初一数学 绝对值教案
初中绝对值教案

初中绝对值教案教学目标:1. 理解绝对值的概念,掌握绝对值的性质。
2. 能够运用绝对值解决实际问题,提高学生的数学应用能力。
3. 培养学生的逻辑思维能力,提高学生的数学素养。
教学内容:1. 绝对值的概念及性质2. 绝对值在实际问题中的应用教学过程:一、导入(5分钟)1. 引导学生回顾有理数的概念,复习正数、负数、零的定义。
2. 提问:同学们,之前我们学习了有理数,那么有理数的加减法你们掌握了么?二、新课讲解(15分钟)1. 讲解绝对值的概念:绝对值是一个数与零点的距离,表示为“|a|”。
2. 举例说明绝对值的计算方法:如|3|=3,|-3|=3,|0|=0。
3. 引导学生总结绝对值的性质:a. 非负性:绝对值总是非负的。
b. 正数的绝对值是其本身:|a|=a(a>0)。
c. 负数的绝对值是其相反数:|a|=-a(a<0)。
d. 零的绝对值是零:|0|=0。
三、课堂练习(15分钟)1. 请同学们完成教材P45的练习题,巩固绝对值的概念和性质。
2. 教师挑选几道题目进行讲解,解答学生的疑问。
四、应用拓展(15分钟)1. 引导学生运用绝对值解决实际问题,如:判断两个数的大小关系,求两数之间的距离等。
2. 教师给出几个实际问题,让学生分组讨论,共同解决问题。
五、总结(5分钟)1. 回顾本节课所学内容,引导学生总结绝对值的概念、性质及应用。
2. 强调绝对值在实际生活中的重要性,激发学生学习兴趣。
教学评价:1. 课后作业:布置有关绝对值的练习题,检验学生掌握程度。
2. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
教学反思:本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高学生的数学素养。
同时,关注学生的学习兴趣,通过设计有趣的数学问题,激发学生学习绝对值的积极性。
绝对值教案初中

绝对值教案初中教学目标:1. 理解绝对值的定义和性质;2. 学会求一个数的绝对值;3. 能够应用绝对值解决实际问题。
教学重点:1. 绝对值的定义和性质;2. 求一个数的绝对值的方法。
教学难点:1. 绝对值的应用。
教学准备:1. 教学课件或黑板;2. 练习题。
教学过程:一、导入(5分钟)1. 引入绝对值的概念,让学生思考绝对值是什么。
2. 引导学生思考绝对值与数轴的关系。
二、讲解绝对值的定义和性质(15分钟)1. 讲解绝对值的定义:绝对值是一个数在数轴上与原点的距离。
2. 讲解绝对值的性质:a. 任何数的绝对值都是非负数;b. 正数的绝对值是它本身;c. 负数的绝对值是它的相反数;d. 零的绝对值是零。
三、练习求绝对值(15分钟)1. 让学生练习求一些数的绝对值,如:3, -5, 0,2.5等。
2. 让学生解释求绝对值的方法和步骤。
四、绝对值的应用(15分钟)1. 让学生思考绝对值在实际问题中的应用,如:距离、温度等。
2. 给出一些实际问题,让学生应用绝对值解决,如:两地之间的距离、温度差等。
五、总结和复习(10分钟)1. 让学生总结绝对值的定义和性质。
2. 让学生复习求绝对值的方法。
六、布置作业(5分钟)1. 让学生做一些练习题,巩固所学的内容。
教学反思:本节课通过讲解绝对值的定义和性质,让学生掌握了绝对值的基本概念和方法。
通过练习求绝对值和应用绝对值解决实际问题,让学生加深了对绝对值的理解和应用。
在教学中,要注意引导学生思考绝对值与数轴的关系,以及绝对值在实际问题中的应用。
同时,也要注重学生的练习和巩固,提高学生的解题能力。
绝对值教案(多篇)

绝对值教案(精选多篇)第一章:绝对值的概念与性质1.1 绝对值的定义引入绝对值的概念,解释绝对值表示一个数与零点的距离。
通过数轴展示绝对值的概念,让学生理解绝对值的直观意义。
1.2 绝对值的性质介绍绝对值的几个基本性质,如非负性、单调性等。
通过示例和练习,让学生掌握绝对值的性质并能够应用于解决实际问题。
