高频电子线路课程设计完整版
高频电子线路课程设计.

目录一设计总体思路及比较 (2)二单元电路思路 (6)输入回路 (6)本机荡回路 (8)中频滤波器匹配参数 (10)限频电路 (12)鉴频电路 (13)低频放大电路 (14)三总结体会 (15)四总原理图 (16)参考资料 (17)第一章设计总体思路及方案比较一.调频收音机的主要指标调频接收机的主要指标有:1工作频率范围接收系统可以接受到的无线电波的频率范围称为接收机的工作频率范围。
接受系统的工作频率必须与发射机的工作频率工作频率相对应。
调频接收机的频率范围为88~108MH,是因为调频广播收音机的工作范围也为88~108MH。
2 灵敏度接收系统接受微弱信号的能力称为灵敏度。
一般用输入信号电压的大小来表示。
接收的输入信号越小,灵敏度越高。
调频接收机的灵敏度一般为5~30uv。
3选择性接收系统从各种信号和干扰信号中选出所需信号,抑制不需要的信号的能力称为选择性,单位用dB表示,dB数越高,选择性越好。
调频接收机的中频干扰应大于50dB。
4 频率特性接收系统的频率响应范围称为频率特性或通频带。
5 输出功率负载输出的最大不失真功率称为输出功率。
二调频接收机的系统方框图调频接收机的系统方框图如所示,它是由输入回路,高频放大器,混频器,本机振荡,中频放大器,鉴频器,低频放大器等电路组成。
其工作原理是:天线接受到的高频信号,经输入调谐回路选频为f1,再经高频放大器放大进入混频级。
本机振荡器输出的另一高频f2也进入混频级,则混频级的输出为含有f1、f2、(f1+f2)、(f2-f1)等频率分量的信号。
混频级的输出接调频回路选出中频信号(f2-f1),再经中频放大器放大,获得足够高增益,然后鉴频器解调出低频调制信号,由低频功放级放大。
三MC3362芯片特点MC3362是低功耗窄带双变频超外差式调频接收机系统集成电路,它的片内包含两个本征,两个混频器,两个中放和正交鉴频等功能电路。
MC3362的接收频率可达450MHz,采用内部本征时,也可达到200MHz。
(完整版)高频电子线路课程设计(DOC)

通信与信息工程学院高频电子线路课程设计班级:通信工程姓名:学号:指导教师:设计时间:2016年1月4日-2016年1月8日成绩:评通信与信息工程学院二〇一三年摘要调幅式收音机一般都采用超外差式,它具有灵敏度高、功能工作稳定、选择性好及失真度小等优点。
所谓外差,是指天线输入信号和本机振荡信号产生一个固定中频信号的过程,超外差收音机在检波之前,先进行变频和中频放大,然后检波,音频信号经过低频放大送到扬声器。
由于其中的中频放大器对固定中频信号进行放大,所以该收音机的灵敏度和选择性课大大提高,但同时也会附带中频干扰。
关键词:收音机、组装、调试1.设计任务及目的1.1设计任务完成超外差式收音机的组装与调试1.2目的通过这次实验可以让我们更进一步理解巩固所学的基本理论和基本技能,培养运用仪器仪表检测元器件的能力以及焊接、布局、安装、调试电子线路的能力,培养及锻炼我们测试排查实际电子线路中故障的能力,加强对电子工艺流程的理解熟悉。
2. 超外差式调幅收音机的原理及电路图2.1 超外差式调幅收音机电路原理图如图2-1为超外差式收音机的电原理图:图2-12.2超外差式调幅收音机的工作原理分析超外差式收音机主要由输入电路、混频电路、中放电路、检波电路、前置低频放大器、功率放大电路和喇叭或耳机组成2.2.1输入调谐电路输入调谐电路由双连可变电容器的CA和T1的初级线圈Lab组成,是一并联谐振电路,Tl是磁性天线线圈,从天线接收进来的高频信号,通过输入调谐电路的谐振选出需要的电台信号,电台信号频率是f=l/2πLabCA,当改变CA时,就能收到不同频率的电台信号。
2.2.2变频电路本机振荡和混频合起来称为变频电路。
变频电路是以VT l为中心,它的作用是把通过输入调谐电路收到的不同频率电台信号(高频信号)变换成固定的465KHz的中频信号。
