普通高等学校招生全国统一考试数学(文科)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}1,2,3,4,5,1,2,U U A A ===集合则ð ( )A.{}1,2B.{}3,4,5C.{}1,2,3,4,5D.∅ 【测量目标】集合的补集.【考查方式】直接给出集合,用列举法求集合补集. 【参考答案】B【试题解析】依据补集的定义计算. {}1,2,3,4,5U =,{}1,2A =,∴ U A =ð{3,4,5}. 2.已知α是第二象限角,5sin ,cos 13αα==则 ( ) A.1213- B.513- C.513 D.1213【测量目标】同角三角函数基本关系.【考查方式】直接给出角的象限和正弦值,求余弦值. 【参考答案】A【试题解析】利用同角三角函数基本关系式中的平方关系计算.因为α为第二象限角,所以12cos .13α==-3.已知向量()()()()1,1,2,2,,=λλλ=+=++⊥-若则m n m n m n ( )A.-4B.-3C.-2D.1- 【测量目标】平面向量的坐标运算与两向量垂直的坐标公式等.【考查方式】给出两向量的坐标表示,两向量坐标运算的垂直关系,求未知数.λ 【参考答案】B【试题解析】利用坐标运算得出+-与m n m n 的坐标,再由两向量垂直的坐标公式求λ, 因为()()23,3,1,1,λ+=+-=--m n m n 由()(),+⊥-m n m n 可得()()()()23,31,1260,λλ+-=+--=--= m n m n (步骤1)解得 3.λ=- (步骤2)4.不等式222x -<的解集是 ( )A.()1,1-B.()2,2-C.()()1,00,1-D.()()2,00,2- 【测量目标】含绝对值的一元二次不等式的解.【考查方式】给出绝对值不等式,求出满足不等式的解集. 【参考答案】D【试题解析】将绝对值不等式转化为一元二次不等式求解.由222,x -<得2222,x -<-<即204,x <<(步骤1)所以20x -<<或02,x <<故解集为()()2,00,2.- (步骤2)5.()862x x +的展开式中的系数是 ( )A.28B.56C.112D.224 【测量目标】二项式定理.【考查方式】由二项式展开式,求满足条件的项的系数. 【参考答案】C【试题解析】写出二项展开式的通项,从而确定6x 的系数.该二项展开式的通项为88188C 22C ,r r r r r r r T x x --+==(步骤1)令2,r =得2266382C 112,T x x ==所以6x 的系数是112. (步骤2)6.函数()()21log 10f x x x ⎛⎫=+> ⎪⎝⎭的反函数1()f x -= ( ) A.()1021x x >- B.()1021xx ≠- C.()21x x -∈R D.()210x x -> 【测量目标】反函数的求解方法,函数的值域求法. 【考查方式】给出函数的解析式,求它的反函数.. 【参考答案】A【试题解析】由已知函数解出,x 并由x 的范围确定原函数的值域,按照习惯把,x y 互换,得出反函数. 由21log 1y x ⎛⎫=+⎪⎝⎭得112,yx ⎛⎫+= ⎪⎝⎭故1.21yx =-(步骤1)把x 和y 互换,即得()11.21x f x -=-(步骤2) 由0,x >得111,x+>可得0.y > 故所求反函数为()11(0).21xf x x -=>-(步骤3) 7.已知数列{}n a 满足{}12430,,103n n n a a a a ++==-则的前项和等于 ( )A.()10613---B.()101139-- C.()10313-- D.()1031+3-【测量目标】等比数列的定义及等比数列前n 项和.【考查方式】给出一个数列{n a }、它的前后项的关系,判断是否为特殊数列,从而求出它的前n 项和. 【参考答案】C【试题解析】先根据等比数列的定义判断数列{}n a 是等比数列,得到首项与公比,再代入等比数列前n 项和公式计算. 由130,n n a a ++=得11,3n n a a +=-故数列{}n a 是公比13q =-的等比数列. (步骤1)又24,3a =-可得1 4.a =(步骤2)所以()1010101413313.113S -⎡⎤⎛⎫--⎢⎥⎪⎝⎭⎢⎥⎣⎦==-⎛⎫-- ⎪⎝⎭(步骤3)8.()()1221,0,1,0,F F C F x -已知是椭圆的两个焦点过且垂直于轴的直线交于A B 、两点,且3AB =,则C 的方程为 ( )A.2212x y += B.22132x y += C.22143x y += D.22154x y += 【测量目标】椭圆的标准方程及简单几何性质.【考查方式】给出椭圆焦点,由椭圆与直线的位置关系,利用待定系数法求椭圆的标准方程. 【参考答案】C【试题解析】设出椭圆的方程,依据题目条件用待定系数法求参数.由题意知椭圆焦点在x 轴上,且1,c =可设C 的方程为()22221,1x y a a a +>-(步骤1)由过2F 且垂直于x 轴的直线被C 截得的弦长3,AB =知点21,3⎛⎫ ⎪⎝⎭必在椭圆上,(步骤2)代入椭圆方程化简得4241740,a a -+=所以24a =或214a =(舍去). (步骤3) 故椭圆C 的方程为221.43x y +=(步骤4) 9.若函数()()sin 0=y x ωϕωω=+>的部分图像如图,则 ( ) A.5 B.4 C.3 D.2第9题图【测量目标】根据函数的部分图象确定函数解析式.【考查方式】给出正弦函数的未知解析式及正弦函数的部分图象.根据图象求出T ,确定ω的值.