整式的加减(第二课时)去括号、添括号法则学案

合集下载

《整式的加减》去括号教案

《整式的加减》去括号教案

《整式的加减》去括号教案第一章:去括号的基本概念1.1 引入:引导学生回顾整式的加减运算,让学生理解括号在整式运算中的作用。

1.2 目标:使学生掌握去括号的基本概念,理解去括号的运算规则。

1.3 教学内容:1.3.1 去括号的定义:去掉整式中的括号,使整式简化。

1.3.2 去括号的运算规则:(1)去掉括号时,要注意括号前的符号,如果是正号,则直接去掉括号;如果是负号,则去掉括号并将括号内的每一项变号。

(2)如果括号前有系数,去掉括号后,系数要乘以括号内的每一项。

1.4 教学活动:1.4.1 教师通过示例,讲解去括号的基本概念和运算规则。

1.4.2 学生进行练习,巩固去括号的方法。

第二章:去括号的方法2.1 引入:让学生理解去括号的重要性,激发学生学习去括号方法的兴趣。

2.2 目标:使学生掌握去括号的方法,能够熟练地进行去括号操作。

2.3 教学内容:2.3.1 去括号的方法:(1)如果括号前是正号,直接去掉括号。

(2)如果括号前是负号,去掉括号并将括号内的每一项变号。

(3)如果括号前有系数,去掉括号后,系数要乘以括号内的每一项。

2.3.2 去括号时的注意事项:(1)去掉括号后,要保持整式的平衡,即等号两边的项数要相等。

(2)去掉括号后,要注意各项的符号和系数的变化。

2.4 教学活动:2.4.1 教师通过示例,讲解去括号的方法和注意事项。

2.4.2 学生进行练习,巩固去括号的方法。

第三章:去括号的练习3.1 引入:让学生通过练习,提高去括号的能力。

3.2 目标:使学生能够熟练地运用去括号的方法,解决实际问题。

3.3 教学内容:3.3.1 练习题:提供一些去括号的练习题,让学生独立完成。

3.3.2 练习题解答:教师讲解练习题的解答过程,分析学生容易出现的问题。

3.4 教学活动:3.4.1 学生独立完成练习题。

3.4.2 教师讲解练习题解答过程,分析学生容易出现的问题。

第四章:去括号在实际问题中的应用4.1 引入:让学生了解去括号在实际问题中的应用,提高学生的应用能力。

七年级数学上册 2.2 整式的加减 第2课时 去括号学案 新人教版(2021学年)

七年级数学上册 2.2 整式的加减 第2课时 去括号学案 新人教版(2021学年)

七年级数学上册2.2 整式的加减第2课时去括号学案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学上册 2.2 整式的加减第2课时去括号学案(新版)新人教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学上册2.2 整式的加减第2课时去括号学案(新版)新人教版的全部内容。

第2课时去括号课前预习要点感知如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号________;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号________.预习练习1-1下列去括号正确的是( )A.a+(b-c+d)=a+b+c+dB.a-(b+c-d)=a-b-c+dC.a-(b-c-d)=a-b-c+dD.a+(b-c-d)=a-b+c+d1-2(厦门中考)化简:(-x2+3-7x)+(5x-7+2x2).当堂训练知识点1去括号1.下列运算正确的是( )A.-2(3x-1)=-6x-1B.-2(3x-1)=-6x+1C.-2(3x-1)=-6x-2D.-2(3x-1)=-6x+22.下列各式中,去括号不正确的是( )A.x+2(y-1)=x+2y-2B.x-2(y-1)=x-2y+2C.x-2(y+1)=x-2y-2D.x-2(y-1)=x-2y-23.去掉下列各式中的括号:(1)a-(-b+c)=________;(2)a+(b-c)=________;(3)(a-2b)-(b2-2a2)=________。

知识点2去括号化简4.化简-(a-1)-(-a-2)+3的值是( )A.4 B.6C.0 D.无法计算5.(济南中考)计算:3(2x+1)-6x=________。

《整式的加减》去括号教案

《整式的加减》去括号教案

《整式的加减》去括号教案一、教学目标:1. 让学生掌握去括号的法则,能够正确地去掉整式中的括号。

2. 培养学生运用数学知识解决实际问题的能力。

3. 提高学生的逻辑思维能力和团队协作能力。

二、教学内容:1. 去括号法则的讲解。

2. 去括号练习题。

三、教学重点与难点:1. 教学重点:去括号法则的掌握。

2. 教学难点:如何正确去掉整式中的括号。

四、教学方法:1. 采用讲解法,讲解去括号法则。

2. 采用练习法,让学生通过练习题巩固知识点。

3. 采用小组讨论法,培养学生团队协作能力。

五、教学过程:1. 导入新课:回顾上节课的内容,引出本节课的主题——去括号。

2. 讲解去括号法则:讲解去括号的基本原则,让学生明白如何去掉整式中的括号。

3. 练习题:布置一些去括号的练习题,让学生独立完成,检测掌握情况。

4. 小组讨论:让学生分组讨论,共同解决练习题中的问题。

5. 总结:对本节课的内容进行总结,强调去括号法则的重要性。

6. 作业布置:布置一些有关去括号的课后作业,让学生巩固知识点。

7. 课后反思:对本节课的教学效果进行反思,为下一节课的教学做好准备。

六、教学评价:1. 课后作业:通过课后作业的完成情况,评估学生对去括号法则的掌握程度。

2. 课堂练习:观察学生在课堂练习中的表现,了解他们对去括号技巧的应用能力。

3. 小组讨论:评价学生在小组讨论中的参与度和合作精神。

七、教学资源:1. PPT课件:使用多媒体课件,生动展示去括号的过程和例题。

2. 练习题库:准备充足的去括号练习题,包括不同难度的题目。

3. 小组讨论工具:提供适当的工具,如白板或黑板,以便学生在讨论时展示和解释他们的思路。

八、教学进度安排:1. 第一课时:介绍去括号法则,讲解基本概念和规则。

2. 第二课时:进行去括号的练习,让学生通过实际操作加深理解。

3. 第三课时:小组讨论和实践,解决更复杂的问题。

4. 第四课时:总结去括号的重点和难点,进行复习和巩固。

人教版-数学-七年级上册-整式的加减(二)—去括号与添括号导学案

人教版-数学-七年级上册-整式的加减(二)—去括号与添括号导学案

编号:课型 新授课 学习目标:1.掌握去括号与添括号法则; 2. 充分注意变号法则的应用.学习重难点: 1.去括号与添括号法则;2.去括号与添括号时括号内项的变号。