VTl、T2、Cb等元件组成本机振荡电路,它的任务是产生一个比输入信号频率高465 KHz的等幅高频振荡信号。
(完整版)高频电子线路课程设计

课程设计班级:电信12-1班*名:**学号:**********指导教师:**成绩:电子与信息工程学院信息与通信工程系目录摘要 (1)引言 (2)1. 概述 (3)1.1 LC振荡器的基本工作原理 (3)1.2 起振条件与平衡条件 (4)1.2.1 起振条件 (4)1.2.2平衡条件 (4)1.2.3 稳定条件 (4)2. 硬件设计 (5)2.1 电感反馈三点式振荡器 (5)2.2 电容反馈三点式振荡器 (6)2.3改进型反馈振荡电路 (7)2.4 西勒电路说明 (8)2.5 西勒电路静态工作点设置 (9)2.6 西勒电路参数设定 (10)3. 软件仿真 (11)3.1 软件简介 (11)3.2 进行仿真 (12)3.3 仿真分析 (13)4. 结论 (13)4.1 设计的功能 (13)4.2 设计不足 (13)4.3 心得体会 (14)参考文献 (14)徐雷:LC振荡器设计摘要振荡器是一种不需要外加激励、电路本身能自动地将直流能量转换为具有某种波形的交流能量的装置。
种类很多,使用范围也不相同,但是它们的基本原理都是相同的,即满足起振、平衡和稳定条件。
通过对电感三点式振荡器(哈脱莱振荡器)、电容三点式振荡器(考毕兹振荡器)以及改进型电容反馈式振荡器(克拉波电路和西勒电路)的分析,根据课设要求频率稳定度为10-4,西勒电路具有频率稳定性高,振幅稳定,频率调节方便,适合做波段振荡器等优点,因此选择西勒电路进行设计。
继而通过Multisim设计电路与仿真。
关键词:振荡器;西勒电路;MultisimAbstractThe oscillator is a kind of don't need to motivate, circuit itself automatically device for DC energy into a waveform AC energy applied. Many different types of oscillators, using range is not the same, but the basic principles are the same, to meet the vibration, the equilibrium and stability conditions. Based on the inductance of the three point type oscillator ( Hartley), three point capacitance oscillator ( Colpitts) and improved capacitor feedback oscillator (Clapp and Seiler) analysis, according to class requirements, Seiler circuit with high frequency stability, amplitude stability frequency regulation, convenient, suitable for the band oscillator etc., so the final choice of Seiler circuit design. Then through the Multisim circuit design and simulation. Key Words:Oscillator; Seiler; Multisim1高频电子线路课程设计引言在信息飞速发展的时代,对信息的获取、传输与处理的方法越来越受到人们的重视。
高频电子线路课程设计

电路设计与仿真
学生根据设计方案使用电路仿真软件进行电路设 计和仿真,验证设计的可行性和正确性。这一阶 段通常需要2-3周的时间。
撰写报告与答辩