第二章:绝对值的不等式2.1 绝对值不等式的形式介绍绝对值不等式的基本形式,如|x| > a 或|x| ≤b。
解释绝对值不等式的意义,并展示如何通过数轴来解绝对值不等式。
2.2 解绝对值不等式教授解绝对值不等式的方法,如分情况讨论、画数轴等。
提供练习题,让学生能够熟练解绝对值不等式,并解决实际问题。
第三章:绝对值的应用3.1 绝对值与距离解释绝对值与距离的关系,如在平面直角坐标系中两点间的距离公式。
通过实际例题,让学生应用绝对值来计算两点间的距离。
3.2 绝对值与坐标系的区域介绍绝对值在坐标系中表示区域的概念,如线段、正方形等。
引导学生通过绝对值来分析和解决坐标系中的区域问题。
第四章:绝对值与函数4.1 绝对值函数的图像介绍绝对值函数的图像特征,如V型图像和分段函数的性质。
通过图形和示例,让学生理解绝对值函数的图像特征及其应用。
4.2 绝对值函数的性质探讨绝对值函数的单调性、奇偶性等性质。
提供练习题,让学生能够分析绝对值函数的性质并解决相关问题。
第五章:绝对值的综合应用5.1 绝对值与线性方程介绍绝对值与线性方程的关系,如|ax + b| = 0 的解。
引导学生通过绝对值来解决线性方程中的问题。
5.2 绝对值与不等式组解释绝对值在不等式组中的应用,如解含有绝对值的不等式组。
提供综合练习题,让学生能够综合运用绝对值的概念和性质来解决问题。
第六章:绝对值与三角函数6.1 绝对值与正弦函数探讨绝对值与正弦函数的关系,如正弦函数的绝对值图像。
通过示例和练习,让学生理解绝对值在正弦函数中的应用。
6.2 绝对值与余弦函数介绍绝对值与余弦函数的关系,如余弦函数的绝对值图像。
七年级数学《绝对值》教案【优秀9篇】

七年级数学《绝对值》教案【优秀9篇】学习难点: 篇一绝对值的综合运用绝对值教案篇二绝对值教学目标:通过数轴,使学生理解绝对值的概念及表示方法1、理解绝对值的意义,会求一个数的绝对值及进行有关的简单计算2、通过绝对值概念、意义的探讨,渗透数形结合、分类讨论等数学思想方法3、通过学生合作交流、探索发现、自主学习的过程,提高分析、解决问题的能力教学重点:理解绝对值的概念、意义,会求一个数的绝对值教学难点:绝对值的概念、意义及应用教学方法:探索自主发现法,启发引导法设计理念:绝对值的意义,在初中阶段是一个难点,要理解绝对值这一抽象概念的途径就是把它具体化,从学生生活周围熟悉的事物入手,借助数轴,使学生理解绝对值的几何意义。
通过“想一想”,“议一议”,“做一做”,“试一试”,“练一练”等,让学生在观察、思考,合作交流中,经历和体验绝对值概念的形成过程,充分发挥学生在教学活动中的主体地位,从而逐步渗透数形结合、分类讨论等数学思想方法,提高学生分析、解决问题的能力。
教学过程:一、创设情境,复习导入。
今天我们来学习一个重要而很实际的数学概念,提高我们的数学本领,先请大家看屏幕,思考并解答题中的问题。
(用多媒体出示引例)星期天张老师从学校出发,开车去游玩,她先向东行千米,到了游乐园,下午她又向西行千米,回到家中(学校、游乐园、家在同一直线上),如果规定向东为正,①用有理数表示张老师两次所行的路程;②如果汽车每公里耗油升,计算这天汽车共耗油多少升?① 千米,千米;②()×升。
在学生讨论的基础上,教师指出:这个例子涉及两个问题,第一问中的向东和向西是相反意义的量,用正负数表示,第二问是计算汽车的耗油量,因为汽车的耗油量只与行驶的路程有关,而与行驶的方向没有关系,所以没有负数。
这说明在实际生活中,有些问题中的量,我们并不关注它们所代表的意义,只要知道具体数值就行了。
你还能举出其他类似的例子吗?。
小组讨论,有的同学在思考,有的在交流,有些例子被否定,有的得到同伴的赞许,气氛热烈。
初中数学绝对值教案

初中数学绝对值教案初中数学绝对值教案「篇一」学习目的1.使学生理解相反数的意义;2.给出一个数,能求出它的相反数;3.理解绝对值的意义,熟悉绝对值符号;4.给一个数,能求它的绝对值。
教学重点、难点:1.理解掌握双重符号的化简法则。
2.能正确理解绝对值在数轴上表示的意义。