学习过程:使用说明:仔细阅读课本P65~66 一、自主预习:1、要点一、去括号法则如果 , ; 如果 , . 要点诠释:(1)去括号法则实际上是根据 推出的:当括号前为“+”号时,可以看作+1与括号内的各项相乘;当括号前为“-”号时,可以看作-1与括号内的各项相乘.(2)去括号时,首先要弄清括号前面是“ ”号,还是“ ”号,然后再根据法则去掉括号及前面的符号.(3)对于多重括号,去括号时可以先去小括号,再去 ,也可以先去 .再去 .但是一定要注意 .(4)去括号只是改变式子形式,但不改变式子的值,它属于多项式的恒等变形.2、要点二、添括号法则添括号后,括号前面是“+”号, ;添括号后,括号前面是“-”号, .要点诠释:(1)添括号是添上括号和括号前面的符号,也就是说,添括号时,括号前面的“+”号或“-”号也是新添的,不是原多项式某一项的符号“移”出来得到的.(2)去括号和添括号是两种相反的变形,因此可以相互检验正误:如:()a b c a b c +-+-添括号去括号, ()a b c a b c -+--添括号去括号二、预习自测1.将(a+1)-(-b+c )去括号应该等于 ( ) .A .a+1-b -cB .a+1-b+cC .a+1+b+cD .a+1+b -c3.计算-(a -b )+(2a+b )的最后结果为( ).A .aB .a+bC .a+2bD .以上都不对3.添括号:(1). ()()1 a b c d a -+-=-; ()()22 ;x y z +-=-(3).()()[(_______)][(_______)]a b c d a b c d a a -+-+-+=-+.三、合作探究1.a b c --+的相反数是( ).A .a b c ++B .a b c -+C .a b c +-D .c a b +-教与学随笔2.按要求把多项式321a b c-+-添上括号:(1)把含a、b的项放到前面带有“+”号的括号里,不含a、b的项放到前面带有“-”号的括号里;(2)把项的符号为正的放到前面带有“+”号的括号里,项的符号为负的放到前面带有“-”号的括号里.【总结升华】整式加减的一般步骤是:①先去括号;②再合并同类项.四、课后小结:1、你学到了什么?请梳理一下2、你的疑惑?五、当堂检测1、添括号:(1)22()101025()10()25x y x y x y+--+=+-+.(2)()()[(_______)][(_______)]a b c d a b c d a a-+-+-+=-+2、化简:(1)15+3(1-x)-(1-x+x2)+(1-x+x2-x3). (2)3x2y-.(3)-3. (4)ab-{4a2b-}六、教与学反思教与学随笔。

3.4整式的加减第2课时去括号(教案)

3.4整式的加减第2课时去括号(教案)
-在实际问题中去括号的应用:学生可能难以将抽象的数学法则与具体的生活情境联系起来,不知道如何在实际问题中使用去括号法则。
举例解释:
(1)对于表达式-2(3x - 4y + 5),学生需注意去括号后变为-6x + 8y - 10,括号内每一项都要乘以括号前的“-2”。
(2)对于多层括号的情况如-3{(2x - [4 - (1 - 2y)])},需要先去最内层括号,然后依次向外进行,注意每层括号前的符号对括号内项的影响。
本节课通过讲解和练习,使学生熟练掌握去括号的方法,并能将其应用于整式的加减运算中,提高学生的运算能力和解决问题的能力。
二、核心素养目标
1.培养学生的逻辑推理能力:通过去括号法则的学习,让学生掌握从特殊到一般、从具体到抽象的逻辑推理方法,提高学生分析问题和解决问题的能力。
2.培养学生的数学运算能力:使学生能够熟练运用去括号法则进行整式的加减运算,提高运算速度和准确性。
3.4整式的加减第2课时去括号(教案)
一、教学内容
本节课选自七年级数学上册第三章“整式的加减”中的3.4节,第2课时“去括号”。主要内容包括以下两点:
1.掌握去括号的方法:在整式的加减运算中,根据括号前的符号,去掉括号,并注意括号内各项符号的变化。
2.应用去括号法则解决实际问题:运用去括号的方,解决生活中的数学问题,如购物时计算总价等。
(2)对于表达式4 - (2x - 3y + 5),当括号前为“-”号时,去掉括号后,括号内各项符号取反,即4 - 2x + 3y - 5。
2.教学难点
-括号前“-”号时去括号后括号内各项符号的取反:学生容易在这一步出错,忘记改变括号内各项的符号。
-多个括号嵌套时的去括号顺序:在多层括号的情况下,学生可能不知道从哪一层开始去括号,导致运算错误。

整式的加减教学设计(优秀10篇)

整式的加减教学设计(优秀10篇)

整式的加减教学设计(优秀10篇)整式的加减篇一教学目的1、使学生在掌握合并同类项、去括号法则基础上进行整式的加减运算。

2、使学生掌握整式加减的一般步骤,熟练进行整式的加减运算。

教学分析重点:整式的加减运算。

难点:括号前是-号,去括号时,括号内的各项都要改变符号。

突破:正确理解去括号法则,并会把括号与括号前的符号理解成整体。

教学过程一、复习1、叙述合并同类项法则。

2、叙述去括号与添括号法则。

3、化简:y2+(x2+2xy-3y2)-(2x2-xy-2y2)二、新授1、引入整式的化简,如果有括号,首先要去括号,然后合并同类项,所以去括号和合并同类项是整式加减的基础。

