墩柱模板计算

合集下载

圆柱形墩柱模板计算书

圆柱形墩柱模板计算书

混凝土重量F1=牛腿体积*重力密度= a*b*c*γc
59.488 KN
其中:a为牛腿长度
2.6 m
b为牛腿宽度
1.1 m
c为牛腿高度
0.8 m
模板重量F2=
19 KN
人员重量F3=
1
KN
牛腿支架总受力为F4= 79.488 KN
牛腿支架有两个支架组成,单个支架受力为F= F4/2=
39.744 KN
W
=
bh 6
2
= 10×6 2
6
=
60 mm3
其中:b为板宽,取10mm;
h为板厚,取6mm。
面板最大内力为:
σ=M =
W
125.10976 <f=215N/mm2
(2)挠度验算
圆弧面板受力为径向力,且受力均匀,径向变形相同,故无径向挠度。
2
I
=
b h 3
五、纵肋计算 12
=
1 0 × 63 12
F=0.22γct0β1β2V1/2
⑴ (8-8)
F=γcH
312 KN/㎡
⑵ (8-9)
混凝土侧压力的计算分布图形如图所示,有效压头高度h(m)按下式计算:
h=F/γc
2.86 m
(8-10)
取两式的较小值
F:新浇混凝土对模板的侧压力(KN/㎡);计算得
74.4216 KN/㎡
γc:新浇混凝土的重力密度(KN/m³),取值
将牛腿支架简化为如下图所示的模型,将牛腿支架受力化为均布载荷q
则q=
F/a 15.2861538 KN/m

15.2862 N/mm
将模型及受力情况在力学求解器中分析,模型如下:

墩柱模板计算书midascivil

墩柱模板计算书midascivil

墩柱模板计算书一、计算依据1、《铁路桥涵设计基本规范》(TB10002.1-2005)2、《客运专线铁路桥涵工程施工技术指南》(TZ213-2005)3、《铁路混凝土与砌体工程施工规范》(TB10210-2001)4、《钢筋混凝土工程施工及验收规范》(GBJ204-83)5、《铁路组合钢模板技术规则》(TBJ211-86)6、《铁路桥梁钢结构设计规范》(TB10002.2-2005)7、《铁路桥涵施工规范》(TB10203-2002)8、《京沪高速铁路设计暂行规定》(铁建设[2004])9、《钢结构设计规范》(GB50017—2003)二、设计参数取值及要求1、混凝土容重:25kN/m3;2、混凝土浇注速度:2m/h;3、浇注温度:15℃;4、混凝土塌落度:16~18cm;5、混凝土外加剂影响系数取1.2;6、最大墩高17.5m;7、设计风力:8级风;8、模板整体安装完成后,混凝土泵送一次性浇注。

三、荷载计算1、新浇混凝土对模板侧向压力计算混凝土作用于模板的侧压力,根据测定,随混凝土的浇筑高度而增加,当浇筑高度达到某一临界时,侧压力就不再增加,此时的侧压力即为新浇筑混凝土的最大侧压力。

侧压力达到最大值的浇筑高度称为混凝土的有效压头。

新浇混凝土对模板侧向压力分布见图1。

图1新浇混凝土对模板侧向压力分布图在《铁路混凝土与砌体工程施工规范》(TB10210-2001)中规定,新浇混凝土对模板侧向压力按下式计算:在《钢筋混凝土工程施工及验收规范》(GBJ204-83) 中规定,新浇混凝土对模板侧向压力按下式计算:新浇混凝土对模板侧向压力按下式计算: Pmax=0.22γt 0K 1K 2V 1/2Pmax =γh式中:Pmax ------新浇筑混凝土对模板的最大侧压力(kN/m2) γ------混凝土的重力密度(kN/m3)取25kN/m3 t0------新浇混凝土的初凝时间(h ); V------混凝土的浇灌速度(m/h );取2m/h h------有效压头高度;H------混凝土浇筑层(在水泥初凝时间以内)的厚度(m); K1------外加剂影响修正系数,掺外加剂时取1.2;K2------混凝土塌落度影响系数,当塌落度小于30mm 时,取0.85;50~90mm 时,取1;110~150mm 时,取1.15。

