概率论与数理统计第16讲
概率论与数理统计_16_指数分布

x0 确是一密度函数. x0
指数分布的累积分布函数(CDF)
若随机变量 X 服从参数 指数分布, 则 X 的分布函数为
0 F x x 1 e
x0 x0
对应模型的特点:无记忆性。 可证明,(课本P46)
P{X s t | X s} P{X t} X是某一元件的寿命。
1 e ( α β ) z , z 0 , z0, 0 ,
Z min X ,Y 的概率密度为
α β e ( α β ) z , z 0 , z fmin z Fmin z0, 0 ,
(ii) 并联的情况 由于当且仅当系统 L1 , L都损坏时 , 系统 L 才停止 2 工作, 所以此时 L 的寿命为
1 e αx , x 0 , FX x 故 x0, 0 , 类似地 , 可求得 Y 的分布函数为 1 e βy , y 0 , FY y y0, 0 ,
x0
x
x
于是 Z min X ,Y 的分布函数为
Fmin z = 1-[1-FX(z)][1-FY(z)]
z
O
z
y
当 z>0 时,
f Z z αe
z 0
α z y
βe βy dy
f Z z αe
z 0
α z y
βe βy dy dy
αβe
αz
z
0
e
β α y
αβ (e αz e βz ). βα
解: X 的密度函数为
x 1 10 e f x 10 0
《概率论与数理统计》高教版PPT

P(A) = A中样本点的个数 / 样本点总数
30 July 2013
华东师范大学
第一章 随机事件与概率
第35页
注 意
• 抛一枚硬币三次 抛三枚硬币一次
• Ω1={(正正正), (反正正), (正反正), (正正反),
(正反反), (反正反), (反反正), (反反反)}
此样本空间中的样本点等可能. • Ω2={(三正), (二正一反), (二反一正), (三反)} 此样本空间中的样本点不等可能.
第一章 随机事件与概率
第30页
注 意
求排列、组合时,要掌握和注意: 加法原则、乘法原则.
30 July 2013
华东师范大学
第一章 随机事件与概率
第31页
加法原理
完成某件事情有 n 类途径, 在第一类途径中有m1种方 法,在第二类途径中有m2种方法,依次类推,在第 n 类 途径中有mn种方法,则完成这件事共有 m1+m2+…+mn种 不同的方法.
事件运算的图示
AB
AB
AB
30 July 2013
华东师范大学
第一章 随机事件与概率
第16页
德莫根公式
A B A B;
A B A B
A A;
i 1 i i 1 i
n
n
A A
i 1 i i 1
n
n
i
30 July 2013
华东师范大学
第一章 随机事件与概率
六根草,头两两相接、 尾两两相接。求成环的概率.
解:用乘法原则直接计算
所求概率为
6 4 4 2 2 1 8 6 5 4 3 2 1 15
概率论与数理统计教程-第五版-课件

会出现.
2021/3/10
讲解:XX
6
三、样本空间 样本点
定义 随机试验的每一个可能的结果,称 为基本事件,随机试验的所有可能的结果的 全体称为样本空间,用或S表示。则中的 点就是基本事件,也称作样本点,常用w表 示。
2021/3/10
则称 A 与B 为互逆(或对立)事件. A 的逆记
作 A.
2021/3/10
讲解:XX
16
事件间的运算规律
设 A, B, C 为事件, 则有
(1) 交换律 A B B A, AB BA. ( AB)C A(BC).
(2) 结合律 ( A B) C A (B C),
(3) 分配律
讲解:XX
2
第一章 事件与概率
2021/3/10
讲解:XX
3
1.1 随机事件和样本空间
一、随机现象 二、随机试验 三、样本空间 样本点 四、随机事件的概念 五、随机事件的关系
2021/3/10
讲解:XX
4
一、随机试验
1.必然现象(确定) 2.偶然现象(不确定)随机
说明:
1.随机现象揭示了条件和结果之间的非确定性联系 , 其数量关系无法用函数加以描述.
2.随机现象在一次观察中出现什么结果具有偶然性, 但在大量重复试验或观察中, 这种结果的出现具有 一定的统计规律性 , 概率论就是研究随机现象这 种本质规律的一门数学学科.
2021/3/10
讲解:XX
5
二、随机试验
在概率论中,把具有以下三个特征的试验称 为随机试验.
1. 可以在相同的条件下重复地进行; 2. 每次试验的可能结果不止一个,并且能事
概率论与数理统计