教学过程一、交流与发现:1.相反数的概念:首先,咱们来画一条数轴,然后在数轴上标出下列各点:3和-3,1.6和-1.6,请同学们观察:(1)上述这两对数有什么特点?(2)表示这两对数的数轴上的点有什么特点?(3)请你再写出同样的几对点来?同学们通过观察思考可以总结出以下几点:(1)上面的这两对数中,每一对数,只有符号不同。
(2)这两对数所对应的点中每一组中的两个点,一个在原点的左边,一个在原点的右边,而且离开原点的`距离相同。
练一练:请同学们举出几个相反数的例子(强调)我们还规定:0的相反数是0说明:(1)注意理解相反数定义中“只有”的含义。
(2)相反数是相对而言的,即如果6是-6的相反数,则-6也是6的相反数,因而相反数全是成对出现的。
(3)两个互为相反数的数在数轴上的对应点(除0外),在原点的两旁,并且距离原点距离相等的两个点,至于0的相反数是0的几何意义,可理解为这两点距离原点都是零。
二、典型例题例(1)分别指出9和-7的相反数;解:由相反数的定义可知:(1)9的相反数是-9,-7的相反数是7;(2)-2.4是2.4的相反数。
同学们思考交流,老师最后讲解,学生交流得出:一个正数的相反数是一个负数,而一个负数的相反数是一个正数。
三、实验与探究同学们观察数轴比思考下列问题(1)数轴上表示有理数5,2,0.5的点到原点的距离各是多少?(2)数轴上表示有理数-5,-2,-0.5的点到原点的距离各是多少?(3)数轴上表示0的点到原点的距离是多少?学生思考回答,老师引导总结出绝对值的定义:在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值。
绝对值教案(优秀6篇)

绝对值教案(优秀6篇)七年级数学《绝对值》教案篇一教学目标1、了解绝对值的概念,会求有理数的绝对值;2、会利用绝对值比较两个负数的大小;3、在绝对值概念形成过程中,渗透数形结合等思想方法,并注意培养学生的思维能力。
教学建议一、重点、难点分析绝对值概念既是本节的教学重点又是教学难点。
关于绝对值的概念,需要明确的是无论是绝对值的几何定义,还是绝对值的代数定义,都揭示了绝对值的一个重要性质——非负性,也就是说,任何一个有理数的绝对值都是非负数,即无论a取任意有理数,都有。
教材上绝对值的定义是从几何角度给出的。
,也就是从数轴上表示数的点在数轴上的位置出发,得到的定义。
这样,数轴的概念、画法、利用数轴比较有理数的大小、相反数,以及绝对值,通过数轴,这些知识都联系在一起了。
此外,0的绝对值是0,从几何定义出发,就十分容易理解了。
二、知识结构绝对值的定义;绝对值的表示方法;用绝对值比较有理数的大小。
三、教法建议用语言叙述绝对值的定义,用解析式的形式给出绝对值的定义,或利用数轴定义绝对值,从理论上讲都是可以的初学绝对值用语言叙述的定义,好像更便于学生记忆和运用,以后逐步改用解析式表示绝对值的定义,即在教学中,只能突出一种定义,否则容易引起混乱。
可以把利用数轴给出的定义作为绝对值的一种直观解释。
此外,要反复提醒学生:一个有理数的绝对值不能是负数,但不能说一定是正数。
“非负数”的概念视学生的情况,逐步渗透,逐步提出。
四、有关绝对值的一些内容1.绝对值的代数定义一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零。
2.绝对值的几何定义在数轴上表示一个数的点离开原点的距离,叫做这个数的绝对值。
3.绝对值的主要性质(2)一个实数的绝对值是一个非负数,即|a|≥0,因此,在实数范围内,绝对值最小的数是零。
(4)两个相反数的绝对值相等。
五、运用绝对值比较有理数的大小1、两个负数大小的比较,因为两个负数在数轴上的位置关系是:绝对值较大的负数一定在绝对值较小的负数左边,所以,两个负数,绝对值大的反而小。
七年级数学《绝对值》教案

七年级数学《绝对值》教案《绝对值》教案1●教学内容七年级上册课本11----12页1.2.4绝对值●教学目标1.知识与能力目标:借助于数轴,初步理解绝对值的概念,能求一个数的绝对值,初步学会求绝对值等于某一个正数的有理数。