1250直径墩柱钢模板重量

1250直径墩柱钢模板重量

1250直径墩柱钢模板重量
墩柱钢模板每平方米的重量通常在15至20千克之间。

一、墩柱钢模板介绍
墩柱是建筑结构中支承重力和传递荷载的重要构件,而钢模板则是建筑施工中常用的搭建模板的一种。

墩柱钢模板就是将钢模板制作成符合墩柱形状和尺寸的模板,用于墩柱灌浆浇筑时的脱模和支撑。

二、墩柱钢模板的用途
墩柱钢模板主要用于墩柱的灌浆浇筑,可以提高墩柱的整体强度和稳定性,同时还可以更加方便地进行施工和拆卸。

三、墩柱钢模板每平方米的重量
墩柱钢模板一般是由钢板、U型钢和角钢等材料组成。

通过计算,我们可以大概估算出墩柱钢模板每平方米的重量在15至20千克之间。

需要注意的是,具体重量会受到使用的材料多少、厚度以及摆放方式等因素的影响,并不是一成不变的。

四、墩柱钢模板的选购
在选购墩柱钢模板时,需要根据具体工程的墩柱大小和形状来选择相应的材料和尺寸。

墩柱钢模板的质量和稳定性也是非常重要的考虑因素,需要选用经过质量保证的产品,确保使用过程中的安全和效率。

【结论】本文介绍了什么是墩柱钢模板,以及墩柱钢模板每平方米的重量大致在15至20千克之间。

对于墩柱钢模板的制作、用途和选购等方面,建议广大建筑工人和工程师结合具体工程情况谨慎选择,并保证产品质量和施工安全。

墩柱(门式墩)计算书

墩柱(门式墩)计算书

墩柱(门式墩)计算书墩柱模板计算书⼀、编制依据《东##⾼架⼯程》设计⽂件;《建筑施⼯碗扣式钢管脚⼿架安全技术规范》(JGJ166-2008);《建筑施⼯扣件式钢管脚⼿架安全技术规范》(JGJ130-2011);《建筑施⼯模板安全技术规范》(JGJ162-2008);《建筑结构荷载规范》(GB-50009-2012);《公路桥涵施⼯技术规范》(JTG/TF50-2011);《路桥施⼯计算⼿册》;《建筑施⼯计算⼿册》;《建筑结构静⼒计算⼿册》。

⼆、计算参数(⼀)结构材料参数1、普通钢筋混凝⼟容重γ=26KN/m2。

c2、混凝⼟浇筑速度v=3m/h=200/(T+15)=200/(15+15)=6.6h混凝⼟初凝时间tβ外加剂影响修正系数,取1.0;1β混凝⼟坍落度影响修正系数,取1.15;23、5mm钢板:截⾯模量(每延⽶)W=1.04cm4,惯性矩I=4.17cm3,弹性模量=125N/mm2。

E=2.1×105MPa,抗拉、抗压、抗弯强度f =215N/mm2,抗剪强度fv4、[10型钢:腹板厚度t=5.3mm,截⾯模量W=49.3cm3,惯性矩I=198.3cm4,半截⾯惯性矩S=23.5cm3,截⾯积A=12.74cm2,弹性模量E=2.1×105MPa,抗拉、抗压、=120N/mm2。

抗弯强度设计值f =205N/mm2,抗剪强度设计值fv5、[16型钢:腹板厚度t=6.5mm,截⾯模量W=108.3cm3,惯性矩I=866.2cm4,半截⾯惯性矩S=23.5cm3,截⾯积A=21.95cm2,弹性模量E=2.1×105MPa,抗拉、抗压、抗弯强度设计值f =205N/mm2,抗剪强度设计值f=120N/mm2。

v6、[20型钢:腹板厚度t=7mm,截⾯模量W=178.0cm3,惯性矩I=1780.4cm4,半截⾯惯性矩S=104.7cm3,截⾯积A=28.83cm2,弹性模量E=2.1×105MPa,抗拉、抗压、抗弯强度设计值f =205N/mm2,抗剪强度设计值f=120N/mm2。