学生完成实验后,需撰写课程设计报告,并根据 指导教师的要求准备答辩。这一阶段通常需要1-2 周的时间。
02 高频电子线路基础知识
高频电子线路的基本概念
信号频率
图表绘制
根据实际需要,绘制相应的图表,如电路原理图、波形图等,使报告 更加直观易懂。
文字表述
使用准确、简洁的语言描述设计过程和结果,避免出现技术性错误和 歧义。
报告提交
按照学校或课程要求,将设计报告提交给指导老师或相关部门进行评 审。
05 课程设计总结与展望
课程设计的收获和不足
01
收获
02
深入理解高频电子线路的基本原理和应用。
03
电容
在高频电路中,电容的作 用主要是隔直流通交流, 对高频信号呈现较小的阻 抗。
电感
电感在高频电路中的作用 主要是阻止高频信号通过, 对直流呈现较小的阻抗。
电阻
在高频电路中,电阻的作 用与低频电路相似,用于 限制电流。
高频电子线路的基本电路
调谐电路
调谐电路是高频电子线路中的基本电路之一,用 于选择特定频率的信号。
高频电子线路课程设 计
目录
CONTENTS
• 课程设计概述 • 高频电子线路基础知识 • 课程设计题目解析 • 课程设计实践 • 课程设计总结与展望
01 课程设计概述
课程设计的目标
01
掌握高频电子线路的基本原理和应用
通过课程设计,学生将深入理解高频电子线路的基本原理,包括信号传
输、放大、滤波等,并能够掌握其在通信、雷达、无线电等领域的应用。
高频电子线路课程设计

高频电子线路课程设计DSB波的调制与解调目录一、概述二、技术指标三、系统框图四、部分电路分析五、电路工作原理及设计说明六、总电路的图设计一、概述调制电路是用待传输的低频信号控制高频载波某个参数电路的电路。
解调是调试的逆过程,就是从已调的信号里还原出原调制信号。
抑制掉调幅信号频谱结构中无用的载频分量,仅传输两个边频的调制方式成为抑制载波的双边带调制,简称双边带调制。
DSB在调制部分,将一个小信号和一个高频载波经乘法器电路,就会输出抑制载波的双边带调幅波。
在解调部分利用相干解调原理同步检波,因为在调制和解调过程中,有复杂的频率变换,所以根据DSB波的性质,我们选用非线性器件——两个模拟乘法器来组成本设计的基本电路。
在检波之后产生很多新频率,我们用一个低通滤波器把不符合要求的频率滤除,取出我们需要的频率,这样我们就完成了DSB波的发送和接收原理设计。
二、技术指标(1) 调制信号的参数设置信号 正弦信号幅度 400mVp 频率 100kHz 相位 0deg(2) 载波信号的参数设置信号正弦信号幅度 40mVp 频率 5MHz 相位 0deg (3) 本振信号的参数设置信号 正弦信号幅度 20mVp 频率 5MHz 相位 0deg三、系统框图(1)、本课题DSB调制与解调总框图(图1)如下:①模拟乘法器1 用于调制部分,即在发送端输入一个低频小信号和一个高频载波,产生DSB 波;② 模拟乘法器2 用于解调部分,即将DSB 波与本地载波(与高频载波同频同幅)相乘,恢复小信号;③ 低通滤波器 滤除从检波器解调出来的无用频率分量,取出所需要的原调制信号。
将三个模块连在一起,就完成了整个DSB 波的发送和接收。
(2)、调制电路原理框图(图2)如下:高频信号发生器产生载波,低频信号发生器产生小信号,输入乘法器之后,调幅波即是DSB 波.(3)、解调电路原理框图(图3)如下:图3 原理框图高频信号发生器产生与调制同频同幅的载波,已调信号为DSB 波,经过乘法器即输出含有调制信号的信号组。
高频电子线路教案完整

高频电子线路教案一、教学目标1. 了解高频电子线路的基本概念、特点和应用领域。
2. 掌握高频信号的产生、传输和接收的基本原理。
3. 学习常用的高频元件及其性能、应用和测量方法。
4. 学会高频电子线路的分析和设计方法。
5. 培养动手能力和团队协作精神。
