实数概念分类性质讲义(含答案)
初中数学第六章 实数(讲义及答案)及答案

8.已知|x|=2,y2=9,且xy<0,则x+y的值为( )
A.1或﹣1B.-5或5C.11或7D.-11或﹣7
9.在如图所示的数轴上,点B与点C关于点A对称,A、B两点对应的实数分别是 和﹣1,则点C所对应的实数是( )
A.1+ B.2+ C.2 ﹣1D.2 +1
24.定义:若两个有理数a,b满足a+b=ab,则称a,b互为特征数.
(1)3与互为特征数;
(2)正整数n(n>1)的特征数为;(用含n的式子表示)
(3)若m,n互为特征数,且m+mn=-2,n+mn=3,求m+n的值.
25.在已有运算的基础上定义一种新运算 : , 的运算级别高于加减乘除运算,即 的运算顺序要优先于 运算,试根据条件回答下列问题.
10.若a、b为实数,且满足|a-2|+ =0,则b-a的值为( )
A.2B.0C.-2D.以上都不对
二、填空题
11.[x)表示小于x的最大整数,如[2.3)=2,[ 4)= 5,则下列判断:①[ )= ;②[x) x有最大值是0;③[x) x有最小值是 1;④x [x) x,其中正确的是__________(填编号).
12.a是 的整数部分,b的立方根为-2,则a+b的值为________.
13.若 ,则mn的值为____.
14.若实数a、b满足 ,则 =_____.
15.对于有理数a,b,规定一种新运算:a※b=ab+b,如2※3=2×3+3=9.下列结论:①(﹣3)※4=﹣8;②若a※b=b※a,则a=b;③方程(x﹣4)※3=6的解为x=5;④(a※b)※c=a※(b※c).其中正确的是_____(把所有正确的序号都填上).
实数的有关概念(含答案)

⎧⎨⎩第1章 数与式第1课 实数的有关概念目的:复习实数有关概念,相反数、绝对值、倒数、数轴、非负数性质、•科学记数法、近似数与有效数字. 中考基础知识1.实数的分类2.相反数:只有_______不同的两个数,叫做互为相反数,a 的相反数为______,a-b 的相反数是_______,x+y 的相反数是________,0的相反数为_______,若a ,b 互为相反数,则a+b=________.3.绝对值:几何意义:数a 的绝对值是数a 在数轴上表示的点到_______的距离. 正数的绝对值等于它________. 代数意义 零的绝对值等于________.负数的绝对值等于它的________.│a │=(0)(0)a a a a ≥⎧⎨-<⎩ 4.数轴:3-3-1021________与数轴上的点是一一对应的,•数轴上的点表示的数左边的总比右边的_________,数轴是沟通几何与代数的桥梁.5.倒数:a (a ≠0)的倒数为________,0_______•倒数,•若a ,•b•互为倒数,•则ab=_____,若a ,b 互为负倒数,则ab=________.6.非负数:│a│≥0,a2≥0≥0.若│a+1│+(c+3)2=0,则a=_______,b=_______,c=________.7.科学记数法:把一个数记作a×10n形式(其中a是具有一位整数的小数,n为自然数).8.近似数与有效数字:一个经过________而得到的近似数,最后一个数在哪一位,就说这个近似数是精确到哪一位的近似数,对于一个近似数,•从左边第一个______数字开始,到最末一位数字止,都是这个近似数的有效数字.备考例题指导例1.填空题(1的倒数为_______,绝对值为________,相反数为_______.(2)若│x-1│=1-x,则x的取值范围是_______,若3x+1有倒数,则x的取值范围是_________.(3)在实数18,π,3,0+1,0.303003……中,无理数有________个.(4)绝对值不大于3的非负整数有________.(5=0,则3x-2y=________.(6)用科学记数法表示-168000=_______,0.0002004=_________.(7)0.0304精确到千分位等于_______,有_______个有效数字,它们是_______.(8)2060000保留两个有效数字得到的近似数为________.答案:(1).-2,,(2)x≤1,x≠-13.(3)5.(4)0,1,2,3.(5)7.(6)-1.68×105,2.004×10-4.(7)0.030;2;3,0 (8)2.1×106.例2.