【参考答案】B【试题解析】根据图象确定函数的最小正周期,再利用2πT ω=求.ω设函数的最小正周期为T ,由函数图象可知0ππ=,244T x x ⎛⎫+-= ⎪⎝⎭所以π.2T =(步骤1)又因为2π,T ω=可解得 4.ω=(步骤2)10.已知曲线()421128=y x ax a a =++-+在点,处切线的斜率为, ( )A.9B.6C.9-D.6- 【测量目标】导数的几何意义及求导公式等知识.【考查方式】已知曲线在未知点处的切线斜率,利用导数的几何意义求未知数a . 【参考答案】D【试题解析】先对函数求导,利用导数的几何意义得出点()1,2a -+处的切线斜率,解方程所得.342,y x ax '=+由导数的几何意义知在点(1,2)a -+处的切线斜率1|428,x k y a =-'==--=解得 6.a =-11.已知正四棱柱1111112,ABCD A B C D AA AB CD BDC -=中,则与平面所成角的正弦值等于 ( )A.23 D.13 【测量目标】直线与平面所成角和线面垂直的判定.【考查方式】已知正四棱柱,利用其性质和几何体中的垂直关系求线面角的正弦值. 【参考答案】A【试题解析】利用正四棱柱的性质,通过几何体中的垂直关系,判断点C 在平面1BDC 上的射影位置,确定线平面角,并划归到直角三角形中求解.如图,连接AC ,交BD 于点O ,由正四棱柱的性质,有.AC BD ⊥ 因为1CC ⊥平面ABCD ,所以 BD ⊥(步骤1)又1,CC AC C = 所以BD ⊥平面 O (步骤2) 在平面1CC O 内作1,CH C O ⊥垂足为H ,则.BD CH ⊥又1,BD C O O = 所以CH ⊥平面1,BDC (步骤3) 第11题图 连接DH ,则DH 为CD 在平面1BDC 上的射影,所以CDH ∠为CD 与1BDC 所成的角.(步骤4)设12 2.AA AB ==在1Rt COC △中,由等面积变换易求得2,3CH =在Rt CDH △中,2sin .3CH CDH CD ∠==(步骤5) 12.已知抛物线2:8C y x =与点()2,2M -,过C 的焦点且斜率为k 的直线与C 交于,A B 两点,若0MA MB =,则k = ( )A .12 D.2 【测量目标】直线与抛物线的位置关系,平面向量的坐标运算等知识.【考查方式】已知抛物线标准方程,利用抛物线性质及直线与抛物线的位置关系求解过焦点的直线的斜率. 【参考答案】D【试题解析】联立直线与抛物线的方程,消元得一元二次方程并得两根之间的关系,由0MA MB =进行坐标运算解未知量k .抛物线C 的焦点为()2,0,F 则直线方程为()2,y k x =-与抛物线方程联立,消去y 化简得()22224840.k x k x k -++=(步骤1)设点()()1122,,,,A x y B x y 则1212284, 4.x x x x k +=+=所以()121284,y y k x x k k+=+-=()21212122416.y y k x x x x =-++=-⎡⎤⎣⎦(步骤2) ()()()()()()112212122,22,22222MA MB x y x y x x y y =+-+-=+++--()()121212122280,x x x x y y y y =+++-++=(步骤3)将上面各个量代入,化简得2440,k k -+=所以 2.k =(步骤4)二、填空题:本大题共4小题,每小题5分.13.设()[)()21,3=f x x f x ∈是以为周期的函数,且当时, . 【测量目标】函数周期的应用及根据函数解析式求值.【考查方式】给出函数()f x 的周期及取值范围,代入解析式求函数值.【参考答案】1-【试题解析】利用周期将自变量转化到已知解析式中x 的范围内,代入解析式计算 . 由于()f x 的周期为2,且当[)1,3x ∈时,()2,f x x =-(步骤1)()2,f x x =-()()()112112 1.f f f -=-+==-=-(步骤2)14.从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有 种.(用数字作答)【测量目标】简单的排列组合知识的应用. 【考查方式】直接利用排列组合知识列式求解. 【参考答案】60【试题解析】利用排列组合知识列式求解. 由题意知,所有可能的决赛结果有12365354C C C 61602⨯=⨯⨯=(种).15.若x y 、满足约束条件0,34,34,x x y x y ⎧⎪+⎨⎪+⎩………则z x y =-+的最小值为 .【测量目标】二元线性规划求目标函数最值.【考查方式】直接给出函数的约束条件,利用线性规划性质及借助数形结合思想求z 的最小值.【参考答案】0【试题解析】作出定义域,借助数形结合寻找最优解.由不等式组作出可行域,如图阴影部分所示()包括边界,且()()41,1040,.3A B C ⎛⎫⎪⎝⎭,,,,由数形结合知,直线y x z =+过点()1,1A 时,min 110.z =-+= 16.已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,3602OK O K = ,且圆与圆所在的平面所成角为,则球O 的表面积等于 .【测量目标】球的大圆、小圆及球的截面性质,二面角的平面角,球的表面积公式等知识. 【考查方式】已知二面角的平面角,根据球的截面性质,直角三角形的性质,求出球的半径,并由球的表面积公式求球的表面积. 【参考答案】16π 【试题解析】根据球的截面性质以及二面角的平面角的定义确定平面角,把球的半径转化到三角形中计算,进而求得球的表面积.