二、教学内容1. 高频电子线路的基本概念与特点高频电子线路的定义高频电子线路的频率范围高频电子线路的特点2. 高频信号的产生与传输高频信号的产生原理及装置高频信号的传输介质高频信号的调制与解调3. 高频电子线路的接收与处理高频接收电路的组成与原理调谐器、放大器、滤波器的作用与设计高频信号的处理方法4. 高频元件及其应用电阻、电容、电感在高频电路中的应用晶体管、集成电路在高频电路中的应用天线、馈线、变压器等高频元件的应用5. 高频电子线路的分析与设计方法高频电子线路的分析和设计流程高频电子线路的仿真与实验高频电子线路的优化与调试三、教学方法1. 采用课堂讲解、案例分析、实验操作相结合的方式进行教学。
2. 利用多媒体课件、实物展示、电路图等形式,直观地展示高频电子线路的相关知识。
3. 组织学生进行小组讨论、实验设计和动手实践,提高学生的实际操作能力。
四、教学资源1. 教材:高频电子线路教材。
2. 实验设备:高频信号产生器、调制器、解调器、放大器、滤波器、天线等。
3. 软件工具:Multisim、Cadence等电路仿真软件。
五、教学评价1. 课堂表现:学生参与度、提问回答、小组讨论等。
2. 实验报告:学生实验设计、实验操作、数据处理和分析能力。
3. 课程论文:学生对高频电子线路某一专题的研究和分析能力。
4. 期末考试:对学生全面掌握高频电子线路知识的评估。
六、教学安排1. 课时:共计32课时,包括16次课堂讲解和16次实验操作。
2. 课时的分配:课堂讲解:每次2课时,共计16课时。
实验操作:每次2课时,共计16课时。
七、教学进度计划1. 第一周:介绍高频电子线路的基本概念与特点。
高频电子课程设计

高频电子课程设计一、课程目标知识目标:1. 让学生掌握高频电子电路的基本原理,理解并掌握振荡器、放大器、滤波器等高频元件的工作原理;2. 使学生了解高频电路在实际应用中的技术指标,如频率范围、带宽、增益等;3. 引导学生掌握高频电路的调试与测试方法,了解各类高频电子仪器的使用。
技能目标:1. 培养学生运用所学知识设计简单高频电子电路的能力;2. 提高学生分析高频电路故障并进行调试的能力;3. 培养学生运用高频电子技术解决实际问题的能力。
情感态度价值观目标:1. 培养学生对高频电子技术的兴趣,激发学生探索科学技术的热情;2. 培养学生的团队协作意识,提高学生在团队中沟通、协作的能力;3. 引导学生认识高频电子技术在我国科技发展中的重要作用,增强学生的民族自豪感和社会责任感。
分析课程性质、学生特点和教学要求,本课程将目标分解为以下具体学习成果:1. 学生能够独立完成振荡器、放大器、滤波器等高频元件的原理图绘制;2. 学生能够使用高频电子仪器进行电路测试,分析并解决实际问题;3. 学生能够在团队中发挥积极作用,共同完成高频电子电路的设计与调试。
二、教学内容根据课程目标,本章节教学内容主要包括以下三个方面:1. 高频电子电路基本原理:- 振荡器原理及其分类;- 放大器原理及高频放大器的设计;- 滤波器原理及其分类。
2. 高频电路实际应用及相关技术指标:- 频率范围、带宽、增益等参数的介绍;- 各类高频电路在实际应用中的性能分析;- 高频电路的阻抗匹配原理。
3. 高频电路调试与测试方法:- 高频电子仪器的使用及操作方法;- 高频电路调试的基本流程和技巧;- 故障分析与解决方法。
具体教学大纲安排如下:1. 第1-2课时:高频电子电路基本原理;2. 第3-4课时:高频电路实际应用及相关技术指标;3. 第5-6课时:高频电路调试与测试方法。
教材章节及内容:1. 教材第3章:振荡器、放大器、滤波器基本原理;2. 教材第4章:高频电路在实际应用中的性能分析;3. 教材第5章:高频电路调试与测试方法。
高频电子线路课程设计_2015

单片FM调频发射电路,可包含调频振荡器级、缓冲隔 离级 倍频级等多个单元电路。其系统组成如图2.2所示 。
集成调频发射系统
高频功放
图2.2 集成调频发射机框图
二、高频电路设计基础知识
1、无线电发送设备的组成
调幅发射系统的框图如图2.3所示 。
振荡器
缓 冲
高频放大
振幅调制
高频功放
5、乘积型相位鉴频器的设计 6、幅度调制电路的设计
7、调频接收机的设计