已知1<x<4,化简│x-4│解:∵1<x<4,∴x-4<0,1-x<0.原式=│x-4│-│1-x│=4-x+1-x=5-2x.例3.化简│x-2│+│x+3│.解:令x-2=0得x=2,令x+3=0得x=-3.(1)当x<-3时,原式=2-x-x-3=-2x-1;(2)当-3≤x<2时,原式=2-x+x+3=5;(3)当x≥2时,原式=x-2x+x+3=2x+1.分类讨论思想,零点分段法,一般等号取在大于符号中.备考巩固练习1.(2005,北京)一个数的相反数是3,则这个数是________.2.气温比a℃低3℃记作________.3-a)2与│b-1│互为相反数,则2a b-的值为_______.4.若a2│c-2003│=0,则a b+c=________.5.计算|47-25|+|35-79|-|29-37|=______________.(注意方法)6.计算│1-a│+│2a+1│+│a│,其中a<-2.7.如果表示a、b两个实数的点在数轴上的位置如图,那么化简│a+b│果是多少?b a8.按要求取下列各数的近似数:(1)6.286(精确到0.1);(2)1764000(保留三个有效数字);(3)278160(•精确到万位).9.近似数7.60×105精确到_______位,有______个有效数字,近似数7.6×105精确到_______位,有________个有效数字.10.已知a、b、c为实数,且a2+b2+c2=ab+bc+ac,求证a=b=c.答案:1.-3 2.(a-3)℃ 3+1 4.20045.原式=47-25+79-35+29-37=17-1+1=17(先去绝对值符号)6.∵a<-2,∴1-a>0,2a+1<0,a<0∴原式=1-a-2a-1-a=-4a7.-2a8.(1)6.286≈6.3 (2)1764000≈1.76×106(3)278160≈28万9.∵7.60×105=760000 ∴近似数7.60×105精确到千位,有三个有效数字7,6,•0;7.6×105精确到万位,有两个有效数字7,610.用配方法和非负数性质,将一个方程转化为三个方程,a2+b2+c2-ab-bc+ac=0 2a2+2b2+2c2-2ab-2bc-2ac=0 (a-b)2+(b-c)2+(a-c)2=0∴a-b=0,b-c=0,a-c=0 ∴a=b=c沁园春·雪 <毛泽东>北国风光,千里冰封,万里雪飘。
七年级初一数学 第六章 实数(讲义及答案)及解析

七年级初一数学 第六章 实数(讲义及答案)及解析一、选择题1.下列说法中正确的是( )A .若a a =,则0a >B .若22a b =,则a b =C .若a b >,则11a b> D .若01a <<,则32a a a << 2.下列计算正确的是( )A .42=±B .1193±=C .2(5)5-=D .382=± 3.已知280x y -++=,则x y +的值为( ) A .10B .-10C .-6D .不能确定 4.下列说法正确的是 ( ) A .m -一定表示负数B .平方根等于它本身的数为0和1C .倒数是本身的数为1D .互为相反数的绝对值相等 5.在下列结论中,正确的是( ).A .255-44=±() B .x 2的算术平方根是xC .平方根是它本身的数为0,±1D .64 的立方根是2 6.让我们轻松一下,做一个数字游戏.第一步:取一个自然数n 1=5,计算n 12+1得a 1;第二步:算出a 1的各位数字之和得n 2,计算n 22+1得a 2;第三步:算出a 2的各位数字之和得n 3,计算n 32+1得a 3;……依此类推,则a 2018的值为( )A .26B .65C .122D .1237.若320,a b -++=则+a b 的值是( )A .2B 、1C 、0D 、1-8.如图,若实数m =﹣7+1,则数轴上表示m 的点应落在( )A .线段AB 上B .线段BC 上 C .线段CD 上 D .线段DE 上 9.下列各数中,介于6和7之间的数是( )A 43B 50C 58D 33910.下列判断正确的有几个( )①一个数的平方根等于它本身,这个数是0和1;②实数包括无理数和有理数;333的立方根;④无理数是带根号的数;⑤22.A .2个B .3个C .4个D .5个二、填空题11.写出一个3到4之间的无理数____.12.m 的平方根是n +1和n ﹣5;那么m +n =_____.13.