2.过程与方法目标:通过从数形两个侧面理解绝对值的意义,初步了解数形结合的思想方法。
通过应用绝对值解决实际问题,体会绝对值的意义。
3.情感态度与价值观:通过应用绝对值解决实际问题,培养学生浓厚的学习兴趣,使学生能积极参与数学学习活动,对数学有好奇心与求知欲。
●教学重点与难点教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。
教学难点:绝对值定义的得出、意义的理解,以及求绝对值等于某一个正数的有理数。
●教学准备多媒体课件●教学过程一、创设问题情境1、两只小狗从同一点O出发,在一条笔直的街上跑,一只向右跑10米到达A点,另一只向左跑10米到达B点。
若规定向右为正,则A处记作__________,B处记作__________。
以O为原点,取适当的单位长度画数轴,并标出A、B的位置。
(用生动有趣的引例吸引学生,即复习了数轴和相反数,又为下文作准备)。
2、这两只小狗在跑的过程中,有没有共同的地方?在数轴上的A、B两点又有什么特征?(从形和数两个角度去感受绝对值)。
3、在数轴上找到-5和5的点,它们到原点的距离分别是多少?表示-和的点呢?小结:在实际生活中,有时存在这样的情况,无需考虑数的正负性质,比如:在计算小狗所跑的路程中,与小狗跑的方向无关,这时所走的路程只需用正数,这样就必须引进一个新的概念———绝对值。
二、建立数学模型1、绝对值的概念(借助于数轴这一工具,师生共同讨论,引出绝对值的概念)绝对值的几何定义:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。
比如:-5到原点的距离是5,所以-5的绝对值是5,记|-5|=5;5的绝对值是5,记做|5|=5。
七年级数学《绝对值》教案

七年级数学《绝对值》教案数学是人们对客观世界定性掌控和定量刻画逐渐抽象概括、形成方法和理论,并进行广泛运用的进程。
这里给大家分享一些关于七年级数学《绝对值》教案,方便大家学习。
七年级数学《绝对值》教案篇1一、说教材(五)教材的地位和作用《绝对值》是选自人教版初一数学第一章第二节第四部分的内容。
这部分内容之前已经学习了有理数、数轴、相反数的内容,这是本节课学习的基础。
绝对值的内容主要包括含义及有理数之间的大小比较,这也为后面学习有理数的加减法奠定了基础。
(六)教学目标根据对教材内容的分析,以及在新课改理念的指导下,制定了以下三维目标:(一)知识与技能知道、掌控绝对值的含义,并且会比较有理数之间的大小。
(二)进程与方法运用数轴来推理数的绝对值,并在推理的进程中清楚的论述自己的观点,从而逐渐发展产生的抽象思维。
(三)情感态度与价值观体验数学活动的探干脆和创造性,感受数学的严谨性以及数学结论的肯定性。
教学重难点通过以上对教材内容及教学目标的分析,以及学生已有的知识水平,本节课的教学重难点以下:重点:绝对值的知道以及有理数的比较难点:负数的绝对值的知道及比较二、说学情以上就是我对教材的分析,由于教学目标及重难点的肯定也是在学生情形的基础上进行的,所以下面我对学情进行分析。
初一学生的抽象思维开始有了一定的发展,但还需一定的感性材料作支持,同时思维比较活跃和积极,所以教学进程中会重视直观材料的运用,然后引导学生自主摸索并知道知识,以激发学生的学习爱好,调动学生的积极性和主动性。
三、说教材基于以上对教材、学情的分析,以及新课改的要求,我在本课中采取的教法有:讲授法、演示法和引导归纳法。
演示法中需要的教具有多媒体和温度计。
四、说教法新课改理念告知我们,学生不仅要学到具体的知识,更重要的是学生要学会怎样自己学习,为毕生学习奠定扎实的基础。
所以本课中我将引导学生通过自主探究、合作交换的学法来更好的掌控本节课的内容。