墩柱模板受力计算书(范本)

墩柱模板受力计算书(范本)

2021年1月墩柱模板受力计算书目录一、荷载标准值验算 ................................................................................................................................ - 1 - 二、模板材料规格 .................................................................................................................................... - 4 - 三、 CAD 示意图及模型图 ................................................................................................................... - 5 - 四.模板结构参数 .................................................................................................................................... - 7 - 五、有限元计算 ........................................................................................................................................ - 7 - 六、有限元前处理 .................................................................................................................................... - 8 - 七、模板部分有限元受力计算 .............................................................................................................. - 10 -一、荷载标准值验算1.1.1.1. 新浇混凝土自重标准值k G 2由《建筑施工模板安全技术规范》P14页得出:普通混凝土可采用3m /24kN 。

墩柱模板计算

墩柱模板计算

墩柱模板计算一、计算依据1、《铁路桥涵设计基本规范》(TB10002.1-2005)2、《客运专线铁路桥涵工程施工技术指南》(TZ213-2005)3、《铁路混凝土与砌体工程施工规范》(TB10210-2001)4、《钢筋混凝土工程施工及验收规范》(GBJ204-83)5、《铁路组合钢模板技术规则》(TBJ211-86)6、《铁路桥梁钢结构设计规范》(TB10002.2-2005)7、《铁路桥涵施工规范》(TB10203-2002)8、《京沪高速铁路设计暂行规定》(铁建设[2004])9、《钢结构设计规范》(GB50017—2003)二、设计参数取值及要求1、混凝土容重:25kN/m3;2、混凝土浇注速度:2m/h;3、浇注温度:15℃;4、混凝土塌落度:16~18cm;5、混凝土外加剂影响系数取1.2;6、最大墩高17.5m;7、设计风力:8级风;8、模板整体安装完成后,混凝土泵送一次性浇注。

三、荷载计算1、新浇混凝土对模板侧向压力计算混凝土作用于模板的侧压力,根据测定,随混凝土的浇筑高度而增加,当浇筑高度达到某一临界时,侧压力就不再增加,此时的侧压力即为新浇筑混凝土的最大侧压力。

侧压力达到最大值的浇筑高度称为混凝土的有效压头。

新浇混凝土对模板侧向压力分布见图1。

图1新浇混凝土对模板侧向压力分布图在《铁路混凝土与砌体工程施工规范》(TB10210-2001)中规定,新浇混凝土对模板侧向压力按下式计算:在《钢筋混凝土工程施工及验收规范》(GBJ204-83) 中规定,新浇混凝土对模板侧向压力按下式计算:新浇混凝土对模板侧向压力按下式计算: Pmax=0.22γt 0K 1K 2V 1/2 Pmax =γh 式中:Pmax ------新浇筑混凝土对模板的最大侧压力(kN/m2) γ------混凝土的重力密度(kN/m3)取25kN/m3 t0------新浇混凝土的初凝时间(h ); V------混凝土的浇灌速度(m/h );取2m/h h------有效压头高度;H------混凝土浇筑层(在水泥初凝时间以内)的厚度(m); K1------外加剂影响修正系数,掺外加剂时取1.2;K2------混凝土塌落度影响系数,当塌落度小于30mm 时,取0.85;50~90mm 时,取1;110~150mm 时,取1.15。