2、例题例1 (P166例1)求单项式5x2y,-2 x2y,2xy2,-4xy2的和。

分析:式子5x2y+(-2 x2y)+2xy2+(-4xy2)就是这四个单项式的和。

几个整式相加减,通常用括号把每一个整式括号起来,再用加减号连接。

解:(略,见教材P166)例2(P166例2)求3x2-6x+5与4x2-7x-6的和。

解:(3x2-6x+5)+(4x2-7x-6) (每个多项式要加括号)=3x2-6x+5+4x2-7x-6 (去括号)=7x2+x-1 (合并同类项)例3。

(P166例3)求2x2+xy+3y2与x2-xy+2y2的差。

解:(2x2+xy+3y2)-( x2-xy+2y2)=2x2+xy+3y2-x2+xy-2y2=x2+2xy+y23、归纳整式加减的一般步骤。

整式加减实际上就是合并同类项。

在运算中,如果遇到括号,按去括号法则,先去括号,再合并同类项。

三、练习P167:1,2,3,4。

补:已知:A=5a2-2b2-3c2, B=-3a2+b2+2c2, 求2A-3B四、小结1、文字叙述的整式加减,对每一个整式要添上括号。

2、有括号的要先去括号,如果双有中括号或大括号,要先去小括号,后去中括号,再去大括号。

五、作业1、P169:A:1(3、4),3,5,6,7,8。

七年级数学上册第二章整式的加减2.2整式的加减(第二课时去括号)教案(新版)新人教版

七年级数学上册第二章整式的加减2.2整式的加减(第二课时去括号)教案(新版)新人教版

第二课时 去括号一、教学目标(一)学习目标1.运用运算律探究去括号法则,体会类比的数学思想.2.能熟练、准确地运用去括号法则进行整式的化简.(二)学习重点探究去括号法则,准确应用法则将整式化简.(三)学习难点括号前是“-”时,去括号时,括号内的各项变号容易产生错误.二、教学设计(一)课前设计1.预习任务(1)如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号 相同 .(2)如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号 相反 .2.预习自测(1) 下列各式从左到右的变形中,正确的是( )A .2()2a b c a b c --=+-B .2()2a b c a b c --=--C .2()22a b c a b c --=--D .2()22a b c a b c --=-+【知识点】去括号法则.【解题过程】解:A.去括号时漏乘了项且未都改变符号,故错;B.去括号时漏乘了项且未都改变符号,故错;C.去括号时了第二项未改变符号,故错;D.括号前是负因数,去括号后各项改变了符号,故正确.【思路点拨】按照去括号法则逐一排除,特别注意括号前是“-”时,括号了的各项都要改变符号.【答案】D.(2)化简)12(2-+-a a 的结果是( )A .41a --B .41a -C .1D .-1【知识点】去括号法则【解题过程】解:2(21)2211a a a a -+-=-+-=-,D.正确.【思路点拨】按照去括号法则逐一排除,特别注意括号前是“-”时,括号了的各项都要改变符号.【答案】D.(3)下列去括号正确的是( ).A.()a b c d a b c d -++=-+-;B.22(3)3a a a a --=--;C.()()a b c d a b c d -++-=---+;D.[]()a b c d a b c d ---=-+-.【知识点】去括号法则.【解题过程】解:A.去括号时括号前是“-”去掉括号后括号里的各项都要变号,而第二项没变,故错.B.去括号时括号前是“-”去掉括号后括号里的各项都要变号,而第二项没变,故错.C.去括号时第二个括号前是“+”去掉括号后括号里的各项都不变号,而它都变了号,故错.D.正确.【思路点拨】按照去括号法则逐一排除,特别注意括号前是“-”时,括号了的各项都要改变符号.【答案】D.(4)下列运算正确的是( )A.2(31)61x x --=--;B.2(31)61x x --=-+;C.2(31)62x x --=--;D.2(31)62x x --=-+.【知识点】去括号法则.【解题过程】解:A.在运用乘法分配律时漏乘了“-1”且未变号,故错;B.在运用乘法分配律时漏乘了“-1”, 故错;C.去括号时,括号前因数是“-2”去掉括号时各项都应该变号,而第二项没有改变,故错;D.正确.【思路点拨】按照去括号法则逐一排除,特别注意括号前是“-”时,括号了的各项都要改变符号.【答案】D.(二)课堂设计1.知识回顾(1)同类项:所含字母相同且相同字母的指数也相同的单项式叫同类项.特征:两相同,两无关.(2)合并同类项法则:系数相加减,字母和字母的指数不变.2.问题探究探究一(去括号的法则)●活动①(整合旧知,感知去括号法则)现在我们来看本章引言中的问题(3):在格尔木到拉萨路段,如果列车通过冻土地段要t小时,那么它通过非冻土地段的时间为小时,于是,冻土地段的路程为千米,非冻土地段的路程为千米,因此,这段铁路全长为千米①冻土地段与非冻土地段相差千米.②生答:(-0.5),100,120(-0.5),100+120(-0.5)千米①冻土地段与非冻土地段相差:100-120(-0.5)千米②师问:利用合并同类项可以把一个多项式化简,在实际问题中列出的式子往往含有括号,它们应如何化简呢?师问:上面的式子①②都带有括号,它们应如何化简呢?学生思考【设计意图】直观感受到含有括号的整式的化简必须把括号去掉.认识到学习去括号的必要性.探究二★▲●活动①(大胆操作,探究新知识)计算:(1)100×(1-0.97)= (2)-100×(0.37-0.67 )=学生举手回答.师问:在数的运算中,遇到括号时是怎样去掉括号的?去括号的依据是什么?生答:将括号前的因数利用乘法的分配律和有理数的乘法法则乘进去.师问:我们知道字母代表一个数,你能利用分配律计算吗?+120(-0.5)= ① -120(-0.5)= ②学生回答.【设计意图】通过数的运算中含有括号运算类比整式中含有括号的运算,体会数学中的类比思想.●活动② (集思广益,发现去括号时符号变化的规律,得到去括号法则)师追问:数的运算中去括号的方法在式子的去括号中仍然适用,比较①②,你能发现去括号时括号里各项的符号变化规律吗?生答:学生观察小组讨论交流并展示师归纳:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号 . 如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号 .【设计意图】通过学生观察分析归纳,初步掌握去括号时的符号变化规律.●活动③ (反思过程,理解掌握去括号法则)师问:观察比较:(3)x +-与(3)x --有何区别?