观察下列算式: ①246816⨯⨯⨯+=2(28)⨯+16=16+4=20;②4681016⨯⨯⨯+=2(410)⨯+16=40+4=44;… 根据以上规律计算:3032343616⨯⨯⨯+=__________14.按一定规律排列的一列数依次为:2-,5,10-,17,26-,,按此规律排列下去,这列数中第9个数及第n 个数(n 为正整数)分别是__________.15.一个数的立方等于它本身,这个数是__.16.已知:103<157464<1003;43=64;53<157<63,则 315746454=,请根据上面的材料可得359319=_________.17.49的平方根是________,算术平方根是______,-8的立方根是_____.18.下列说法: ① ()210-10-=;②数轴上的点与实数成一一对应关系;③两条直线被第三条直线所截,同位角相等;④垂直于同一条直线的两条直线互相平行;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,其中正确的个数有 ___________19.若2x -+|2﹣x|=x+3,则x 的立方根为_____.20.如图,直径为1个单位长度的半圆,从原点沿数轴向右滚动一周,圆上的一点由原点O 到达点'O ,则点'O 对应的数是_______.三、解答题21.观察下列计算过程,猜想立方根.13=1 23=8 33=27 43=64 53=125 63=216 73=343 83=512 93=729(1)小明是这样试求出19683的立方根的.先估计19683的立方根的个位数,猜想它的个位数为 ,又由203<19000<303,猜想19683的立方根十位数为 ,验证得19683的立方根是(2)请你根据(1)中小明的方法,猜想 ; .请选择其中一个立方根写出猜想、验证过程。
中考数学第1讲 实数(含答案)

第1讲 实数【回顾与思考】(1)实数的有关概念{}⎧⎧⎧⎫⎪⎪⎪⎪⎨⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎨⎪⎪⎪⎭⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数有尽小数或无尽循环小数正分数实数分数负分数正无理数无理数无尽不循环小数 负无理数①实数: 和 统称实数, 和数轴上的点是一一对应....的。
(即:每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。
) ②有理数: 和 的统称.任何一个有绿树都可以写成分数pq的形式,其中p 和q 是整数且最大公约数是1。
③无理数:无限 叫无理数,常见的有三类:① ;② ;③ ;④对实数进行分类,应先 ,后 。
(2)数轴:规定了 、 和 的直线叫做数轴(画数轴时,要注童上述规定的三要素缺一个不可)。
和数轴上的点是一一对应....的。
(即:每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。
)(3)相反数: 实数的相反数是一对数(只有 的两个数,叫做互为相反数,零的相反数是 ). 从数轴上看,互为相反数的两个数所对应的点关于 对称.(4)绝对值①从数轴上看,一个数的绝对值就是 的距离。
⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a a a②一个正数的绝对值是 ,一个负数的绝对值是 ,零的绝对值是 。
(5)倒数: 实数a(a ≠0)的倒数是 (乘积为1的两个数,叫做互为倒数);零 倒数.(6)平方根:如果 ,即 ,那么这个数x 叫做做a 的平方根(也叫二次方根)。
一个正数有 平方根,且互为相反数;0的平方根是 ;负数 平方根。
(7)算术平方根:如果 ,即 ,那么这个正数x 叫做a 的算.术.平方根,即x a =;特别规定0的算术平方根是 。
即00=。
(8)立方根:如果一个数x 的立方等于a ,即x 3=a ,那么这个数x 叫做a 的立方根(也叫三次方根),一个正数的立方根是 ;0的立方根是 ;负数的立方根是 。
七年级(下)数学 同步讲义 实数的概念及数的开方 (解析版)