如图所示,公共弦为AB ,设球的半径为R ,则,AB R =取AB 为中点M ,连接OM 、,KM由圆的性质知,,OM AB KM AB ⊥⊥ 所以KMO ∠为圆O 与圆K 所在平面所成的一个二面角的平面角,则60.KOM ∠=(步骤1)Rt KOM △中,3,2OK =所以sin 60OK OM == (步骤2) 在Rt OMA △中,因为222,OA OM AM =+所以2213,4R R =+解得24,R =(步骤3)所以球O 的表面积为24π16π.R =(步骤4)三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)等差数列{}n a 中,71994,2,a a a ==(I )求{}n a 的通项公式; (II )设{}1,.n n n nb b n S na =求数列的前项和 【测量目标】等差数列的通项公式、裂项相消法求数列的前n 项和.【考查方式】(1)根据等差数列的通项公式求出首项和公差,进而求出等差数列的通项公式.(2)已知通项公式,利用裂项相消法求和.【试题解析】(1)设等差数列{}n a 的公差为d ,则()11.n a a n d =+-因为71994,2,a a a =⎧⎨=⎩所以()11164,1828.a d a d a d +=⎧⎨+=+⎩(步骤1)解得11,1.2a d =⎧⎪⎨=⎪⎩所以{}n a 的通项公式为1.2n n a +=(步骤2) (2)因为()222,11n b n n n n ==-++所以2222222.122311n n S n n n ⎛⎫⎛⎫⎛⎫=-+-+⋅⋅⋅+-=⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭(步骤3) 18.(本小题满分12分)设ABC △的内角,,A B C 的对边分别为,,a b c ,()()a b c a b c ac ++-+=.(I )求B(II)若1sin sin 4A C =,求C . 【测量目标】余弦定理解三角形,三角恒等变换公式及其应用.【考查方式】已知三角形的三边及三边关系.(1)由已知关系式展开,利用余弦定理求角. (2)三角形内角和得出A C +,由给出的sin sin A C 的形式,联想构造与已知条件相匹配的余弦公式,求出角C .【试题解析】(1)因为()(),a b c a b c ac ++-+=所以222.a c b ac +-=-(步骤1)由余弦定理得2221cos ,22a cb B ac +-==-因此120.B =(步骤2)(2)由(1)知60,A C +=所以()cos cos cos sin sin A C A C A C -=+cos cos sin sin 2sin sin A C A C A C =-+()11cos 2sin sin 2242A C A C =++=+⨯=(步骤1) 故30A C -=或30,A C -=- 因此15C =或45.C =(步骤2) 19.(本小题满分12分)如图,四棱锥P-ABCD 中,==90ABC BAD ∠∠,BC =2AD ,△P AB 与△PAD 都是边长为2的等边三角形. 图(1)(I )证明:;PB CD ⊥(II )求点.A PCD 到平面的距离【测量目标】空间垂直关系的证明和点到平面距离的求解.第19题图【考查方式】已知四棱锥,底面为特殊的直角梯形,侧面为特殊三角形(1)借助线线、线面垂直求解.(2)通过做辅助线将点面距离转化为图形中的线段,再求解.【试题解析】(1)证明:取BC 的中点E ,连接DE ,则四边形ABCD 为正方形. 过点P 作PO ABCD ⊥平面,垂足为O .连接OA ,OB,OD ,OE . 图(2) 由PAB △和PAD △都是等边三角形知,PA PB PD ==(步骤1)所以,O A O B O D ==即O 为正方形ABED 对角线的交点,故 ,OE BD ⊥从而.P B O E ⊥(步骤2)因为O 是BD 的中点,E 是BC 的中点,所以OE //CD .因此.PB CD ⊥(步骤3)(2)解:取PD 的中点F ,连接OF ,则//.OF PB 由(1)知,,PB CD ⊥故.OF CD ⊥(步骤4)又12OD BD ==OP ==故POD △为等腰三角形,(步骤5) 因此.OF PD ⊥又,PD CD D = 所以.OF PCD ⊥平面(步骤6)因为//,AE CD CD PCD ⊂平面,,AE PCD ⊄平面所以//.AE PCD 平面(步骤7) 因此点O 到平面PCD 的距离OF 就是点A 到平面PCD 的距离,(步骤8) 而112OF PB ==,所以点A 到平面PCD 的距离为1. (步骤9) 20.(本小题满分12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为1,2各局比赛的结果都相互独立,第1局甲当裁判.(I )求第4局甲当裁判的概率;(II )求前4局中乙恰好当1次裁判概率. 【测量目标】相互独立事件同时发生的概率,互斥事件概率加法公式的应用.【考查方式】(1)直接利用独立事件的概率公式求解.(2)由已知,直接利用互斥事件的加法公式求解.【试题解析】(1)记1A 表示事件“第2局结果为甲胜”,2A 表示“第3局甲参加比赛时,结果为甲负”,A 表示事件“第4局甲当裁判”.