五、说教学程序为了更好的实现三维目标、突破重难点,我将本课的教学程序设计为以下五个环节:(一)情境导入出示温度计,北方某一城市的温度是零下15摄氏度,南方某一城市的温度是15摄氏度 ,学生在稿纸上画一条数轴,标出这两个温度,并请一位学生画在黑板上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
---------------------------------------------------------------最新资料推荐------------------------------------------------------
初一数学绝对值教案
绝对值(1)【教学目标】使学生初步理解绝对值的概念;明确绝对值的代数定义和几何意义;会求一个已知数的绝对值;会在已知一个数的绝对值条件下求这个数;培养学生用数形结合思想解决问题的能力,渗透分类讨论的数学思想。
【内容简析】绝对值是中学数学中一个非常重要的概念,它具有非负性,在数学中有着广泛的应用。
本节从几何与代数的角度阐述绝对值的概念,重点是让学生掌握求一个已知数的绝对值,对绝对值的几何意义、代数定义的导出、对“负数的绝对值是它的相反数”的理解是教学中的难点。
【流程设计】一、旧知再现 1.在数轴上分别标出–5,3.5,0 及它们的相反数所对应的点。
2.在数轴上找出与原点距离等于 6 的点。
3.相反数是怎样定义的?引导学生从代数与几何两方面的特点出发回答相反数的定义。
从几何方面可以说在数轴上原点两旁,离开原点距离相等的两个点所表示的两个数互为相反数;从代数方面说只有符号不同的两个数互为相反数。
那么互为相反数的两个数有什么特征相同呢?由此引入新课,归纳出绝对值的几何意义。
二、新知探索 1.绝对值的几何意义一个数 a 的绝对值就是数
1/ 7
轴上表示数 a 的点与原点的距离。
如|–5|=5,|3.5|=3.5, |–6|=6,|6|=6,|0|=0。
2.绝对值的表示方法数 a 的绝对值记作|a|,读作“a 的绝对值” 。
3.绝对值的代数定义(性质)①一个正数的绝对值是它本身;②一个负数的绝对值是它的相反数;③0 的绝对值是 0。
即:①若 a>0,则|a|=a;②若 a<0,则|a|=–a;③若 a=0,则|a|=0;? a (a ? 0) ? a ? ? 0 (a ? 0) 或写成:。
?? a (a ? 0) ?4.绝对值的非负性由绝对值的定义可知绝对值具有非负性,即|a|≥0。
三、范例共做例 1:在数轴上标出下列各数,并分别指出它们的绝对值: 8,–8, 1 ,– 1 ,0,–3。
4 4分析:本例旨在巩固绝对值的几何意义。
---------------------------------------------------------------最新资料推荐------------------------------------------------------ 例 2:计算:(1)|0.32|+|0.3|;(2)|–4.2|–|4.2|;(3)|– 2 |–(– 2 )。
3 3分析:求一个数的绝对值必须先判断这个数是正数还是负数,然后由绝对值的性质得到。
在(3)中要注意区分绝对值符号与括号的不同含义。
四、小结提高 1.对绝对值概念的理解可以从其几何意义和代数意义两方面考虑,从几何方面看,一个数 a 的绝对值就是数轴上表示数 a 的点与原点的距离,它具有非负性;从代数方面看,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0 的绝对值是 0。
2.求一个数的绝对值注意先判断这个数是正数还是负数、0。
五、巩固练习 1.下列说法正确的是() A.一个数的绝对值一定是正数 B.一个数的绝对值一定是负数 C.一个数的绝对值一定不是负数 D.一个数的绝对值的相反数一定是负数 2.如果一个数的绝对值等于它的相反数,那么这个数() A.必为正数 B.必为负数 C.一定不是正数 D.一定不是负数 3.下列语句正确的个数有()①若 a=b,则|a|=|b|;②若 a= –b,则|a|=|b|;③若|a|=|b|,则a=b;④若|a|=b,则 a=b;⑤若|a|= –b,则 a= –b;⑥若|a|=b,则a=±b。