墩身模板计算书

钢模板验算书一、工程概况1、主墩为单曲线墩,墩身最小截面尺寸为3m*11m,最大截面尺寸为15m*3m,为了计算方便取值,墩身截面取最小值11m*3m 。

2、因墩高较低,故采用一次性拼装模板到顶,整体浇筑方式。

3、本计算书只针对砼对模板的侧压力分析,不包含施工时托架计算。

4、混凝土为C50混凝土,浇筑时温度约25摄氏度,混凝土浇筑速度为603m/h。

二、模板设计1、模板按高度分为2m、1m,其中1m为墩顶模板。

2、块件组合:1节模板包括6块正面模板、2块侧面模板,共计8 块模板组成。

3、模板构造:面板采用6mm钢板,边框法兰设置竖肋(t12*100),竖肋为10#槽钢,间距0.3m,模板最外侧采用2[20#槽钢作横向背杠,平向间距1m。

对拉杆采用PSB830精扎螺纹钢,直径为Φ25。

详见构造设计图。

墩身模板截面构造图三、模板验算依据1、计算依据:(1)、《公路桥涵施工规范》对模板的相关要求;(2)、《路桥施工计算手册》>对模板计算的相关说明。

2、荷载组合:(1)、强度校核:新浇砼对侧模板的压力+振捣砼产生的荷载(2)、挠度验算:新浇砼对侧模板的压力(3)、Q235钢材许用应力(新模板是提高系数1.25): 轴向应力: 140Mpa ,新模板计算采用175Mpa . 弯曲应力: 145Mpa ,新模板计算采用181Mpa . 剪应力: 85Mpa ,新模板计算采用106Mpa .弹性模童: Mpa E 5101.2⨯=.(4)、PCB830精轧螺纹钢许用应力为1030Mpa.3、变形里控制值:结构外露模板,其挠度值为≤L/400钢模面板变形≤1.5mm钢模板的钢棱、柱箍变形≤L/5004、计算范围:因墩身截面尺寸不固定,墩身下部截面较小,在固定砼输入的情况下,墩身部分有效压头高度最大,墩顶有效压头高度最小。

因此计算时只计算最不利的施工情况(最大混泥土浇筑速度,墩身下部模板所受混凝土侧压力最大时模板变形)。

花瓶墩柱计算书

目录一、基本资料 0二、面板检算 (1)三、竖肋检算 (3)四、背架检算 (3)五、对拉拉杆检算 (4)六、连接螺栓检算 (4)一、基本资料1、模板基本尺寸桥墩浇筑时采用全钢模板,模板由平面模板和平面接倒角的端侧莫组成,模板设计高度按全高一次浇注配模,最高墩(浇注高度最大值)H=8.8m ,面板为h=6㎜厚钢板;竖肋[8,间距为325mm ;背架为双[14b (较宽部分不适合对拉拉杆则用[16b ),间距为1000mm ;对拉拉杆Ф30圆钢,间距为1250mm ;说明:间距均取值最大值。

综合计算时,取截面最大,型钢最小进行计算。

2、模板计算主要参数(1)砼自重c γ=2.5 t/m 3=25KN/m 3;(2)钢材弹性模量E s =2.1×105 MPa ; 重力加速度取10N/kg ; (3)容许挠度:1/400 (4)Q235材料强度设计值:抗拉、压和弯:[f]=215Mpa 抗剪:[f v ]= 125Mpa(5)恒荷载分项系数1.2 (6)活荷载分项系数1.4(7)施工最高高度:按平坡截面取值H=8.8 m3、计算荷载当采用内部振捣器,混凝土的浇筑速度在6m/h 以下时,新浇的普通混凝土作用于模板的最大侧压力可以按照下列二式计算,并取二式中的较小值。