则12.A A A = ()()()()12121.4P A P A A P A P A === (步骤1)(2)记1B 表示事件“第1局比赛结果为乙胜”,2B 表示事件“第2局乙参加比赛,结果为乙胜”,3B 表示事件“第3局中乙参加比赛时,结果为乙胜”,B 表示事件“前4局中乙恰好当1次裁判”, 则1312312.B B B B B B B B =++ (步骤2)()()1312312P B P B B B B B B B =++=()()()1312312P B B P B B B P B B ++=()()()()()()()1312312P B P B P B P B P B P B P B ++=111+484+ =5.8(步骤3) 21.(本小题满分12分)已知函数()32=33 1.f x x ax x +++(I )求();a f x =的单调性; (II )若[)()2,0,x f x ∈+∞时,…求a 的取值范围. 【测量目标】导数在研究函数中的应用.【考查方式】已知含未知数a 的函数()f x (1)对()f x 求导,得出()f x =0时的根,根据导数性质讨论函数单调性.(2)利用特殊值法和放缩法求a 的范围.【试题解析】(1)当a =()3231,f x x x =-++()23 3.f x x '=-+(步骤1)令()0,f x '=得121, 1.x x ==(步骤2)当()1x ∈-∞时,()0,f x '>()f x 在()1-∞上是增函数;当)1x ∈时,()0,f x '<()f x 在)1上是减函数;当)1,x ∈+∞时,()0,f x '>()f x 在)1,+∞上是增函数. (步骤3) (2)由()20f …得4.5a -…当45a -…,()2,x ∈+∞时, ()()225321312f x x ax x ⎛⎫'=++-+ ⎪⎝⎭… =()1320,2x x ⎛⎫--> ⎪⎝⎭所以()f x 在()2,+∞上是增函数,(步骤4)于是当[)2+x ∈∞,时,()()20f x f 厖.综上,a 的取值范围是4,.5⎡⎫-+∞⎪⎢⎣⎭(步骤5) 22.(本小题满分12分) 已知双曲线()221222:10,0x y C a b F F a b-=>>的左、右焦点分别为,,离心率为3,直线2y C =与(I )求,;a b(II )2F l C A B 设过的直线与的左、右两支分别相交于、两点,且11,AF BF = 证明:22AF AB BF 、、成等比数列.【测量目标】双曲线的方程、性质,直线与双曲线的位置关系,等比中项等性质.【考查方式】(1)由双曲线与直线的位置关系、双曲线的几何性质求出a,b 值.(2)由直线方程和双曲线方程,利用双曲线与直线的位置关系及两点间距离公式证明线段的等比关系.【试题解析】(1)解:由题设知3,c a =即2229,a b a+=故228.b a = 所以C 的方程为22288.x y a -=(步骤1)将y=2代入上式,求得x =(步骤2)由题设知,=解得2 1.a =所以1,a b ==(步骤3)(2)证明:由(1)知,()()123,0,3,0,F F -C 的方程为2288.x y -=○1(步骤4)由题设可设l 的方程为()3,y k x k =-<将其代入○1并化简,得 ()222286980.k x k x k --++=(步骤5)设()1122,,(,),A x y B x y 则22121212226981,1,,.88k k x x x x x x k k +-+==--剠(步骤6)于是()1131,AF x ==-+123 1.BF x ==+(步骤7)由11,AF BF =得()123131,x x -+=+(步骤8) 即2122262,,383k x x k +=-=--故 解得212419,.59k x x ==-从而(步骤9)由于2113,AF x ===-2231,BF x ===- 故()2212234,AB AF BF x x =-=-+=(步骤10)()221212=39116,AF BF x x x x +--= 因而222,AF BF AB = 所以22AF AB BF 、、成等比数列(步骤11).。
2013高三文科数学第三次联考试题(河南十所名校附答案)

2013高三文科数学第三次联考试题(河南十所名校附答案)2013?绉戯級嫨棰橈級涓ら儴鍒嗭紟鑰冪敓浣滅瓟鏃讹紝灏嗙瓟妗堢瓟鍦ㄧ瓟棰樺崱涓婏紙?閫夋嫨棰?125鍒嗭紟?棰樼洰瑕佹眰鐨勶紟1U R锛岄泦鍚圡锛漿x锝?鈮?x}锛孨锛漿x锝?鈮?}锛屽垯M鈭㎞锛?A锛巤1锛?} B锛巤2 } C锛巤1} D锛嶽1锛?] 2锛巌?锛?锛屽垯锝渮锝滐紳A锛? B锛? C锛?D锛? 3锛庡弻鏇茬嚎?A锛?B锛?C锛?D锛?4锛庢煇瀛︾敓鍦ㄤ竴闂ㄥ姛璇剧殑22A锛?17 B锛?18 C锛?18锛? D锛?19锛? 5锛庡湪鈻矨BC M鏄疉B杈规墍鍦ㄧ洿绾夸笂浠绘剰涓€鐐癸紝鑻?锛濓紞2 锛嬑?锛屽垯位锛?A锛? B锛? C锛? D锛? 6锛庘€渕锛濓紞1鈥濇槸鈥滃嚱鏁癴锛坸锛夛紳ln锛坢x锛夊湪锛堬紞鈭烇紝0锛変笂鍗曡皟閫掑噺鈥濈殑A B锛庡繀瑕佷笉鍏呭垎鏉′欢C锛庡厖瑕佹潯浠?D锛庢棦涓嶅厖鍒嗕篃涓嶅繀瑕佹潯浠?7?梴}鐨勫墠21椤圭殑鍜岀瓑浜庡墠8椤圭殑鍜岋紟鑻?锛屽垯k锛?A锛?0 B锛?1 C锛?2 D锛?3 8?鈥?锛孷锛?锛屽垯杈撳嚭鐨凷锛?A锛? B锛?C锛? D锛?9Н涓?A锛?B锛? C锛?D锛?10锛巈锛屜€嶆垚绔嬬殑鏄?A锛?锛?B锛?锛?锛? C锛?锛?锛? D锛?锛峞锛?锛嵪€11锛庡湪鈻矨BC a A?锛?014 锛屽垯鐨勫€间负A锛? B锛? C锛?013 D锛?01412ABCD AD涓嶣C浜掔浉鍨傜洿锛屼笖AB锛婤D锛滱C 锛婥D?A锛庤嫢鍒嗗埆浣溾柍BAD鍜屸柍CAD鐨勮竟AD涓婄殑楂橈紝鍒欒繖涓ゆ潯楂樻墍鍦ㄧ洿绾垮紓闈?B锛庤嫢鍒嗗埆浣溾柍BAD鍜屸柍CAD鐨勮竟AD涓婄殑楂橈紝鍒欒繖涓ゆ潯楂橀暱搴︾浉绛?C锛嶢B锛滱C涓擠B锛滵C D锛庘垹DAB锛濃垹DAC ?