生答:(3)x +-与(3)x --可以分别看着1与-1分别乘以(3)x -师问:利用乘法分配律如何去掉括号?各项的符号变化规律又是什么?生答:(3)3x x +-=-(括号没了,括号里的每一项的符号都没变)(3)3x x --=-+(括号没了,括号里的每一项的符号都改变了)师归纳:(1)去括号时,先一定弄清括号前是什么符号,再决定括号内的每一项是否改变符号,做到要变全都变,不变都不变的原则,另外,括号内原有几项,去掉括号后仍然有几项.(2)运用乘法分配律时括号前的因数不要漏乘括号里的项.【设计意图】通过二者的比较和区别,学生再次理解去括号法则,特别是括号前是“-”的时候容易出现符号的错误.●活动④(发散思维,重新认识去括号法则)师问:判定下列各式去括号是否正确?并说明理由(1)22()a a b c a a b c --+=--+( )(2)2()(1)21x y y x y y --++=--++( )生答:(1)错,因为括号前是“-”,去掉括号和括号前的“-”后,括号里的每一项没变号;(2)错,因为第一个括号“-2”分配进去漏乘了第二项.总结:去括号时首先弄清括号前的符号,才能决定括号内的项是否变号,其次在括号前的因数分配到括号里时不要漏乘项.【设计意图】通过练习,进一步理解去括号法则,认识特别是括号前是“-”的时候容易出现符号的错误和漏乘项的错误.探究三 运用去括号法则进行整式的化简★▲●活动① (基础性例题)师问:我们学习的去括号的法则是什么?生答:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号 ; 如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号 . 师问:你能利用法则解决下列问题吗?例1.化简下列各式:(1)82(5)a b a b ++-; (2)2(53)3(2)a b a b ---;(3))24()2(2222ab ab b a ab ab b a +--+-. 【知识点】去括号法则.【解题过程】解:(1)82(5)a b a b ++-=825a b a b ++-=13a b +;(2)2(53)3(2)a b a b ---=25336a b a b --+=2353a a b -++; (3))24()2(2222ab ab b a ab ab b a +--+-=2222242a b ab ab a b ab ab -+-+-=223a b ab ab -++【思路点拨】去括号进行整式的化简时,注意括号前是“-”的情况,去括号时各项都应改变符号,同时要注意分配律时不要漏乘括号里的项.【答案】(1)13a b +;(2)2353a a b -++;(3)223a b ab ab -++.师问:整式的化简实际就是去括号合并同类项,那么整式的化简的步骤是什么?生答:一是确定括号前的因数的符号以便确定是否变号,二是弄清括号内各项的符号,三是记住法则,四是检查项数是否与原括号内的项数一致.总结:去括号,看符号,是“+”号不变号,是“-”号全变号,分配进去不漏项. 练习:(1)5(32)(37)a a a -+---;(2))24(2)2(2222ab ab b a ab ab b a +--+-.【知识点】去括号法则【解题过程】解:(1)5(32)(37)a a a -+---=53237a a a -+--+=55a -+(2))24(2)2(2222ab ab b a ab ab b a +--+-=22222842a b ab ab a b ab ab -+-+-=273a b ab -+【思路点拨】去括号进行整式的化简时,注意括号前是“-”的情况,去括号时各项都应改变符号,同时要注意分配律时不要漏乘括号里的项.【答案】(1)55a -+;(2)273a b ab -+.【设计意图】通过例习题的学习,熟练掌握去括号的发则,准确进行整式的化简. ●活动2 (探究型例题)例2.若222222(2)(3)49ax xy y x bxy y x xy cy -+--++=-+ 成立,求a 、b 、c 的值.【知识点】去括号法则【解题过程】解:2222222349ax xy y x bxy y x xy cy -++--=-+ 2222(1)(2)249a x b xy y x xy cy ++---=-+所以14a +=;29b --=-;2c -=,所以3a =;7b =;2c =-.【思路点拨】等式的左边进行去括号,合并同类项后,根据等式左右两边的结构完全相同的特征建立方程,从而求解.【答案】3a =;7b =;2c =-.练习:(1)若2A x y =-,3B y z =-,且0A B C ++=,求C .(2)若关于x 的多项式)568()1468(22++-++x x ax x 的值与x 无关,你知道a 应该取什么值吗?【知识点】去括号法则.【解题过程】解:(1)由0A B C ++=得0C A B =--即:C= (2)(3)x y y z ----= 23x y y z -+-+= 3x y z -++;所以C 为3x y z -++.(2))568()1468(22++-++x x ax x =228614865x ax x x ++---=228614865x ax x x ++---=(66)9a x -+因为值与x 无关,所以660a -=;即1a =.【思路点拨】(1)根据A+B+C=0,表示C ,再把A 和B 代入,去括号合并同类项即可;(2)去括号合并同类项后根据整式的值与x 无关,从而建立等式求出a 的值.【答案】(1)3x y z -++;(2)1a =.【设计意图】通过例题的学习,让学生熟练准确的掌握去括号法则并进行整式的化简,能解决一些综合型问题.3.课堂总结知识梳理(1)去括号法则:①如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同. ②如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.(2)去括号时应注意:①括号前是“-”时,括号连同括号前的“-”去掉后,括号里的各项都要改变符号,简记为“-”变“+”不变,要变全都变,不变都不变.②当括号前带有数字因数时,这个数要乘以括号里的每一项,切勿漏乘某些项.(3)去括号的步骤:一是确定括号前的因数的符号以便确定是否变号,二是弄清括号内 各项的符号,三是记住法则,四是检查项数是否与原括号内的项数一致和是否漏乘项. 重难点归纳(1)去括号时应注意:①括号前是“-”时,括号连同括号前的“-”去掉后,括号里的各项都要改变符号,简记为“-”变“+”不变,要变全都变,不变都不变.②当括号前带有数字因数时,这个数要乘以括号里的每一项,切勿漏乘某些项.(2)类比的数学思想.。