知识点1:实数的概念1、无限不循环的小数叫做无理数.注意:1)整数和分数统称为有理数; 2)圆周率π是一个无理数. 2、无理数也有正、负之分.如2、π、0.101001000100001等这样的数叫做正无理数;2-、π-、0.101001000100001-这样的数叫做负无理数;只有符号不同的两个无理数,如2与2-,π与π-,称它们互为相反数.实数、数的开方知识结构模块一 实数的概念和分类知识精讲3、有理数和无理数统称为实数. (1)按定义分类⎧⎫⎧⎪⎪⎨⎬⎨⎪⎩⎭⎪→⎩整数有理数有限小数或无限循环小数实数分数无理数无限不循环小数(2)按性质符号分类0⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正实数正无理数实数负有理数负实数负无理数【例1】 写出下列各数中的无理数:3.1415926,2π,16,.0.5,0,23-,0.1313313331…(两个1之间依次多一个3),0.2121121112.【答案】2π、0.1313313331….【解析】无限不循环小数都是无理数. 【总结】考查无理数的概念.【例2】 判断正误,在后面的括号里对的用“√”,错的记“×”表示.(1)无限小数都是无理数. ( ) (2)无理数都是无限小数.( ) (3)带根号的数都是无理数.( ) (4)不带根号的数一定不是无理数.()【答案】(1)×; (2)√; (3)×; (4)×.【解析】(1)无限不循环小数才是无理数;(2)无理数是无限不循环小数当然是无限小数; (3)开方开不尽的数是无理数;(4)π没带根号但是无理数. 【总结】考查无理数的概念及无理数与小数的关系.【例3】 a 是正无理数与a 是非负无理数这两种说法是否一样?为什么. 【答案】一样.例题解析【解析】a 是非负无理数实质上就是说a 是正无理数,因为0不是无理数. 【总结】考查无理数的分类及无理数的概念.【例4】 若a +bx =c +dx (其中a 、b 、c 、d 为有理数,x 为无理数),则a =c ,b =d ,反之, 亦成立,这种说法正确吗?说明你的理由. 【答案】略.【解析】移项得:()()a c d b x -=-, 因为非零有理数乘以无理数的结果还是无理数,而a c -是有理数(两个有理数的差仍是有理数),忧伤0d b -=,从而0a c -=, 于是有:a c b d ==,,当a c b d ==,时,等式a bx c dx +=+成立. 【总结】考查有理数、无理数的运算性质.【例5】 3为什么是无理数?请说明理由.【解析】假设3是有理数,则3能写成两个整数之比的形式:3p q=, 又因为p 、q 没有公因数可以约去,所以pq是最简分数. 把3p q=两边平方,得223p q =,即223q p =.由于23q 是3的倍数,则p 必定是3的倍数.设3p m =, 则2239q m =, 同理q 必然也是3的倍数,设3q n =,既然p 、q 都是3的倍数,它们必定有公因数3,与前面假设pq是最简分数矛盾, 故3是无理数.【总结】考查对无理数的理解及证明.模块二:数的开方知识精讲一、开平方:1、定义:求一个数a的平方根的运算叫做开平方.2、如果一个数的平方等于a,那么这个数叫做a的平方根.这个数a叫做被开方数.x=±,1的平方根是1±.如21x=,1说明:1)只有非负数才有平方根,负数没有平方根;2)平方和开平方互为逆运算.3、算术平方根:正数a的两个平方根可以用“a的正平方根(又叫算术平方根),读作“根号a”;a的负平方根,读作“负根号a”.★注意:1)一个正数有两个平方根,这两个平方根互为相反数;零的平方根是0;2=2是被开方数的根指数,平方根的根指数为2,书写上一般平方根的根指数2略写;3)一个数的平方根是它本身,则这个数是0.二、开立方:1、定义:求一个数a的立方根的运算叫做开立方.2、如果一个数的立方等于a,那么这个数叫做a的立方根号a a叫做被开方数,“3”叫做根指数.★注意:1)任意一个实数都有立方根,而且只有一个立方根;负数有立方根;2)零的立方根是0;3)一个数的立方根是它本身,则这个数是0,1和-1.三、开n次方:1、求一个数a的n次方根的运算叫做开n次方.a叫做被开方数,n叫做根指数.2、如果一个数的n次方(n是大于1的整数)等于a,那么这个数叫做a的n次方根.3、当n为奇数时,这个数为a的奇次方根;当n为偶数时,这个数为a的偶次方根.★注意:1)实数a a是任意一个数,根指数n是大于1的奇数;2)正数a”表示,负n次方根用“0n=时,在中省略n);a>,根指数n是正偶数(当23)负数的偶次方根不存在;4)零的n 次方根等于零,表示为00n =.【例6】 写出下列各数的平方根:(1)9121; (2)2(9)-.