闈為€夋嫨棰??3棰橈綖绗?1?2棰橈綖绗?4?氭湰澶ч?5鍒嗭紟13锛庡渾锛?x锛媘y锛?锛?鍏充簬鎶涚墿绾?锛?y______________ 14锛庝笉绛夊紡缁?瀵瑰簲鐨勫钩闈㈠尯鍩熶负D锛岀洿绾縴锛漦锛坸锛?锛変笌鍖哄煙D鏈夊叕鍏辩偣锛?鍒檏鐨勫彇鍊艰寖鍥存槸______________. 15锛庡凡鐭ュ嚱鏁癴锛坸锛夛紳锛岃嫢瀛樺湪鈭堬紙锛?锛夛紝浣縡锛坰in 锛夛紜f锛坈os 锛夛紳0锛屽垯瀹炴暟a鐨勫彇鍊艰寖鍥存槸________________. 16{ }{ }}锛寋}鐨勫墠n椤瑰拰鍒嗗埆涓?锛?锛庤嫢a3锛漛3锛宎4锛漛4锛屼笖锛?锛屽垯锛漘_____________. 涓夈€佽ВВ绛斿簲鍐欏嚭鏂囧瓧璇存槑,紟17?2鍒嗭級宸茬煡鍑芥暟f锛坸锛夛紳sin2蠅x 锛?sin蠅xcos蠅x锛埾夛紴0锛堚厾锛夋眰蠅鐨勫€煎強鍑芥暟f锛坸锛夌殑鍗曡皟澧炲尯闂达紱锛堚叀锛夋眰鍑芥暟f锛坸锛夊湪[0锛?]涓婄殑鍊煎煙锛?18?2鍒嗭級涓€娌冲崡鏃呮父鍥㈠埌瀹夊窘鏃呮父锛湁锛氭€€杩滅煶姒淬€佺爛灞辨ⅷ銆佸窘宸為潚鏋g瓑19绉嶏紝鐐瑰績绫昏ф晳椹剧瓑3857绉嶏紟璇ユ梾娓稿洟鐨勬父瀹㈠喅瀹氭寜鍒嗗眰6绉嶅甫缁欎翰鏈嬪搧灏濓紟锛堚厾暟锛??绉嶇壒浜т腑闅忔満鎶藉彇2绉嶉鈶犲垪鍑烘墍鏈夊彲鑳界殑鎶藉彇缁撴灉锛?鈶℃眰鎶藉彇鐨?绉嶇壒浜у潎涓哄皬鍚冪殑姒傜巼锛?19?2鍒嗭級濡傚浘鎵€绀虹殑鍑犱綍浣揂BCDFE紝鈻矨BC锛屸柍DFE閮芥槸绛?杈逛笁瑙掑舰锛屼笖鎵€鍦ㄥ钩闈㈠钩琛岋紝鍥CED 2 鏂瑰舰锛屼笖鎵€鍦ㄥ钩闈㈠瀭鐩翠簬骞抽潰ABC锛?锛堚厾锛夋眰鍑犱綍浣揂BCDFE锛堚叀锛夎瘉鏄庯細骞抽潰ADE CF锛?20?2鍒嗭級宸茬煡鍦咰锛?鐨勫崐寰勭瓑浜庢き鍦咵锛?锛坅锛瀊锛?鐨勫彸鐒︾偣F鍦ㄥ渾C鍐咃紝涓斿埌鐩寸嚎l锛歽锛漻锛?鐨勮窛绂讳负锛?锛岀偣M?鍦咰鐨勫叕l浜ゆき鍦咵浜庝笉鍚岀殑涓ょ偣A锛坸1锛寉1锛夛紝B 锛坸2锛寉2锛夛紟E鐨勬柟绋嬶紱锛堚叀锛夋眰璇侊細锝淎F锝滐紞锝淏F锝滐紳锝淏M锝滐紞锝淎M锝滐紟21?2鍒嗭級璁緈涓哄疄鏁帮紝鍑芥暟f锛坸锛夛紳锛?锛?x锛媘锛寈鈭圧锛堚厾锛夋眰f锛坸锛夌殑鍗曡皟鍖洪棿涓庢瀬鍊硷紱锛堚叀锛夋眰璇侊細褰搈鈮?涓攛锛?鏃讹紝锛? 锛?mx锛?.22銆?3銆?4?濡傛灉澶氬仛锛?22锛庯紙?0鍒嗭級閫変慨4鈥?濡傚浘锛屽凡鐭モ姍O鐨勫崐寰勪负1锛孧N O鐨勭洿寰勶紝杩嘙鐐?浣溾姍O鐨勫垏绾緼M锛孋鏄疉M鐨勪腑鐐癸紝AN浜も姍O浜嶣鐐癸紝鑻ュ洓杈瑰舰BCON?锛堚厾锛夋眰AM鐨勯暱锛?锛堚叀锛夋眰sin鈭燗NC 锛?23?0鍒嗭級閫変慨4鈥?锛氬潗鏍囩郴涓庡弬鏁版柟绋?宸茬煡鏇茬嚎C1鐨勬瀬鍧愭爣鏂圭▼涓合乧os锛埼革紞锛夛紳锛?锛屾洸绾緾2鐨勬瀬鍧愭爣鏂圭▼涓合侊紳2 cos锛埼革紞锛夛紟浠ユ瀬鐐逛负鍧愭爣鍘熺偣锛屾瀬杞翠负x锛堚厾锛夋眰鏇茬嚎C2鐨勭洿瑙掑潗鏍囨柟绋嬶紱锛堚叀锛夋眰鏇茬嚎C2涓婄殑鍔ㄧ偣M鍒版洸绾緾1鐨勮窛绂荤殑鏈€澶у€硷紟24?0鍒嗭級閫変慨4鈥?宸茬煡涓嶇瓑寮?锝渪锛?锝滐紜锝渪锛?锝滐紲2a锛?锛堚厾锛夎嫢a锛?锛屾眰涓嶇瓑寮忕殑瑙i泦锛?锛堚叀锛夎嫢宸茬煡涓嶇瓑寮忕殑瑙i泦涓嶆槸绌洪泦锛屾眰a 鐨勫彇鍊艰寖鍥达紟2013ф祴璇?涓?()鈥㈢瓟妗?锛?锛塀锛?锛堿锛?锛塂锛?锛塀锛?锛塁锛?锛堿锛?锛塁锛?锛塀锛?锛塂锛?0锛塂锛?1锛塁锛?2锛堿锛?3锛? 锛?4锛?锛?5锛?锛?6锛?锛?7锛夎В锛氾紙鈪狅級锛屸€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紙2鍒嗭級寰?.鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紙3鍒嗭級. 鐢?锛?锛屽緱锛?锛??.鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紙5鍒嗭級锛堚叀锛夌敱寰?锛?锛屸€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紙8鍒嗭級锛?鍦?涓婄殑鍊煎煙涓?.鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紙12鍒嗭級锛?8锛夎В锛氾紙鈪狅級鍥犱负鎵€浠ヤ粠姘?锛?锛?. 鎵涓?.鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紙4鍒嗭級锛堚叀锛夆憼鍦ㄤ拱鍥炵殑6绉嶇壒浜т腑锛??锛?绉嶇偣蹇冨垎?涓虹敳锛屽垯鎶藉彇鐨?绉嶇壒浜х殑鎵€鏈夊彲鑳芥儏鍐典负锛?锛?锛屽叡15绉?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紙8鍒嗭級6绉嶇壒浜т腑鎶藉彇2绉嶅潎涓哄皬鍚冧负浜嬩欢锛屽垯浜嬩欢鐨勬墍鏈夊彲鑳界粨鏋滀负锛屽叡3绉嶏紝鎵€浠?.鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紙12鍒嗭級锛?9锛夎В锛氾紙鈪狅級鍙?鐨勪腑鐐?锛?鐨勪腑鐐?锛岃繛鎺?. 鍥犱负锛屼笖骞抽潰骞抽潰锛?鎵€浠?骞抽潰锛屽悓鐞?骞抽潰锛?鍥犱负锛?鎵€浠?.鈥︹€︹€︹€︹€︹€︹€︼紙6鍒嗭級锛堚叀锛夌敱锛堚厾锛夌煡锛?鎵€浠ュ洓杈瑰舰涓哄钩琛屽洓杈瑰舰锛屾晠锛?鍙?锛屾墍浠ュ钩闈?骞抽潰.鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紙12鍒嗭級锛?0锛夎В锛氾紙鈪狅級璁剧偣锛屽垯鍒扮洿绾?