9、锁相调制电路的设计
8、锁相解调电路的设计
10、混频及倍频电路设计
三、课程设计的选题
3、选题要求 1、由班长负责,以随机的方式抽取题目
2、每个班选相同题目的同学不能多于4名
3、选相同题目的同学所提交的设计报告 不能雷同,如有雷同按不及格处理。
(4)东北石油大学课程设计成绩评价表* (单独一页) “ * ” :填班级、姓名、学号、题目,涉及指导教师姓名的均不填。
四、设计报告的组成及要求
2、设计报告撰写格式及说明 (1) A4纸打印,左侧 装订。 (2) 正文格式见模板 (3) 电路原理图要求是矢量图:
公式不合格
图表不合格
用 Protel 或 Multisim 或Visio2003画出 (4) 公式一律用公式编辑器输入。 与别人雷同 (5) 资料及模板 见: 公共邮箱: dxx_nepu@ 密码: 6504134 (6) 3月13日下午2:00-3:30, 各班班长收齐报告打印稿和电子稿交到1E212, 报告中存在严重问题的按不及格处理。
调制信号
图2.3 调幅发射系统框图
二、高频电路设计基础知识
2、无线电接收设备的组成
简单的超外差无线电接收设备的组成见图2.4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录1选题意义 (2)2总体方案 (3)3调幅半导体收音机的工作原理 (4)3.1调幅的过程 (4)3.2调幅收音机的工作原理 (5)3.3调幅收音机的电路模块 (6)3.3.1输入回路 (6)3.3.2 变频级回路 (7)3.3.3中频放大、自动增益控制电路 (9)3.3.4 检波回路 (11)3.3.5低放级回路 (11)3.3.6功率放大回路 (11)4收音机的调试 (13)4.1调整三极管的静态工作点 (13)4.1.1.三极管静态工作点的选取 (13)4.1.2.静态工作点调整前的检查 (14)4.1.3.静态工作点的测量与调整 (14)4.2中频频率调整 (15)4.2.1.信号通路检查 (15)4.2.2.不用仪器调整中频 (16)4.3接收频率范围的调整(或称频率覆盖调整) (16)4.4统调(灵敏度调整) (17)4.4.1.低频端的统调 (17)4.4.2.高频端的统调 (17)5课程设计体会 (18)6参考文献 (19)附图 (20)1选题意义通过动手做课程设计可以联系课堂所学知识,增强查阅、收集、整理、吸收消化资料的能力,为毕业设计做好必要的准备。
而我选调幅半导体收音机原理及其调试是因为之前实习的时候做的是收音机,对其比较熟悉并且想再次巩固一下。
目前调幅式收音机,一般都采用超外差式,它具有灵敏度高、工作稳定、选择性好及失真度小等优点。
图1 收音机基本原理方框简图天线的作用就是接收空间电磁波,让它在天线回路中产生信号电动势。
由于空间有许许多多电台发送的电磁波,它们都有自己的固定频率,这些电磁波都同时被天线接收下来,如果不加选择地将这些信号还原为声音,那么这些声音就变成噪音。
因此必须设法从天线接收下来的许多信号中选出所要收听的电台。
在接收机中选台主要是利用不同电台发送的电磁波频率不同的特点来进行的,在收音机中这一任务是由电感线圈和可变电容器组成的谐振电路来完成的,通常称它为调谐电路。
由调谐电路选择出的所需要的电台信号是已调幅的高频信号,虽然它被音频信号调制,但喇叭无法将这种信号还原成声音,因此,必须从高频信号中把音频信号分离出来,这个分离过程称为解调;解调就是解除调制的意思,通常称检波。
在收音机中,检波是由半导体器件二极管或三极管来完成。
调幅的高频信号经检波还原出音频信号,然后送往喇叭,喇叭将音频信号还原为声音。
这就是无线电接收的最基本原理。
收音机接收天线将广播电台播发的高频的调幅波接收下来,通过变频级把外来的各调幅波信号变换成一个低频和高攀之间的固定频率—465KHz(中频),然后进行放大,再由检波级检出音频信号,送入低频放大级放大,推动喇叭发声。
不是把接收天线接收下来的高频调幅波直接放大去检出音频信号(直放式)。