【答案】(1)311±; (2)3±. 【解析】注意要先把题中给的算式化简,再求它的平方根. 【总结】考查平方根的概念,注意平方根有两个.【例7】 写出下列各数的正平方根: (1)225;(2)9.【答案】(1)15;(2)3.【解析】(1)15; (2)93=,3的正平方根是3. 【总结】考查平方根的概念,注意对正平方根的准确理解.【例8】 下列各式是否正确,若不正确,请说明理由.(1)1的平方根是1;(2)9是2(9)-的算术平方根; (3)π-是2π-的平方根;(4)81的平方根是9±.【答案】(1)×; (2)√; (3)×; (4)×.【解析】(1)错误:1的平方根是1±;(2)正确;(3)错误:2π-是负数,没有平方根; (4)2π-错:819=,9的平方根是3±.例题解析【总结】考查平方根的基本概念,注意一定要先化简,再求平方根.【例9】写出下列各数的立方根:(1)216;(2)0;(3)1-;(4)3438-;(5)27.【解析】(1)6;(2)0;(3)1-;(4)72-;(5)3.【总结】本题主要考查立方根的概念.【例10】判断下列说法是否正确;若不正确,请说明理由:(1)一个数的偶次方根总有两个;()(2)1的奇次方根是1±;()(3)7=±;()(4)2±是16的四次方根;()(5)a的n次方根的个数只与a的正负有关.()【答案】(1)×;(2)×;(3)×;(4)√;(5)×.【解析】(1)错误:负数没有偶次方根;(2)错误:奇次方根只有一个,所以1的奇次方根是1;(37=;(4)正确;(5)错误:还与n的奇偶性有关.【总结】考查数的开方的基本概念,注意奇次方根与偶次方根的区别.【例11】写出下列各数的整数部分和小数部分:(1(2(3)9【解析】(1)因为89=,8,8;(2)因为78==77;(3)因为34=,所以596<<,所以95,小数部分为4-【总结】考查利用估算法求出无理数的整数部分和小数部分.【例12】 求值:(1 (2);(3)2; (4)2(.【解析】(1)12; (2)0.1- ; (3)4; (4)11. 【总结】考查对平方根的理解及运用.【例13】 求值:(1 (2 (3; (4【解析】(1)4; (2)35-; (3)原式54=-; (4)原式2-. 【总结】考查实数的立方根的运用.【例14】 求值:(1 (2 (3; (4【解析】(1)6 ; (2)3 ; (3)3- ; (4)2. 【总结】考查实数的奇次方根与偶次方根的计算.【例15】 求值:(1(2)(3.【解析】(1)0.5 ; (2)原式=95; (3)原式60=. 【总结】考查实数的立方根运算.【例16】 小明的房间面积为17.62m ,房间的地面恰好由110块大小相同的正方形地砖铺成,问:每块地砖的边长是多少? 【答案】0.4m .【解析】设每块地砖的边长是x 米,则有:211017.6x =,化简得20.16x =,解得:0.4x = 即每块地砖的边长是0.4m .【总结】考查实数的运算在实际问题中的运用.【例17】 已知2a -1的平方根是3±,3a +b -1的算术平方根是4 【答案】3.【解析】由题意知:219a -=,3116a b +-=,即210a =,173b a =-解得:5a =,2b =,所以2549a b +=+=3=. 【总结】本题主要考查实数的平方根与算术平方根的区别,以及代数式的值.【例18】 若a 的平方根恰好是方程3x +2y =2的一组解,求x y a a +的值.【答案】125716()1616或.【解析】由题意,因为a 的两个平方根是相反数,那么y x =-,则有:32322x y x x +=-=,即2x =,2y =-.那么由题意可得:4a =,所以22125744161616x y a a -+=+=+=. 【总结】本题主要考查实数的平方根与求代数式的值.【例19】 3,3(43)8x y +=-,求2()n x y +的值. 【答案】1.【解析】由题意可得:49432x y x y -=⎧⎨+=-⎩, 解得:12x y =⎧⎨=-⎩,所以222()(12)(1)1n n n x y +=-=-=.【总结】本题考查实数的开方以及二元一次方程组的解法,学生忘记解方程组的情况下,老师可以略微拓展复习一下二元一次方程组的解法哦.【例20】用“>”把下列各式连接起来:=,-12-23【总结】本题考查实数的大小比较,注意先化简,再比较大小.【例21】 1.732 5.477≈,利用以上结果,求下列各式的近似值.