鐨勮窛绂讳负锛屽嵆锛屸€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紙2鍒嗭級鍥犱负鍦ㄥ渾鍐咃紝鎵€浠?锛屾晠锛涒€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紙4鍒嗭級鍥犱负鍦?鐨勫崐寰勭瓑浜庢き鍦?鐨勭煭鍗婅酱闀匡紝鎵€浠?锛??.鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紙6鍒嗭級锛堚叀锛夊洜涓哄渾蹇?鍒扮洿绾?鐨勮窛绂讳负锛屾墍浠ョ洿绾?涓庡渾鐩稿垏锛??涓虹洿瑙掍笁瑙掑舰锛屾墍浠?锛?鍙?锛屽彲寰?锛屸€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紙7鍒嗭級锛屽張锛屽彲寰?锛屸€︹€︹€︹€︹€︹€︹€︹€︹€︼紙9鍒嗭級鎵€浠?锛屽悓鐞嗗彲寰?锛屸€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紙11鍒嗭級鎵€浠?锛屽嵆.鈥︹€︹€︹€︹€︹€︹€︼紙12鍒嗭級锛?1锛夎В锛氾紙鈪狅級锛屼护锛?鏄撶煡鏃?锛?芥暟锛?鏃?锛?涓哄噺鍑芥暟锛?鎵€浠ュ嚱鏁?鏈夋瀬澶у€硷紝鏃犳瀬灏忓€硷紝鏋佸ぇ鍊间负.鈥︹€︹€︹€︹€︹€︹€︹€︹€︼紙6鍒嗭級锛堚叀锛変护锛?锛屽垯锛?鐢憋紙鈪狅級鐭ワ紝褰?鏃讹紝锛屾墍浠?锛?鏁?鍦?涓婁负澧炲嚱鏁帮紝鎵€浠?锛屾晠.鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紙12鍒嗭級锛?2锛夎В锛氾紙鈪狅級杩炴帴锛屽垯锛?鍥犱负鍥涜竟褰??鈭?锛?鍥犱负鏄?鐨勫垏绾匡紝鎵€浠?锛屽彲寰?锛?鍙堝洜涓?鏄?鐨勪腑鐐癸紝鎵€浠?锛?寰?锛屾晠.鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紙5鍒嗭級锛堚叀锛変綔浜?鐐癸紝鍒?锛岀敱锛堚厾锛夊彲寰?锛?鏁?.鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紙10鍒嗭級锛?3锛夎В锛氾紙鈪狅級锛?鍗?锛屽彲寰?锛?鏁?鐨勭洿瑙掑潗鏍囨柟绋嬩负.鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紙5鍒嗭級锛堚叀锛?鐨勭洿瑙掑潗鏍囨柟绋嬩负锛?鐢憋紙鈪狅級鐭ユ洸绾?涓哄渾蹇冪殑鍦嗭紝涓斿渾蹇冨埌鐩寸嚎鐨勮窛绂?锛?鎵€浠ュ姩鐐?鍒版洸绾?鐨勮窛绂荤殑鏈€澶у€间负.鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紙10鍒嗭級锛?4锛夎В锛氾紙鈪狅級褰?鏃讹紝涓嶇瓑寮忓嵆涓?锛?鑻?锛屽垯锛?锛?鑸嶅幓锛?鑻?锛屽垯锛?锛?鑻?锛屽垯锛?锛?缁间笂锛屼笉绛夊紡鐨勮В闆嗕负锛庘€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紙5鍒嗭級锛屽垯锛?锛?锛?锛屽嵆鐨勫彇鍊艰寖鍥翠负锛庘€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紙10鍒嗭級。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
郑州市2013年高三第三次调研考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~23题为选考题,其它题为必考题.考生作答时,将答案答在答题卡上,在本试卷上答题无效.注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上.2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其它答案的标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚.3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.4.保持卡面清洁,不折叠,不破损.5.做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑.第Ⅰ卷一、选择题:本大题共12小题.每小题5分.在每小题给出的四个选项中.只有一项是符合题目要求的.1.已知集合{}R ,,01|),(∈=-+=y x y x y x A ,{}R ,,1|),(2∈+==y x x y y x B ,则集合B A ⋂的元素个数是A.0B. 1 C 2 D.32.已知x ,y ∈R ,i 为虚数单位,若iiyi x +=+-121,则y x +的值为 A.2 B.3 C.4 D.53.下列命题中的假命题是 A.0,R 2≥∈∀x x B.02,R 1>∈∀-x x C.1lg ,R <∈∃x x D.2cos sin ,R =+∈∃x x x4.设a 为实数,函数x a ax x x f )3()(23-++=的导函数为)(x f ',且)(x f '是偶函数,则曲线)(x f y =在点))2(,2(f 处的切线方程为A.0169=--y xB.0169=-+y xC.0126=--y xD.0126=-+y x 5.已知实数x ,y 取值如下表x 0 1 4 5 6 8 y 1.3 1.85.66.17.49.3从所得的散点图分析可知:y 与x 线性相关,且a x y +=∧95.0,则a 的值是A.1.30B.1.45C. 1.65D.1.806.