它由输入回路高放混频级、一级中放、二级中放、前置低放兼检波级、低放级和公放级等部分组成,接受频率范围为535KHZ~1605KHZ的中波段。
2总体方案调幅收音机是将所要收听的电台在调谐电路里调好以后,经过电路本身的作用,就变成另外一个预先确定好的频率(在我国为465KHz),然后再进行放大和检波。
这个固定的频率,是由差频的作用产生的。
如果我们在收音机内制造—个振荡电波(通常称为本机振荡),使它和外来高频调幅信号同时送到一个晶体管内混合,这种工作叫混频。
由于晶体管的非线性作用导致混频的结果就会产生一个新的频率,这就是外差作用。
采用了这种电路的收音机叫外差式收音机,混频和振荡的工作,合称变频。
外差作用产生出来的差频,习惯上我们采用易于控制的一种频率,它比高频较低,但比音频高,这就是常说的中间频率,简称中频。
任何电台的频率,由于都变成了中频,放大起来就能得到相同的放大量。
调谐回路的输出,进入混频级的是高频调制信号,即载波与其携带的音频信号。
经过混频,输出载波的波形变得很稀疏其频率降低了,但音频信号的形状没有变。
通常将这个过程(混濒和本振的作用)叫做变频。
变频仅仅是载波频率变低了,并且无论输入信号频率如何变化最终都变为465KHz,而音频信号(包络线的形状)没变。
混频器输出的携音频包络的中频信号由中频放大电路进行一级、两级甚至三级中频放大,从而使得到达二极管检波器的中频信号振幅足够大。
二极管将中频信号振幅的包络检波出来,这个包络就是我们需要的音频信号。
音频信号最后交给低放级放大到我们需要的电平强度,然后推动扬声器发出足够的音量。
若要求超外差式收音机得到更高的灵敏度,在调谐回路与混频之间还可以加入高频放大级然后再去混频。
3调幅半导体收音机的工作原理3.1调幅的过程所谓调幅就是使高频振荡电流的振幅随着调制信号的变化而变化。
图2所示,是音频信号调制高频振荡电流各主要过程的信号波形图。
在图2中,(a)图表示一个音频信号电流,(b)图表示一个高频振荡器产生的高频等幅振荡信号。
(c)图表示(a)图信号调制(b)图高频振荡信号幅度的已调制高频振荡信号。
可以看出,被调幅后的高频振荡电流它的振幅包络线中沿高频振荡电流正负峰点所连接的虚线]跟音频电流的变化规律完全一样,高频振荡电流振幅的变化正比于音频信号的幅度,振幅变化的周期等于音频信号的周期。
图2图2表示了调幅广播的示意过程。
声音由话筒转变为音频电信号,经放大后送到调制器,高频振荡器的产生高频率等幅振荡信号也送到调制器。
在调制器中,高频振荡电流被音频信号调幅,调幅后的高频信号经高频放大后送往发射天线,然后由发射天线向四周空间发射电磁波。
由于该电磁波已受信号调幅,所以称它为调幅波。
图33.2调幅收音机的工作原理图4图4为调幅超外差收音机的工作原理方框图,天线接收到的高频信号通过输入电路与收音机的本机振荡频率(其频率较外来高频信号高一个固定中频,我国中频标准规定为465KHZ)一起送入变频管内混合——变频,在变频级的负载回路(选频)产生一个新频率即通过差频产生的中频,中频只改变了载波的频率,原来的音频包络线并没有改变,中频信号可以更好地得到放大,中频信号经检波并滤除高频信号。
再经低放,功率放大后,推动扬声器发出声音。
调幅收音机的工作原理过程为:将所要收听的电台在调谐电路里调好以后,经过电路本身的作用,就变成另外一个预先确定好的频率(在我国为465KHz),然后再进行放大和检波。
这个固定的频率,是由差频的作用产生的。
如果我们在收音机内制造—个振荡电波(通常称为本机振荡),使它和外来高频调幅信号同时送到一个晶体管内混合,这种工作叫混频。
由于晶体管的非线性作用导致混频的结果就会产生一个新的频率,这就是外差作用。
采用了这种电路的收音机叫外差式收音机,混频和振荡的工作,合称变频。
外差作用产生出来的差频,习惯上我们采用易于控制的一种频率,它比高频较低,但比音频高,这就是常说的中间频率,简称中频。
任何电台的频率,由于都变成了中频,放大起来就能得到相同的放大量。