2121022.0v t F c ββγ= ⑴第 1 页h F c γ= ⑵ 式中:F ─新浇筑混凝土对模板的最大侧压力(kN/m 2); v ─浇注速度(m/h );取4m/h ;γc ─混凝土的重力密度(kN/m 3);取25KN/m 3 ; 0t ─新浇混凝土的初凝时间,取200/(T+15),取0t =5h ; T ─混凝土的入模温度,取25℃;H ─混凝土侧压力计算总高度(m );取8.8m ;β1─外加剂影响修正系数,不掺外加剂时取为1.0,掺具有缓凝作 用的外加剂时取为1.2;取β 1 =1.2;β2─混凝土坍落度影响修正系数,当坍落度小于30mm 时, 取为0.85;50-90mm 时,取为1.10;110-150mm 时,取为1.15;取β 2 =1.151201213220.220.2225/5 1.2 1.154/76/c F t vkN m h m h kN m γββ==⨯⨯⨯⨯⨯=32c F γh 25/m 8.8220kN/m kN m ==⨯=取F1=76 kN/m 2。

墩柱模板计算

目录一、编制说明 (2)1.1 设计依据 (2)1.2 工程概况 (2)1.3 设计说明 (2)1.3.1 模板构造 (2)1.3.2 材料容许应力 (3)1.3.3 内力符号规定 (3)1.3.4 基本假设 (3)二、混凝土侧压力计算 (3)三、钢模板设计计算 (4)3.1 面板计算 (4)3.2 竖肋计算 (5)3.2.1柱身竖肋 (5)3.2.2 柱帽竖肋 (6)3.3 背楞计算 (8)3.3.1长背楞计算 (8)3.3.2短边背楞计算 (12)3.4 拉杆计算: (13)3.5 模板结构说明 (14)后附模板的结构图 (14)郑徐客运专线ZXZQ5标段一分部桥墩模板计算书一、编制说明1.1 设计依据(1)设定的施工参数:浇筑速度2m/h;混凝土添加具有缓凝作用的外加剂,取β1=1.20;混凝土坍落度暂定:180~220mm;取β2=1.20;模板使用有拉筋模式设计;面板采用δ=6mm热轧钢板;刚度要求:搭接(包括边墙基础)部分变形不超过2mm,其他部分变形不超过1mm;标准段分节高度2m,调整节按1m、0.5m配节;所有模板接缝按平口加工。

(2)《铁路混凝土工程施工技术指南》铁建设(2010)241号;(3)《钢结构设计规范》(4)《混凝土结构工程施工及验收规范》(5)《铁路桥梁钢结构设计规范》(TB10002.2-2005)(6)《郑徐客运专线施工图商丘特大桥郑徐客专施图(桥)-9-Ⅰ》;(7)郑徐客运专线施工图桥梁综合参考图一(桥参)-2 郑徐客专施图(桥参)-4;铁路综合接地系统、沉降观测以及郑西公司下发其他的图纸文件等;1.2 工程概况本工程为郑徐铁路桥梁工程,涉及到的有墩柱规格有2×6m(直墩)及3.2×9,本计算书为2×6(直墩)的设计计算。

1.3 设计说明1.3.1 模板构造模板采用Q235B钢材加工,各断面由4块模板组拼而成,接缝为平口,加固方式按有对拉筋及无对拉筋两种分别验算。

结合某工程实例高架桥墩柱施工模板结构静力计算

结合某工程实例探讨高架桥墩柱施工模板的结构静力计算摘要:在我国交通建设突飞猛进的势态下,高架桥的出现日益增多,其中高墩柱面临着施工的难题。

本文笔者结合某工程实际,探讨了高架桥墩柱模板计算,以期实现良好的经济效益和社会效益。

关键词:工程实例;高架桥;计算1、墩柱模板设计参数分析①基本信息。

内楞间距(mm):275;外楞间距(mm):1000;外楞四角设对拉螺杆,对拉螺栓直径(mm):m25。

②内楞信息。

内楞材料:槽钢100×48×5.3;ix=198cm4,wx=39.7cm3。

③外楞信息。

外楞材料:槽钢2[120×53×5.5(宽度方向);ix=2x346cm4,wx=2x57.7cm3;槽钢2[160×65×8.5/2[250×80×9.0(长度方向);ix=2x935cm4,wx=2x117cm3,(2[160×65×8.5);ix=2x3530cm4,wx=2x282cm3,(2[250×80×9.0)。