已知直线l ⊥平面α,直线m ⊂平面β,给出下列命题:①α∥β⇒l ⊥m ;②α⊥β⇒l ∥m ;③l ∥m ⇒α⊥β;④l ⊥m ⇒α∥β 其中正确的命题的序号是A.①②③B.②③④C.①③D.②④7.如图给出了一个程序框图,其作用是输入x 的值,输出相应的y 值,若要使输入的x 的值与输出相应的y 值相等,则这样的x 值有A.1个B.2个C.3个D.4个8.已知y x z +=3,x ,y 满足⎪⎩⎪⎨⎧≥≤+≥m x y x x y 32,且z 的最大值是最小值的3倍,则m 的值是A.61 B.51 C.41 D.31 9.抛物线x y 82=的准线与双曲线141222=-y x 的两条渐近线围成的三角形的面积为 A.334 B.332 C.33D.32 10.函数)cos(2ϕω+=x y (0>ϕ且2πϕ<),在区间⎥⎦⎤⎢⎣⎡-6,3ππ上单调递增,且函数值从-2增大到2,那么此函数图像与y 轴交点的纵坐标为 A.1 B.2 C.3 D.226+ 11.已知椭圆有这样的光学性质,从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点,今有一水平放置的椭圆形台球盘,点A 、B 是它的两个焦点,长轴长为a 2,焦距为c 2,当静止放置点A 的小球(半径不计),从点A 沿直线出发,经椭圆壁反弹后再回到点A ,则小球经过的路径为A.a 4B.)(2c a -C.)(2c a +D.以上答案都有可能12.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,6=a ,2=b ,且0)cos(21=++C B ,则△ABC 的BC 边上的高等于 2 B.26 C.226+ D.213+ 第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第2l 题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题.每小题5分.13.如图:在正方形内有一扇形(见阴影部分),扇形对应的圆心是正方形的一顶点,半径为正方形的边长,在这个图形上随机撒一粒黄豆,它落在扇形外正方形内的概率为 .(用分数表示)14.已知数列{}n a 的通项公式2sin2013πn a n ⋅=,则201321a a a +++ = . 15.已知长方体的一个顶点上的三条棱长分别是4,8,h ,且它的8个顶点都在同一个球面上,这个球面的表面积为π100,则h = .16.已知函数)(x f y =的图像与函数12--=-xy 的图像关于直线x y =对称,则)3(f = .三、解答题:(12+12+12+12+12+10=70分)解答应写出文字说明.证明过程或演算步骤.17已知数列{}n a 是公差不为0的等差数列,21=a ,且2a ,3a ,14+a 成等比数列。
1)求数列{}n a 的通项公式;2)设n an n a b 2+=,求数列{}n b 的前n 项和为n S .18.2012年3月2日,国家环保部发布了新修订的《环境空气质量标准》,其中规定:居民区的PM2.5的年平均浓度不得超过35毫克/ 立方米,某城市环保部门在2013年1月1日到2013年4月30日这120天对某居民区的PM2.5平均浓度的检测数据统计如下:组别 PM2.5浓度(微克/立方米)频数(天)第一组 (]35,032 第二组 (]75,35 64 第三组 (]115,7516 第四组115以上81)在这这120天中抽取30天的数据做进一步分析,每一组应抽取多少天?2)在1)中所抽取的样本PM2.5的平均浓度超过75(毫克/ 立方米)的若干天中,随机抽取2天,求恰好有一天平均浓度超过115(毫克/ 立方米)的概率。
19.如图所示的几何体中,四边形PDCE 为矩形,ABCD 为直角梯形,且︒=∠=∠90ADC BAD ,平面PDCE ⊥平面ABCD ,121===CD AD AB ,2=PD 。
1)若M 为PA 的中点,求证:AC ∥面MDE ;2)求原几何体被平面PBD 所分成的左右两部分的体积比.20.已知椭圆C :12222=+ay b x (0>>b a )的离心率36=e ,短轴右端点为A ,)0,1(P 为线段OA 的中点。
求椭圆C 的方程;2)过点P 任作一条直线与椭圆C 相交于两点M ,N ,试问在x 轴上是否存在定点Q ,使得NQP MQP ∠=∠,若存在,求出点Q 的坐标;若不存在,说明理由.21.已知函数1ln )2()(--=x a x f ,x ax x x g ++=2ln )((a ∈R ),令)()()(x g x f x '+=ϕ.1)当0=a 时,求)(x ϕ的极值;2)当2-<a 时, 求)(x ϕ的单调区间;3)当23-<<-a 时,若对21,λλ∀∈[]3,1,使得3ln 2)2ln ()()(21-+<-a m λϕλϕ恒成立,求实数m 的取值范围。
选做题(本题满分10分,请从22、23、24三个小题中任选一题作答,并用铅笔在对应方框中涂黑)22.选修4--1;几何证明选讲如图,AB 是⊙O 的一条切线,切点为B ,直线ADE ,CFD ,CGE 都是⊙O 的割线,已知AB AC =。
1)求证:FG ∥AC ;2)若1=CG ,4=CD ,求GFDE的值.23.选修4——4;坐标系与参数方程已知曲线C 的极坐标方程是2=ρ,以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+=-=t y t x 231212(t 为参数)1)写出直线l 与曲线C 在直角坐标系下的方程;2)设曲线C 经过伸缩变换⎩⎨⎧='='yy xx 2得到曲线C ',设曲线C '上任一点为),(y x M ,求y x 213+的取值范围。