2.2.2 整式加减(二)去括号添括号(解析版)

2.2.2 整式加减(二)去括号添括号(解析版)

2.2.2整式加减(二)去括号添括号去括号法则题型一:去括号法则【例题1】(2017·广东七年级期末)将x ﹣(y ﹣z )去括号,结果是( )A .x ﹣y ﹣zB .x+y ﹣zC .x ﹣y+zD .x+y+z【答案】C【分析】根据去括号规律:括号前是“-”号,去括号后时连同它前面的“-”号一起去掉,括号内各项都要变号可得答案.【详解】解:x ﹣(y ﹣z )= x ﹣y+z.故选:C【点睛】本题考查了去括号,掌握去括号时符号改变规律是解决此题的关键.变式训练【变式1-1】(2019·珠海市第十一中学)()x y z --去括号后的值是()A .x y z--B .x y z -+C .x y z--+D .x y z ++【答案】B 【分析】利用去括号法则计算.去括号时括号前面是负号的括号里的各项符号都要改变.【详解】()x y z x y z --=-+.故选:B .【点睛】本题主要考查了去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.【变式1-2】(2020·浙江省象山县丹城中学七年级期中)将1(2)2y x --去括号,得( )A .1-22y x +B .1-22y x -C .-12y x +D .12y x --【变式1-3】(2020·江苏景山中学七年级期中)下列去括号中,正确的是 ()A .-(1-3m)=-1-3mB .3x-(2y-1)=3x-2y+1C .-(a+b)-2c=-a-b+2cD .m 2+(-1-2m)=m 2-1+2m 【答案】B 【分析】根据去括号的法则,括号外面是正则可直接去括号,括号外面是负则括号里面的各项要变号进行各选项的判断.【详解】A.-(1-3m)=-1+3m ,故本选项错误;B.3x-(2y-1)=3x-2y+1,故本选项正确;C.-(a+b)-2c=-a-b-2c ,故本选项错误;D.m 2+(-1-2m)=m 2-1-2m ,故本选项错误.故选B【点睛】本题考查去括号的法则,难度不大,注意掌握括号外面是正则可直接去括号,括号外面是负则括号里面的各项要变号.【变式1-4】(2018·全国七年级单元测试)去掉下列各式中的括号:(1)8m –(3n +5); (2)n –4(3–2m ); (3)2(a –2b )–3(2m –n ).【答案】(1)8m –3n –5;(2)n –12+8m ;(3)2a –4b –6m +3n【分析】根据去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,对各式进行处理即可.【详解】(1)8m –(3n +5)=8m –3n –5.(2)n –4(3–2m )=n –(12–8m )=n –12+8m .(3)2(a –2b )–3(2m –n )=2a –4b –(6m –3n )=2a –4b –6m +3n .【点睛】考查去括号法则,去括号时,当括号前面为“-”时常出现错误,常常是括号内前面的项符号改变了,后面就忘记了,是易错点.题型二:去括号合并同类项【例题2】(2020·陕西七年级期中)先去括号,再合并同类项正确的是( )A .2x-3(2x-y)=-4x-yB .5x-(-2x+y)=7x+yC .5x-(x-2y)=4x+2yD .3x-2(x+3y)=x-y【答案】C选项A, 2x -3(2x -y )=2 x -6x +6y =-4x +6y.A 错.选项B, 5x -(-2x +y )=5x +2x -y =7x +y B 错.选项C, 5x -(x -2y )=5 x -x +2y=4x +2y,C 对.选项D, 3x -2(x +3y )=3x-2x-6y=x-6y,D 错.选C.变式训练【变式2-1】(2020·毕节三联学校七年级期中)先去括号,再合并同类项.(1)5(24)a a b --(2)2223(2)x x x +-【答案】(1)34a b +;(2)26x x-+【分析】(1)先去括号,因为括号前面是负号,要注意变号,再合并同类项;(2)先根据乘法分配律去括号,再合并同类项.【详解】解:(1)原式52434a a b a b =-+=+;(2)原式2222636x x x x x =+-=-+.【点睛】本题考查去括号和合并同类项,解题的关键是掌握去括号和合并同类项的方法.【变式2-2】(2018·全国七年级单元测试)去括号,合并同类项:(1)(x-2y)-(y-3x);(2)3a2−[5a−(12a−3)+2a2]+4.【答案】(1)4x-3y;(2)a2-92a+1.【分析】(1)去括号时注意去括号后符号的变化,然后找出同类项,根据合并同类项得法则,即系数相加作为系数,字母和字母的指数不变;(2)去括号时注意去括号后符号的变化,然后找出同类项,根据合并同类项得法则,即系数相加作为系数,字母和字母的指数不变.【详解】(1)(x-2y)-(y-3x)=x-2y-y+3x=4x-3y;(2)3a2−[5a−(12a−3)+2a2]+4=3a2−(5a−12a+3+2a2)+4=3a2−5a+12a-3-2a2+4=a2-92a+1.【点睛】解决本题是要注意去括号时符号的变化,并且不要漏乘.有多个括号时要注意去各个括号时的顺序.【变式2-3】(2018·全国七年级单元测试)去括号并合并:3(a-b)-2(2a+b)=___________.【答案】-a-5b【分析】根据乘法分配律去括号,再合并同类项.【详解】3(a-b)-2(2a+b)=3a-3b-4a-2b=-a-5b故答案为:-a-5b【点睛】本题考核知识点:整式的运算.解题关键点:正确去括号,合并同类项.