④面板参数。

面板类型:钢面板;面板厚度(mm):6.00;ix=1.8cm4,wx=6.0cm3,(取100cm长为计算单元);e=210gpa;⑤对拉螺杆参数。

对拉螺杆采用m25精轧螺纹钢m25×1140mm。

2、墩柱模板设计计算参考2.1模板荷载标准值计算按《施工手册》,新浇混凝土作用于模板的最大侧压力,按下列公式计算,并取其中的较小值:,f=yh;其中,γ为混凝土的重力密度,取24.000kn/m3;t为新浇混凝土的初凝时间,可按现场实际值取,输入0时系统按200(/t+15)计算,得5.714h;t为混凝土的入模温度,取20.000℃;v为混凝土的浇筑速度,取3.000m/h;h为模板计算高度,取3.000m;β1为外加剂影响修正系数,取1.000;β2为混凝土坍落度影响修正系数,取1.000。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

墩柱模板计算一、计算依据1、《铁路桥涵设计基本规范》2、《客运专线铁路桥涵工程施工技术指南》(TZ213-2005)3、《铁路混凝土与砌体工程施工规范》(TB10210-2001)4、《钢筋混凝土工程施工及验收规范》(GBJ204-83)5、《铁路组合钢模板技术规则》(TBJ211-86)6、《铁路桥梁钢结构设计规范》7、《铁路桥涵施工规范》(TB10203-2002)8、《京沪高速铁路设计暂行规定》(铁建设[2004])<9、《钢结构设计规范》(GB50017—2003)二、设计参数取值及要求1、混凝土容重:25kN/m3;2、混凝土浇注速度:2m/h;3、浇注温度:15℃;4、混凝土塌落度:16~18cm;5、混凝土外加剂影响系数取;6、最大墩高17.5m;7、设计风力:8级风;8、模板整体安装完成后,混凝土泵送一次性浇注。

三、?四、荷载计算1、新浇混凝土对模板侧向压力计算混凝土作用于模板的侧压力,根据测定,随混凝土的浇筑高度而增加,当浇筑高度达到某一临界时,侧压力就不再增加,此时的侧压力即为新浇筑混凝土的最大侧压力。

侧压力达到最大值的浇筑高度称为混凝土的有效压头。

新浇混凝土对模板侧向压力分布见图1。

[图1新浇混凝土对模板侧向压力分布图在《铁路混凝土与砌体工程施工规范》(TB10210-2001)中规定,新浇混凝土对模板侧向压力按下式计算:在《钢筋混凝土工程施工及验收规范》(GBJ204-83) 中规定,新浇混凝土对模板侧向压力按下式计算:新浇混凝土对模板侧向压力按下式计算:Pmax=γt 0K 1K 2V 1/2 Pmax =γh 式中:…Pmax ------新浇筑混凝土对模板的最大侧压力(kN/m2)γ------混凝土的重力密度(kN/m3)取25kN/m3 t0------新浇混凝土的初凝时间(h ); V------混凝土的浇灌速度(m/h );取2m/h h------有效压头高度;H------混凝土浇筑层(在水泥初凝时间以内)的厚度(m); K1------外加剂影响修正系数,掺外加剂时取;K2------混凝土塌落度影响系数,当塌落度小于30mm 时,取;50~90mmmax 7272240kPa1.62 1.6P υυ⨯===++时,取1;110~150mm 时,取。

Pmax=γt0K1K2V1/2=×25×8×××21/2= kN/m2 h= Pmax/γ=25=(由计算比较可知:以上两种规范差别较大,为安全起见,取大值作为设计计算的依据。

2、风荷载计算风荷载强度按下式计算: W=K1K2K3W0W------风荷载强度(Pa);W0------基本风压值(Pa), ,8级风风速v=~20.7m/s ;K1------风载体形系数,取K1=; K2------风压高度变化系数,取K2=1; K3------地形、地理条件系数,取K3=1;`W=K1K2K3W0=×=桥墩受风面积按桥墩实际轮廓面积计算。