24.选修4——5;不等式选讲已知函数)212(log )(2a x x x f -++-=。
1)当4=a 时,求函数)(x f 的定义域;2)若对任意的x ∈R ,都有2)(≥x f 成立,求实数a 的取值范围.2013年高中毕业年级第三次质量预测数学(文科) 参考答案一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 C BDBBCCDAADC二、填空题13. 44π- 14. 2013 15. 52 16. -2三、解答题17. (本小题满分12分)解:(Ⅰ)设数列{}n a 的公差为d ,由21=a 和1,,432+a a a 成等比数列,得()()d d d 332)22(2++=+, 解得2=d ,或1-=d , (2)分当1-=d 时,03=a ,与1,,432+a a a 成等比数列矛盾,舍去.2=∴d , ………………………4分()(),212211n n d n a a n =-+=-+=∴即数列{}n a 的通项公式.2n a n = …………6分2)∵n nn n n b 42222+=+=……………………8分∴)14(3441)41(42)22()444()242()42()44()42(22121-++=--++=+++++++=++++++=n n n n n n n n n n n S ……………………12分18.解:1)这120天中抽取30天,应采取分层抽样,第一组抽取81203032=⨯天;第二组抽取161203064=⨯天;第三组抽取41203016=⨯天;第四组抽取2120308=⨯天。
………4分2)设PM2.5的平均浓度在(]115,75内的4天记为1A ,2A ,3A ,4A ,PM2.5的平均浓度在115以上的两天记为1B ,2B ,所以6天任取2天的情况有:212414231343221242322111413121,,,,,,,,,,,,,,B B B A B A B A B A A A B A B A A A A A B A B A A A A A A A 共15种。
…………………8分记恰有一天平均浓度超过115(毫克/ 立方米)为事件A ,其中符合条件的有:2414231322122111,,,,,,,B A B A B A B A B A B A B A B A 共8种.……………10分所求事件A 的概率158)(=A P 。
……………12分 19.1)证明:连结PC ,交DE 与N ,连结MN ,PAC ∆中,,M N 分别为两腰,PA PC 的中点,∴//MN AC .………2分因为MN ⊂面MDE ,又AC ⊄面MDE ,所以//AC 平面MDE . …………4分2)由四边形四边形PDCE 为矩形,知PD ⊥DC ,又平面PDCE ⊥平面ABCD , ∴PD ⊥平面ABCD ,三棱锥ABD P -的体积为:6221161213131=⨯⨯⨯=⨯⨯⨯=⨯=∆-PD AD AB PD S V ABD ABD P ……………8分由已知AD ⊥面PDCE ,因为AB ∥CD ,四棱锥的体积为:322122313131=⨯⨯⨯=⨯⨯=⨯==--AD PD CD AD S V V PDCE PDCE A PDCE B ………10分 ∵4132262==--PDCEB ABD P V V , 所以原几何体被平面PBD 所分成的左右两部分的体积比为1:4.………12分20. (本小题满分12分) 解:(Ⅰ)由已知,2b =,又36=e , 即3642=-a a ,解得32=a , 所以椭圆C 的方程为112422=+y x . ………………………………4分 (Ⅱ)假设存在点)0,(0x Q 满足题设条件. 当x MN ⊥轴时,由椭圆的对称性可知恒有NQP MQP ∠=∠,即0x ∈R ;…………………6分当MN 与x 轴不垂直时,设MN 所在直线的方程为(1)y k x =-,代入椭圆方程化简得: 0122)3(2222=-+-+k x k x k , 设),(),,(2211y x N y x M , 则343)3(2)12)(3(442222222422,1++±=+-+-±=k k k k k k k k x , 312,3222212221+-=+=+k k x x k k x x , 022011x x y x x y k k NQ MQ -+-=+121020(1)(1)k x k x x x x x --=+--1202101020(1)()(1)()()()k x x x k x x x x x x x --+--=--, …………………………9分∵ 120210120120(1)()(1)()2(1)()2x x x x x x x x x x x x --+--=-+++02202223)1(23)12(2x k k x k k +++-+-=, 若NQP MQP ∠=∠, 则0=+NQ MQ k k ,即[]023)1(23)12(2022022=+++-+-x k k x k k k , 整理得0(4)0k x -=,∵k ∈R ,∴04x =.Q 的坐标为)0,4(Q .综上,在x 轴上存在定点)0,4(Q ,使得NQP MQP ∠=∠. ………………………12分21.解:1)∵121)(++='ax x x g ,ax xx a x 21ln )2()(++-=ϕ,其定义域为()+∞,0。