A
3)在应用上,那些不便直接求某一事件的概 B2
率时,先找到一个合适的划分,再用全概率公式计算
ቤተ መጻሕፍቲ ባይዱ
7/21
§1.5 条件概率
2.贝叶斯(Bayes)公式 (计算后验概率问题)
事件A的发生,iff构成S划分的事件B1,B2,…,Bn中的一个发生时才发 生,一般在实验之前仅知道Bi的先验概率,那么如果试验后事件A已经发 生了,Bi发生的概率又是多少呢?这种问题我们称他为后验概率问题,有 利于我们查找事件发生的原因。解决此类问题可采用贝叶斯(Bayes)公式
在实际应用 中,对于事 件的独立性 常常根据事 件的实际意 义来判断,
注意:仅满足前三个等式的三个事件称为两两相互独立 见习题33 如果两个事
当然,如果事件A,B,C相互独立
件关联很弱 也可以看作
则 A, B,C; A, B,C; ... ; A, B,C 也相互独立
是独立的。
推广到多个事件
由定义可以得到以下两点推论: 1.若事件A1, A2, … , An相互独立,n2,则其中任意k(2kn)个事件也是相互独立 的。 2.若n个事件A1, A2, … , An(n2)相互独立,则将A1, A2, … , An中任意多个事件换13/成21 他们的对立事件,所得的n个事件仍相互独立
§1.6 独立性
对样本空间适当分解的思想,有利于解决稍微复杂一点的概率问题
首先看一下关于划分的概念
定义:设S为试验E的样本空间,B1,B2,…,Bn为E的一组事件。若
(i) BiBj=Φ,i≠j,i,j=1,2,…,n; (ii) B1∪B2∪…∪Bn=S 则称B1,B2,…,Bn为S的一个划分。
※每次试验,事件B1,B2,…,Bn中有且仅有一个发生
概率论与数理统计总复习-

一. 二维离散型r.v.
概率统计-总复习-13
1. 联合分布律(2个性质)
P(Xxi,Yyj)pij,
2.联合分布函数(5个性质)
F ( x , y ) P X x , Y y
3.联合分布律与联合分布函数关系
F(x,y)pij, xixyjy
4. 边缘分布律与边缘分布函数
n
Xi
n
E( Xi )
i1 i1
D
n
Xi
n
D( Xi )
i1 i1
X1,,Xn 相互独立
常见离散r.v.的期望与方差
概率统计-总复习-27
分布 概率分布
期望 方差
参数p的 0-1分布
P (X 1 )p ,P (X 0) q
2. 联合分布函数(5个性质)
xy
F(x,y) p(u,v)dvdu
3.联合密度与联合分布函数关系 2F( x,y) p( x,y)
xy
4.边缘密度与边缘分布函数
p (x) p( x,y)dy p ( y) p( x,y)dx
X
Y
FX( x) F(x, ) FY ( y ) F(, y)
5.全概率公式:分解 P(B) P(Ai)P(B|Ai),B
i1
6.贝叶斯公式
P(Aj |B)
P(Aj )P(B| Aj )
,j
P(Ai )P(B|Ai )
i1
四. 概率模型
概率统计-总复习-6
1.古典概型: 摸球、放球、随机取数、配对
2. n重伯努利概型:
概率论与数理统计(完整版)

例. 甲、乙、丙三人各射击一次,事件A1,A2,A3分别表示 甲、乙、丙射中,试说明下列事件所表示的结果:
A 2,A 2 A 3, A 1A 2, A 1 A 2, A 1A 2A 3, A 1A 2 A 2A 3 A 1A 3.
14
§3. 概率的概念 一. 古典定义:
等可能概型的两个特点:
在其中计算B发生的概率, 从而得到P(B|A). 例2. 在1, 2, 3, 4, 5这5个数码中, 每次取一个数码, 取后不放回, 连取两次, 求在第1次取到偶数的条 件下, 第2次取到奇数的概率.
32
(二) 乘法公式:
由条件概 ,立率 即P 定 可 (A 义 0 得 )则 , 有 P(AP B()A)|A P)(.B
若事件A发生必然导致事件B发生,则称件B包含事件A,记 作AB. 若A B且A B, 即A=B, 则称A与B相等.
B
A S
(1) AB
8
2.和事件:
AB{x|xA或xB}称为 A与B的和事 . 件
即AB ,中至少有一 ,称个 为 A与 发 B的 生和 ,记AB.
可列个A事 1, A2件 ,的和事件记 Ak.为
推广 P(AB)>0, 则有 P(ABC)=P(A)P(B|A)P(C|AB). 一般, 设A1, A2, …,An是n个事件,(n≥2), P(A1A2 ...An-1)>0, 则有乘法公式: P(A1A2…An)=P(A1)P(A2|A1)…P(An-1|A1A2…An-2) P(An|A1A2…An-1).
P(A1 A2 …)=P(A1)+P(A2)+… (可列可加性)
25
2.概率的性质: 性1质 . P()0.
《概率论与数理统计》第三版王松桂科学出版社课后习题答案