3、倾倒混凝土时产生的荷载取4kN/ m2。

五、 荷载组合墩身模板设计考虑了以下荷载; ① 新浇注混凝土对侧面模板的压力 ② 倾倒混凝土时产生的荷载 ③ 风荷载荷载组合1:①+②+③ (用于模板强度计算) 荷载组合2:① (用于模板刚度计算) 六、 :七、计算模型及结果201W 1.6V =22011W 20.7267.8Pa 1.6 1.6V ==⨯=采用有限元软件midas6.7.1进行建模分析,其中模板面板采用4节点薄板单元模拟,横肋、竖肋及大背楞采用空间梁单元模拟,拉筋采用只受拉的杆单元模拟。

模板杆件规格见下表:表1 模板杆件规格杆件型号材质:6mm厚钢板Q235面板法兰14mm厚钢板Q235拉筋直径25mm精扎螺纹钢Q235竖肋#10号槽钢横肋10mm厚钢板Q235大背楞25号双拼槽钢Q2351、墩帽模板计算(墩身厚2.8m)1)有限元模型【墩帽模板有限元模型见图2~图3。

墩帽模板中间流水槽处设一道水平拉筋,顶部高出混凝土面100mm处顺桥长方向设4道水平拉筋。

立面侧面|平面图2 墩帽模板有限元网格模型"图3 墩帽模板三维有限元模型2)大背楞强度计算大背楞采用3槽25a ,在荷载组合1作用下应力见图4。

—图4 大背楞应力图[]max 71MPa<140MPaσσ==,强度满足。

3)纵、横肋强度计算墩帽模板纵横肋采用100×10mm 钢板,其在荷载组合一作用下应力见图5。

.]图5 纵、横肋应力图[]max 58MPa<140MPaσσ==,强度满足。

4)面板强度计算墩帽模板面板采用6mm 钢板,其在荷载组合一作用下应力见图6。

、图6 面板应力图[]max 24MPa<140MPaσσ==,强度满足。

5)顶帽模板刚度计算在荷载组合2作用下各节点位移见图7。

"—图7 节点位移图从图中看出,模板在荷载组合2作用下最大位移为2mm,为顺桥方向。

6)拉杆强度计算拉杆采用φ25精扎螺纹钢筋,在模板中间流水槽位置水平设一道,高度方向设3层。

通过计算可知,如只设一道拉杆,其最大拉应力为284MPa,只能采用精扎螺纹钢。

如设二道拉杆,其最大拉应力为177MPa。

;图8 拉杆应力图2、墩帽模板计算(墩身厚2m)1)有限元模型墩帽模板有限元模型见图9~图10。

(墩帽模板中间流水槽处设一道水平拉筋,顶部高出混凝土面100mm处顺桥长方向设4道水平拉筋。

立面侧面…平面图9 墩帽模板有限元网格模型\图10 墩帽模板三维有限元模型2)大背楞强度计算大背楞采用2槽16a ,在荷载组合1作用下应力见图11。

—图11 大背楞应力图[]max 75MPa<140MPa σσ==,强度满足。

3)纵、横肋强度计算墩帽模板纵横肋采用100×10mm 钢板,其在荷载组合一作用下应力见图12。

】图12 纵、横肋应力图[]max 89MPa<140MPaσσ==,强度满足。

4)面板强度计算(墩帽模板面板采用6mm 钢板,其在荷载组合一作用下应力见图13。

&图13 面板应力图[]max 59MPa<140MPaσσ==,强度满足。

5)顶帽模板刚度计算在荷载组合2作用下各节点位移见图14。

:图14 节点位移图从图中看出,模板在荷载组合2作用下最大位移为1.7mm ,为顺桥方向。

6)拉杆强度计算,拉杆采用φ25钢筋,在模板中间流水槽位置水平设一道,高度方向设3层。

通过计算可知,其最大拉应力为142MPa。

拉杆应力见下图。