调谐回路的输出,进入混频级的是高频调制信号,即载波与其携带的音频信号。
经过混频,输出载波的波形变得很稀疏其频率降低了,但音频信号的形状没有变。
通常将这个过程(混濒和本振的作用)叫做变频。
变频仅仅是载波频率变低了,并且无论输入信号频率如何变化最终都变为465KHz,而音频信号(包络线的形状)没变。
混频器输出的携音频包络的中频信号由中频放大电路进行一级、两级甚至三级中频放大,从而使得到达二极管检波器的中频信号振幅足够大。
二极管将中频信号振幅的包络检波出来,这个包络就是我们需要的音频信号。
音频信号最后交给低放级放大到我们需要的电平强度,然后推动扬声器发出足够的音量。
若要求超外差式收音机得到更高的灵敏度,在调谐回路与混频之间还可以加入高频放大级然后再去混频。
3.3调幅收音机的电路模块根据超外差收音机的原理,我们可以将图表3所示的电路分成以下几个模块:输入回路、变频回路(包括本振电路、混频电路和选频电路)、中频放大(中放)回路、检波及AGC回路、低放级回路、功放级回路。
3.3.1输入回路图5 输入回路从磁性天线感应的调幅信号送入C1a、C2和L1组成的输入回路进行调谐,选出所需接收的电台信号,通过互感耦合送入变频管T1的基极3.3.2 变频级回路图6 变频电路原理图变频级电路的本振和混频,要求由一只三极管担任(自激式变频电路)。
由于三极管的放大作用和非线形特性,所以可以获得频率变换作用。
可选择“共基调发变压器耦合振荡器”。
按本设计要求,在图2中c u为外来中波信号调幅波,载频为fc(535~1605KHz);u l 为本机振荡电压信号(等幅波),fl应为1MHz~2MHz。
两个信号同时在晶体管内混合,通过晶体管的非线性作用产生fl+fc的各次谐波,在通过中频变压器的选频耦合作用,选出频率为fl+fc=465KHz的中频调幅波,如图7所示。
中频465KHz中频调幅波图7混频示意图选择共基调发振荡电路的原因是该电路对外来信号与本机振荡电路之间的牵连干扰最小,工作稳定,可比共射式获得较高的频率。
它的振荡调谐回路接在发射极与地之间,基极通过C5高频接地,振荡变压器的反馈线圈(L4)接在集极与地之间,如c u图8所示。
图8 共基调发振荡电路示意图变频管选择3AG1型能满足要求,其CEO I 应该小,静态工作点C I 的选择不能过大或过小。
C I 大,噪声大;C I 小,噪声小。
但变频增益是随I C 改变的。
典型变频级一般在0.2~1mA 之间有一个最大值。
统筹考虑,C I 设计在0.5mA 左右为宜。
本机振荡电压的强弱直接影响到反映管子变频放大能力的跨导,存在着一个最佳本振电压值。
若振荡电压值过小,一旦电池电压下降,就会停振;若过大,在高端会产生寄生振荡,由于管子自给偏压作用,会使管子正常导通时间减少。
本振电压一般选择在100mV 左右,由于采取的是共基电路,它的输入电阻低,如果本机振荡调谐回路直接并入,会使调谐回路的品质因素降低,振荡减弱,波形变坏,甚至停振。
为提高振荡电路的性能,L 3要采取部分接入的方式,使折合到振荡调谐回路的阻抗增加到21312/)eb N N r (。
L 4不能接反,否则变成负反馈,不能起振。
变频级是由一只晶体管T1同时起本振和混频作用的自激式变频电路。
本振回路由L2、C7、C5、C1b 组成,它是互感耦合共基调射式的LC 振荡电路。
L2抽头是为了减小晶体管的输入阻抗对振荡回路的影响。
本振信号通过耦合电容C4从T1的射极注入,它与输入回路耦合到T1管基极的高频调幅信号在T1管中混频,由集电极调谐回路(中周)选出二者的差频即465kHz 的中频信号,然后再将中频信号送入中放电路去放大。
为了提高电路的稳定性,兼顾变频和振荡性能,静态工作电流一般取为0.3~0.4mA 。
为了保证在电源电压降低时,本机振荡仍能稳定工作,变频级基极偏置电路采用了相应的稳压措施,即利用两只硅二极管D1、D2进行稳压3.3.3中频放大、自动增益控制电路(如图 9所示)。