第一章 事件与概率1.写出下列随机试验的样本空间。
(1)记录一个班级一次概率统计考试的平均分数(设以百分制记分)。
(2)同时掷三颗骰子,记录三颗骰子点数之和。
(3)生产产品直到有10件正品为止,记录生产产品的总件数。
(4)对某工厂出厂的产品进行检查,合格的记上“正品”,不合格的记上“次品”,如连续查出2个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
(5)在单位正方形内任意取一点,记录它的坐标。
(6)实测某种型号灯泡的寿命。
解 (1)},100,,1,0{n i n i==Ω其中n 为班级人数。
(2)}18,,4,3{ =Ω。
(3)},11,10{ =Ω。
(4)=Ω{00,100,0100,0101,0110,1100,1010,1011,0111,1101,0111,1111},其中0表示次品,1表示正品。
(5)=Ω{(x,y)| 0<x<1,0<y<1}。
(6)=Ω{ t | t ≥ 0}。
2.设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列各事件,。
(1)A 发生,B 与C 不发生。
(2)A 与B 都发生,而C 不发生。
(3)A ,B ,C 中至少有一个发生。
(4)A ,B ,C 都发生。
(5)A ,B ,C 都不发生。
(6)A ,B ,C 中不多于一个发生。
(7)A ,B ,C 至少有一个不发生。
(8)A ,B ,C 中至少有两个发生。
解 (1)C B A ,(2)C AB ,(3)C B A ++,(4)ABC ,(5)C B A ,(6)C B C A B A ++或C B A C B A C B A C B A +++,(7)C B A ++,(8)BC AC AB ++或ABC BC A C B A C AB ⋃⋃⋃ 3.指出下列命题中哪些成立,哪些不成立,并作图说明。
(1)B B A B A = (2)AB B A =(3)AB B A B =⊂则若, (4)若 A B B A ⊂⊂则,(5)C B A C B A = (6) 若Φ=AB 且A C ⊂, 则Φ=BC 解 : (1) 成立,因为B A B B B A B B A ==))((。
同济大学《概率论与数理统计》PPT课件