{图15 拉杆应力图3、墩身模板计算(墩身厚2.8m)1)有限元模型墩身模板有限元模型见图16~图17。

墩身模板中间流水槽处设一道水平拉筋,顶部高出混凝土面100mm处顺桥长方向设4道水平拉筋。

%立面侧面平面图16 墩身模板有限元网格模型~图17 墩身模板三维有限元模型2)大背楞强度计算大背楞采用2槽25a ,在荷载组合1作用下应力见图18。

*图18 大背楞应力图[]max 91MPa<140MPaσσ==,强度满足。

3)竖、横肋强度计算|墩身模板横肋采用100×10mm 钢板,竖肋采用10号槽钢,其在荷载组合一作用下应力见图19。

图19 纵、横肋应力图\max 112MPa σ=4)面板强度计算墩身模板面板采用6mm 钢板,其在荷载组合一作用下应力见图20。

,图20 面板应力图[]max 35MPa<210MPaσσ==,强度满足。

5)墩身模板刚度计算在荷载组合2作用下各节点位移见图21。

!图21 节点位移图从图中看出,模板在荷载组合2作用下最大位移为3mm,为顺桥方向。

6)拉杆强度计算拉杆采用φ25精扎螺纹钢筋,在模板中间流水槽位置水平设一道,高度方向设3层。

通过计算可知,在模板中间流水槽位置水平设一道拉杆其最大拉应力为271MPa,须采用φ25精扎螺纹钢。

如设2道,其应力为165 MPa。

…图22 拉杆应力图4、墩身模板计算(墩身厚2m)1)有限元模型墩身模板有限元模型见图23~图24。

`墩身模板中间流水槽处设一道水平拉筋。

立面侧面平面/图23 墩身模板有限元网格模型>图24 墩身模板三维有限元模型2)大背楞强度计算大背楞采用2槽16a ,在荷载组合1作用下应力见图25。

;图25 大背楞应力图[]max 104MPa<140MPaσσ==,强度满足。

3)竖、横肋强度计算墩身模板横肋采用100×10mm 钢板,竖肋采用10号槽钢,其在荷载组合一作用下应力见图26。

!图26 纵、横肋应力图max 200MPa σ=。

4)面板强度计算墩身模板面板采用6mm 钢板,其在荷载组合一作用下应力见图27。

】图27 面板应力图[]max 46MPa<140MPaσσ==,强度满足。

5)墩身模板刚度计算在荷载组合2作用下各节点位移见图28。

图28 节点位移图从图中看出,模板在荷载组合2作用下最大位移为2mm,为顺桥方向。

6)拉杆强度计算拉杆采用φ25钢筋,在模板中间流水槽位置水平设一道,高度方向设3层。

通过计算可知,其最大拉应力为124MPa。

图29 拉杆应力图八、结论计算模型中选取了2m及2.8m厚桥墩模板进行了计算,均满足强度及刚度要求,因此在2m及2.8m范围内的模板易满足要求。

墩身模板中间流水槽位置水平设一道拉筋,为统一规格,均采用φ25精扎螺纹钢;3m高的模板竖向设3层,2m及1.5m高的模板竖向设2层,间距1m,1m及0.5m高的模板竖向设1层。

墩帽模板中间流水槽位置水平设一道拉筋,采用φ25精扎螺纹钢,竖向设3层,顶部高出混凝土面100mm处顺桥长方向设4道水平拉筋,水平间距0.5m。

经计算,2m及1.5m高桥墩模板横肋采用10mm厚钢板,其它可采用8mm厚钢板。

按投标文件的要求在墩身模板中间流水槽位置水平设一道拉筋,经计算得知拉杆的最大拉应力达到284MPa,超过Q345钢材的容许拉应力,故拉杆采用精扎螺纹钢。

经有限元分析及构造要求,环肋应采用断横不断纵的方式。

具体尺寸及构造详见桥墩模板方案图。

相关文档
最新文档