【变式2-4】(2020·全国)先去括号,再合并同类项:(1)2(2b-3a)+3(2a-3b);(2)4a2+2(3ab-2a2)-(7ab-1).【答案】(1)-5b;(2)-ab+1【分析】(1)根据括号前是正号去括号不变号,括号前是负号去掉括号要变号,可去掉括号,根据合并同类项,可得答案;(2)根据括号前是正号去括号不变号,括号前是负号去掉括号要变号,可去掉括号,根据合并同类项,可得答案;【详解】(1)2(2b-3a)+3(2a-3b)=4b-6a+6a-9b=-5b;(2)4a2+2(3ab-2a2)-(7ab-1)=4a2+6ab-4a2-7ab+1=-ab+1.【点睛】本题考查了去括号与添括号,合并同类项,括号前是正号去掉括号不变号,括号前是负号去掉括号要变号.题型三:去绝对值去括号【例题3】(2020·正安县思源实验学校七年级期中)有理数a 、b 、c 在数轴上的位置如图所示,且表示数a 的点、数b 的点与原点的距离相等.(1)用“>”“=”或“<”填空:b ________0,+a b ________0,a c -________0,b c -________0;(2)化简a b a c b ++--.【答案】(1)<;=;>;<;(2)c -.【分析】(1)根据数轴判断a 、b 、c 的符号和绝对值,进而即可判断各式的符号;(2)先脱去绝对值,在去括号计算即可.【详解】解:(1)由数轴得a >0>c >b ,a b c =>,∴b <0;a+b =0;a-c >0;b-c <0;故答案为:<;=;>;<;(2)解:∵0a b +=,0a c ->,0b <,∴原式()()0a c b a c b c =+---=-+=-.【点睛】本题考查了根据数轴判断代数式的符号,绝对值的化简,有理数的运算法则,整式的计算等知识,根据数轴判断各式的符号是解题关键.变式训练【变式3-1】(2019·北京师范大学乌海附属学校七年级月考)有理数a 、b 、c 在数轴上的位置如图所示,则代数式a c a b b c +++--的值等于( )A .2aB .2bC .2cD .0【答案】D 【分析】根据数轴,分别判断a+c ,a+b ,b-c 的正负,然后去掉绝对值即可.【详解】解:由数轴可得,a+c>0,a+b<0,b-c<0,则|a+c|+|a+b|-|b-c|=a+c+(-a-b )-(c-b )=a+c-a-b+b-c=0.故选D.【点睛】本题考查了化简绝对值和整式的加减,解答本题的关键是结合数轴判断绝对值符号里面代数式的正负.【变式3-2】(2018·山东七年级期末)已知有理数a ,b ,c 在数轴上对应的位置如图所示,化简|b ﹣c|﹣|c ﹣a|( )A .b ﹣2c+aB .b ﹣2c ﹣aC .b+aD .b ﹣a【答案】D 【分析】观察数轴,可知:c <0<b <a ,进而可得出b ﹣c >0、c ﹣a <0,再结合绝对值的定义,即可求出|b ﹣c |﹣|c ﹣a |的值.【详解】观察数轴,可知:c <0<b <a ,∴b ﹣c >0,c ﹣a <0,∴|b ﹣c |﹣|c ﹣a |=b ﹣c ﹣(a ﹣c )=b ﹣c ﹣a +c =b ﹣a .故选D .【点睛】本题考查了数轴以及绝对值,由数轴上a 、b 、c 的位置关系结合绝对值的定义求出|b ﹣c |﹣|c ﹣a |的值是解题的关键.【变式3-3】(2020·福州三牧中学九年级月考)有理数a ,b ,c 在数轴上的位置如图所示,化简a -a b +-c a -=________.【答案】a+b-c【分析】根据数轴,可以判断a ,b ,c 的正负情况,从而可以将所求式子的绝对值符号去掉,然后化简即可解答本题.【详解】解:由数轴可知,0,b a c b a c <<<>>,0,0a b c a \+<->∴原式()()a a b c a a a b c a a b c=-++--=-++-+=+-故答案为:a b c +-.【点睛】本题考查的知识点是数轴与绝对值的性质,根据绝对值的性质将所求式子绝对值符号去掉是解此题的关键.添括号法则题型四:添括号法则【例题4】(2019·全国)下列添括号错误的是()A .3-4x=-(4x-3)B .(a+b)-2a-b=(a+b)-(2a+b)C .-x 2+5x-4=-(x 2-5x+4)D .-a 2+4a+a 3-5=-(a 2-4a)-(a 3+5)【答案】D【分析】根据添括号法则, 当括号前添正号时直接添括号即可,当括号前添负号时括号里面的各项都要变号,即可解题.【详解】解:A,B,C 都是正确的,其中,D 项的右侧展开为-a 2+4a-a 3-5,与等号左侧不相等,故错误项选D.【点睛】本题考查了添括号的性质,属于简单题,熟悉去括号和添括号的性质与联系,特别的注意括号前为负号时要变号是解题关键.变式训练【变式4-1】(2020·全国七年级课时练习)不改变多项式3b 3﹣2ab 2+4a 2b ﹣a 3的值,把后三项放在前面是“﹣”号的括号中,以下正确的是( )A .3b 3﹣(2ab 2+4a 2b ﹣a 3)B .3b 3﹣(2ab 2+4a 2b+a 3)C .3b 3﹣(﹣2ab 2+4a 2b ﹣a 3)D .3b 3﹣(2ab 2﹣4a 2b+a 3)【答案】D【分析】根据去括号法则:如果括号外面的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反进行分析.【详解】3b3﹣2ab2+4a2b﹣a3= 3b3﹣(2ab2﹣4a2b+a3).故选D.【点睛】本题考查了去括号,掌握去括号时符号改变规律是解决此题的关键.【变式4-2】(2019·辽宁抚顺市·八年级期末)2ab+4bc﹣1=2ab﹣( ),括号中所填入的整式应是( ) A.