同济大学数学系 & 人民邮电出版社
四、随机事件之间的关系与运算
第1章 随机事件与概率 10
(1)事件的包含
若事件 A 的发生必然导致事件 B 的发生, 则称事件A 包含在事件 B 中. 记作 A B .
BA
A B
同济大学数学系 & 人民邮电出版社
3
某快餐店一天内接到的订单量;
4
航班起飞延误的时间;
5
一支正常交易的A股股票每天的涨跌幅。
二、样本空间
第1章 随机事件与概率 6
一个随机试验,每一个可能出现的结果称为一个样本点,记为
全体样本点的集合称为样本空间, 记为 , 也即样本空间是随机试验的一切可能结果组成
的集合, 集合中的元素就是样本点. 样本空间可以是有限集, 可数集, 一个区间(或若干区间的并集).
01 在相同的条件下试验可以重复进行;
OPTION
02 每次试验的结果不止一个, 但是试验之前可以明确;
OPTION
03 每次试验将要发生什么样的结果是事先无法预知的.
OPTION
一、随机试验
例1
随机试验的例子
第1章 随机事件与概率 5
1 抛掷一枚均匀的硬币,有可能正面朝上,也有可能反面朝上;
2
抛掷一枚均匀的骰子,出现的点数;
(互斥).
同济大学数学系 & 人民邮电出版社
2、随机事件之间的运算
第1章 随机事件与概率 12
(1)事件的并
事件 A 或 B至少有一个发生时, 称事件 A 与事件B 的并事件发生, 记为 A U B .
(2)事件的交(积)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D ( X ) D ( Y ) 2 E { [ X E ( X ) ] [ Y E ( Y ) ] }
C o v ( X , Y ) E { [ X E ( X ) ] [ Y E ( Y ) ] }
CX o,Y v 1 Y (2) CX o ,Y 1 v ) C ( X o ,Y 2 v ).( (5) Cov(X,C)=0.
(6)C(o a v X b,Y cX d)Y ac D bd X D (a Y db)C c (o X ,Y v).
(7) [C o v(X ,Y )]2D (X )D (Y ).
C o v ( X , Y ) E { [ X E ( X ) ] [ Y E ( Y ) ] }
(2). 计算公式 C o v ( X ,Y ) E ( X Y ) E ( X ) E ( Y ) .
证明
( 1 ) C X , Y ) o E { X v [ E ( X ) ( Y ] E ( Y [ )
第三节 协方差及相关系数
一、协方差与相关系数的 概念及性质
二、相关系数的意义 三、小结
一、协方差与相关系数的概念及性质
1. 问题的提出
问题 对于二维随机变量(X ,Y ):
已知联合分布
边缘分布
对二维随机变量,除每个随机变量各自的概率 特性外, 相互之间可能还有某种联系. 问题: 是用一个怎样的数去反映这种联系?
证明: 对任何实数 t,
E tXEXYEY2
t2DX2tCovX,YDY0.
上式(as a function of t )成立的充要条件是
2 C o vX ,Y 2 4 D XD Y0 .
[C o v(X ,Y )]2D (X )D (Y ).
6. 相关系数的性质
(1)ρXY1.
(2)ρXY1的 充 要,存 条在 件a常 是 ,b使 数 P{YabX }1(X与 Y以概 1线 率性)相 . 关
证明: (1) 由于 C o vX ,Y 2D X D Y
X2Y
CovX,Y2 DXDY
1
XY
1.
(2) 令 X*XEX, Y*YEY
DX
DY
0D (X * Y *)D (X *) 2 C o v(X *, Y *)D (Y *)
12 X Y 12 1X Y,则得到 XY 1
If XY 1, D X * Y * 2 1 X Y 0
若随机 X和 Y 变 相量 互 ,那 独么 立 D ( X Y ) D ( X ) D ( Y ).
若随机X变 和Y 量 不相互独立
D (XY)?
D(XY) D ( X ) D ( Y ) 2 E { X E [ ( X ) Y ] E ( Y [ )]
数 E [X E (X )][Y E (Y )]
反映了随机变量X , Y 之间的某种关系.
2. 定义
(X,Y)是 二 维 随,机 变 量 称量 E{[XE(X)]Y[E(Y)]} 称 为 随 机 X与 变 Y的 量协 方 .记差 为 CoX v,(Y), 即CovX(,Y)E{[XE(X)]Y[E(Y)]}.
由协方差定义可知协方差也是随机变量 函数的数学期望值.
4、协方差的计算方法
(1) 利用定义计算
若 ( X ,Y ) 为离散型,(X,Y) ~ pij
co v (X ,Y ) [x iE (X )][yjE (Y )]p ij i 1j 1
若 ( X ,Y ) 为连续型, (X,Y)~f(x,y)
c o v (X ,Y ) [ x E (X ) ] [y E ( Y ) ]f(x ,y ) d x d y
(1) X和Y的相关系数又称协 为方 标差 ,准 它是一个无量纲 . 的量
(2)若随机 X和 变 Y相 量互独立
C X , Y ) o E { X v E [ ( X ) ( Y ] E ( Y [ )]}
E [ X E ( X ) E [ Y ] E ( Y )] 0.
(3)对于任意的两个随机变量X和Y, 有
协方差的大小在一定程度上反映了X和Y相互之 间的关系,但它还受X与Y本身度量单位的影响. 例如: Cov(kX, kY)=k2Cov(X,Y)
为了克服这一缺点,对协方差进行标准化,
这就引入了相关系数 .
定 义 :ρXY
Co vX(,Y) D(X) D(Y)
称为随机变 X与 量Y的相关系. 数
3. 说明
从而 X* Y* c, 即 XEXYEYc,
DX
DY结论也成立。
7. 相关系数的意义
相关系数刻划了X和Y间“线性相关”的程度. 考虑以X的线性函数a+bX来近似表示Y,
以(平)均(平)方误差
e =E{[Y-(a+bX)]2} 来衡量以a+bX近似表示Y的好坏程度, e值越 小表示 a+bX与Y的近似程度越好.用微积分中 求极值的方法,求出使e 达到最小时的a,b .
C o v ( X , Y ) E { [ X E ( X ) ] [ Y E ( Y ) ] }
5. 协方差的性质 ( 1 )CX o ,Y ) v C (Y ,o X )v ; (
(2 )CX o,X v )( D (X ); (3 )Ca o,b X v)Y ( aC bX o ,Y v ) ( a ,b 为;常 (4 )CX o 1 v X 2,(Y ) CX o 1,Y v ) C ( X o 2,Y v ).(
E [ X Y ( X ) Y X E ( Y ) E ( X E ) E ( Y )] E ( X Y ) E [ Y E ( X ) ] E [ X E ( Y ) ] E [ E ( X ) E ( Y ) ]
E ( X ) 2 E ( X Y ) E ( Y ) E ( X ) E ( Y ) E ( X ) E Y ( X ) E ( Y ).
以a+bX 近似的表示Y
eE {Y [ (a b)X 2} ]E (Y 2) b 2E (X 2) a 2