A.2 个 B.3 个 C.4 个 D.5 个 4.绝对值等于 4 的数是()A.4 B.–4 C.±4 D.以上均不对5.计算:
3/ 7
|–(+3.6)|+|–(–1.2)|–|–[+(–4)]| 六、课后思考已知|x–2|+|y–3|+|z–4|=0,求 x+y–z 的值。
绝对值(2)【教学目标】使学生进一步巩固绝对值的概念;会利用绝对值比较两个负数的大小;培养学生逻辑思维能力,渗透数形结合思想。
【内容简析】前面已经学习了利用数轴比较两个有理数的大小的方法,本节是在讲了绝对值概念之后,介绍利用绝对值比较两个负数的大小的方法,这既可以巩固绝对值的概念,又把比较有理数大小的方法提高了一步,利用绝对值,就可以不必借助数轴比较两个有理数大小了。
本节的重点是利用绝对值比较两个负数的大小;利用绝对值比较两个异分母负分数的大小是教学中的难点。
【流程设计】一、旧知再现
---------------------------------------------------------------最新资料推荐------------------------------------------------------ 1.复习绝对值的几何意义和代数意义:一个数 a 的绝对值就是数轴上表示数 a 的点与原点的距离,正数的绝对值是它本身,负数的绝对值是它的相反数,0 的绝对值是 0。
2.复习有理数大小比较方法:在数轴上,右边的数总比左边的数大;正数大于一切负数和 0,负数小于一切正数和 0,0 大于一切负数而小于一切正数。
二、新知探索引例:比较大小(1)|–3|与|–8|;|–2 |与|–
1 |;3 3(2)4 与–5;0.9 与 1.2;–8 与 0;–7 与–1。
通过练习一方面进一步巩固绝对值概念,另一方面又回顾了两个正整数、正分数、正小数、正数与 0、0 与负数、正数与负数的大小比较方法,对于两个负数可以借助于数轴比较大小,但较繁琐。
通过观察几组负数的大小与他们的绝对值的大小的关系,便可发现两个负数的大小规律:两个负数,绝对值大的反而小,绝对值小的反而大。
三、范例共做例 1:比较大小(1)–0.3 与–0.1;(2)–2 与– 3 。
3 4解:(1)∵ |–0.3|=0.3,|–0.1|=0.1 0.3>0.1 ∴ –0.3<–0.1 (2)∵ |– 2 |= 2 = 8 ,|– 3 |= 3 = 93 3 12
4 48 12 312<9 124∴ – 2 >– 3 说明:①要求学生严格按此格式书写,训练学生逻辑推理能力;②注意符号“∵”“∴” 、的写法、读法和用法;③对于两个负数的大小比较可以不必再借助于数轴而直接进
5/ 7
行;④异分母分数比较大小时要通分将分母化为相同。
例 2:用“>”连接下列个数: 2.6,–4.5, 1 ,0,–2 210 3分析:多个有理数比较大小时,应根据“正数大于一切负数和 0,负数小于一切正数和 0,0 大于一切负数而小于一切正数”进行分组比较,即只需正数和正数比,负数和负数比。
四、小结提高两个负数比较大小,先比较它们绝对值的大小,再根据“绝对值大的反而小”确定两数的大小。
六、巩固练习 1.设 a、b 为两个有理数,且 a<b<0,则下列各式中正确的是() A.|a|>|b| B.–a<–b C.–a<|b| D.|a|<–b 2.如果 a>0,b<0,|a|<|b|,则 a,b,–a,–b 的大小关系是() A.–b>a>–a>b B.a>b>–a>–b C.–b>a>b >–a D.b>a>–b>–a
---------------------------------------------------------------最新资料推荐------------------------------------------------------ 4.比较大小:(1)–9899–99 ;(2)–π100–3.14;(3)– 311–0.273。
7/ 7。