﹣4bc+1B.4bc+1C.4bc﹣1D.﹣4bc﹣1【答案】A【分析】添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.【详解】解:2ab+4bc﹣1=2ab﹣(﹣4bc+1).故选:A.【点睛】本题考查了添括号法则,熟练掌握添括号的法则是关键.【变式4-3】(2019·上海市实验学校西校)下列各式添括号(1)2a-b-x-3y=2a-(b+x+3y);(2)2a-b-x-3y=(2a-b)-(x+3y);(3)2a-b-x-3y=-(x+3y)-(b-2a);(4)2a-b-x-3y=(2a-3y)-(b-x);错误的有几个()A.1个B.2个C.3个D.4个【答案】A【分析】根据添括号法则即可得出答案.【详解】(1)2a-b-x-3y=2a-(b+x+3y),故(1)正确;(2)2a-b-x-3y=(2a-b)-(x+3y),故(2)正确;(3)2a-b-x-3y=-(x+3y)-(-2a+b)= -(x+3y)-(b-2a),故(3)正确;(4)2a-b-x-3y=(2a-3y)-(b+x),故(4)错误;故答案选择:A.【点睛】本题考查的是添括号,需要熟练掌握添括号法则.题型五:利用添括号整体求值【例题5】(2019·泰州市第二中学附属初中九年级三模)已知x-3y=-3,则5-x+3y为()A.0B.2C.5D.8【答案】D【详解】解:∵x-3y=-3∴5-x+3y=5-( x-3y)=5+3=8故选D变式训练【变式5-1】若23a b -+的值等于5,则42a b -+的值为()A .2B .2-C .3D .3-【答案】A 【分析】根据题意可得22a b -=,然后利用整体代入法求值即可.【详解】解:∵23a b -+的值等于5∴22a b -=∴42a b-+=()42a b --=42-=2故选A .【点睛】此题考查的是求代数式的值,掌握利用整体代入法求代数式的值是解题关键.【变式5-2】(2020·北京北师大实验中学七年级期中)已232a a +=,则多项式22610a a +-的值为______.【答案】-6【分析】对原式添加括号变形,再整体代入条件即可.【详解】原式()2231022106a a =+-=´-=-,故答案为:-6.【点睛】本题考查添括号法则,以及整式求值,熟练运用添括号法则以及整体思想是解题关键.【变式5-3】(2019·安徽七年级期末)已知221x x +=-,则2364x x ++的值为______.【答案】1【分析】可将2364x x ++变形为23(2)4x x ++,再将221x x +=-整体代入即可.【详解】解:223643(2)4x x x x ++=++,因为221x x +=-,所以,原式=3(1)41´-+=.故答案为:1.【点睛】本题考查代数式求值——已知式子的值,求代数式的值,加括号法则.能利用加括号法则对需要求的代数式进行变形是解决此题的关键.【真题1】(2012·浙江温州市·中考真题)化简:2(a+1) -a=____【答案】a+2把括号外的2乘到括号内,去括号,然后合并同类项即可:原式=2a+2-a=a+2.【真题2】(2021·江苏中考真题)计算:()2222a a -+=__________.【答案】22a -【分析】先去括号,再合并同类项,即可求解.【详解】解:原式=2222a a --=22a -,故答案是:22a -.【点睛】本题主要考查整式的运算,掌握去括号法则以及合并同类项法则,是解题的关键.【拓展1】(2019·广州市第五中学七年级月考)已知,,a b c 在数轴上的位置如图所示,所对应的点分别为、、A B C .(1)在数轴上表示1-的点与表示3的点之间的距离为;由此可得点AB 、之间的距离为 (2)化简:2a b c b b a -++---(3)若24,c b =-的倒数是它本身,a 的绝对值的相反数是2-,M 是数轴上表示x 的一点,且20x a x b x c -+-+-=,求x 所表示的数.【答案】(1)4;-a b ;(2)222a b c -+-;(3)x 所表示的数为3-或193.【分析】(1)根据数轴的定义:两点之间的距离即可得;(2)根据数轴的定义,得出,,a b c 的符号、绝对值大小,再根据绝对值运算化简即可;(3)先根据平方数、倒数、相反数的定义求出,,a b c 的值,再根据绝对值运算化简求值即可得.【详解】(1)由数轴的定义得:在数轴上表示1-的点与表示3的点之间的距离为3(1)4--=;点,A B 之间的距离为-a b故答案为:4;-a b ;(2)由,,a b c 在数轴上的位置可知:0,c b a a b<<<>则2()2()()a b c b b a a b b c a b -++---=-++---22a b b c a b=--+--+222a b c =-+-;(3)由,,a b c 在数轴上的位置可知:0c b a<<<由24c =得,2c =-或2c =(舍去)由b -的倒数是它本身得,()1b b -×-=,解得1b =-或1b =(舍去)由a 的绝对值的相反数是2-得,2a -=-,解得2a =或2a =-(舍去)将2,1,2a b c ==-=-代入得21220x x x -++++=根据数轴的定义、绝对值运算分以下四部分讨论:①当2x -≤时,21220x x x -----=解得7x =-,符合题设②当21x -<£-时,21220x x x ---++=解得17x =-,不符题设,舍去③当12x -<£时,21220x x x -++++=解得15x =,不符题设,舍去④当2x >时,21220x x x -++++=解得193x =,符合题设综上,x 所表示的数为3-或193.【点睛】本题考查了数轴的定义、绝对值运算等知识点,熟记并灵活运用数轴的定义是解题关键.【拓展2】(2017·崇仁县第二中学七年级期中)数形结合是一种重要的数学方法,如在化简a 时,当a 在数轴上位于原点的右侧时,a a =;当a 在数轴上位于原点时,0a =;当a 在数轴上位于原点的左侧时,a a =-.当,,a b c 三个数在数轴上的位置如图所示,试用这种方法解决下列问题,(1)当 1.4a a a=时,求的值,(2)当 2.5b b b =-时,求的值.(3)请根据,,a b c 三个数在数轴上的位置, abca b c +求+的值.(4)请根据,,a b c 三个数在数轴上的位置,化简:a c c a b b c ++++--.【答案】(1) 1;(2)-1;(3)-1;(4)原式=-c.试题分析:(1)当 1.4a = 时,点A 在原点右边,由题意可知,此时a a =,代入a a即可求值;(2)当 2.5b =- 时,点B 在原点左边,由题意可知,此时b b =-,代入b b 即可求值;(3)由图中获取A 、B 、C 三点的位置信息后,结合题意即可求原式的值;(4)由图获取a b c 、、的正、负信息和三个数绝对值的大小后,就可确定原式中绝对值符号里面式子的值的符合,就可化简原式了.试题解析:(1)当 1.4a =时, 1.411.4aa ==;(2)当 2.5b =-时, 2.512.5bb ==--;(3)由图可知点A 在原点左边、点B 在原点右边、点C 在原点左边,∴由题意可得:a a b b c c =-==-,,,∴abca b c ++=11(1)1a b c a b c--++=-++-=-;(4)由图可知:0b c a <<<且c a b <<,∴000a c a b b c +>+<-<,,,∴a c c a b b c++++--()[()][()]a c c a b b c =++-+-+---a c c ab b c=+---+-c =-.点睛:在解第4小问这类题时,需注意以下两点:(1)根据在数轴上表示的数中,左边的总小于右边的,确定好所涉及数的大小关系及每个数的正、负信息(涉及异号两数相加的还要获取它们绝对值的大小关系);(2)根据有理数加、减法法则确定好需化简式子中绝对值符号里的式子的正、负,然后再根据绝对值的代数意义将绝对值符号去掉.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2 整式的加减(第二课时)去括号法则
学案
学习目标
1.能运用运算律探究去括号法则,并且利用去括号法则将整式化简.
2.经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.
3.能学生主动探究、合作交流的意识,严谨治学的学习态度.
学习重点和难点
重点:1.去括号法则,准确应用法则将整式化简.
2.整式的加减.
难点:1.括号前面是“−”号去括号时,括号内各项变号容易产生错误.
2.总结出整式的加减的一般步骤.
学习过程
一.创设情景,引入新课
问题引入:
黄老师今天开车从营前经双溪到紫阳,在营前到双溪路段的平均速度是40千米/时,在双溪到紫阳路段的平均速度是60千米/时. 从双溪到紫阳所需时间比从营前到双溪的时间多0.5小时.若从双溪到紫阳所需时间为t小时,则:
(1)从营前到双溪的时间为小时;
(2)从营前到紫阳的路程是多少?千米;①
(3)从双溪到紫阳与从营前到双溪的路程之差是多少?千米 . ②
二.探究新知
上面的式子①、②都带有括号,它们应如何化简?
思路点拨:教师引导,启发学生类比数的运算,利用分配律.学生练习、交流后,教师归纳:
利用分配律,可以去括号,合并同类项,得:
我们知道,化简带有括号的整式,首先应先去括号.
上面两式去括号部分变形分别为:
比较两式,你能发现去括号时符号变化的规律吗?
思路点拨:鼓励学生通过观察,试用自己的语言叙述去括号法则,
然后教师总结:
如果括号外的因数是正数,去括号后原括号内各项的符号与原来
的;如果括号外的因数是负数,去括号后原括号内各项的符
号与原来的.法则顺口溜: .
小试牛刀
(1)去括号:a+(b-c)=a-(b-c)= a+(-b+c)= a-(-b+c)= (2)判断正误:
a-(b+c)= a-b+c()
a-(b-c)= a-b-c()
2b+(-3a+1)=2b-3a-1 ()
3a-(3b-c)=3a-3b+c()
三.应用新知
例1.化简下列各式:(1) 8a+2b+(5a−b);(2)(5a−3b)−3(a2−2b).
例2.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,
两船在静水中的速度都是50千米/时,水流速度是a千米/时.
(1)2小时后两船相距多远?
(2)2小时后甲船比乙船多航行多少千米?
去括号时强调:括号内每一项都要乘以2,括号前是负因数时,
去掉括号后,括号内每一项都要变号.为了防止出错,可以先用分配
律将数字2与括号内的各项相乘,然后再去括号,熟练后,再省去这一步,直接去括号.
四.大显身手
1.化简
(1)12(x-0.5); (2)-5(1-0.5x);
(3)-5a+(3a-2)-(3a-7); (4)
1(9y-3)+2(y+1);
3
2.飞机的无风航速为a千米/时,风速为20千米/时.飞机顺风飞行4
小时的行程是多少?飞机逆风飞行3小时的行程是多少?两个行程相差多少?
五.畅所欲言话体会
你学到了什么?你有哪些收获?去括号时应注意的哪些事项:
六.课外作业
必做题:课本P71习题2.2 第2、8题.
选做题:化简−[−(−x+y)]−[+(−x−y)] .。

相关文档
最新文档