(1≈_______;(2____________;(3≈_________;(4≈______________;(5___________;(6≈_____________.【答案】略.【解析】(1 1.7321017.32⨯=;(2 5.4771054.77≈⨯=;(3 1.732100173.2⨯=;(4 5.4770.10.5477≈⨯=;(5 1.7320.10.1732⨯=;(6 5.4770.010.05477≈⨯=.【总结】本题考查实数的运算,注意每题之间的联系,类比推理.【例22】填写下表,并回答问题:a…0.000001 0.001 1 1000 1000000 …….3a……(1)数a与它的立方根3a的小数点的移动有何规律?(2)根据这个规律,若已知33,,求a的值.==a0.005250.1738 1.738【解析】(1)由题可知,被开方数a的小数点每向右或向左移动三位,立方根3a的小数点相应地向右或向左移动一位;(2)由(1)总结的规律可知: 5.25a=.【总结】本题考查实数的开方与被开方数之间的关系,注意引导学生仔细分析表格.【例23】阅读下面材料并完成填空:你能比较两个数20162017和20172016的大小吗?为了解决这个问题先把问题一般化,要比较n n+1和(n+1)n的大小(的整数),先从分析n=1,=2,=3,……这些简单的情况入手,从中发现规律,经过归纳,猜想出结论.(1)通过计算,比较下列①—⑦各组中两个数的大小(在横线上填“>、=、<”号①12______21;②23______32;③34______43;④45______54;⑤56______65;⑥67______76;⑦78______87.(2)对第(1)小题的结果进行归纳,猜想出n n+1和(n+1)n的大小关系: ______(3)根据上面的归纳结果猜想得到的一般结论是:20162017_____20172016.【答案】(1)①<;②<;③>;④>;⑤>;⑥>;⑦>:(2)当n =1或2时,n n+1<(n+1)n;当n>2的整数时,n n+1>(n+1)n;(3)>.【解析】(1)①12 <21;②23<32;③34>43;④45>54;⑤56>65;⑥67>76;⑦78>87;(2)当n=1或2时,n n+1<(n+1)n;当n>2的整数时,n n+1>(n+1)n;(3)根据第(2)小题的结论可知,20162017>20172016.【总结】本题考查实数的运算规律,注意观察计算后的结果,总结出规律。
专题01 实数的概念与运算(讲)-备战2019年中考数学二轮复习讲练测(解析版)

备战2019年中考二轮讲练测第一篇专题整合篇专题01 实数的概念与运算(讲案)一讲考点——考点梳理(一)实数的基本概念(1)数轴的三要素为原点、正方向和单位长度. 数轴上的点与实数构成一一对应.(2)只有符号不同的两个数叫做互为相反数.实数a 的相反数为—a. 若a ,b 互为相反数,则b a +=0.(3)若两数乘积为1,则这两个数叫做互为倒数。
非零实数a 的倒数为a1. 若a ,b 互为倒数,则ab =1.(4)数轴上表示数a 的点与原点的距离叫做数a 的绝对值。
实数a 的绝对值记作|a|,则⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a .(二)有效数字与科学记数法(1)有效数字:是指从一个近似数的左边第一个不是0的数字开始,一直到这个数的最后一位的所有数字.(2)科学记数法:把一个数表示成a×10n 的形式,其中1≤a <10的数,n 是整数.当该数的绝对值大于或等于1时,n 为它的整数位数减1;当该数的绝对值小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0)(三)实数的分类与大小比较(1)实数的分类:有理数和无理数统称实数.(2)实数的大小比较:数轴上两个点表示的数,右边的点表示的数总比左边的点表示的数大;正数>0,负数<0,正数>负数;两个负数比较大小,绝对值大的< 绝对值小的.常用方法:性质法、数轴法、倒数法、平方法、比差法、比商法.(四)实数的运算1.数的开方(1)任何正数a 都有两个平方根,它们互为相反数.其中正的平方根a 叫a 的算术平方根.负数没有平方根,0的算术平方根为0.(2)任何一个实数a 都有立方根,记为3a .(3)=2a ⎩⎨⎧<-≥=)0()0(a a a a a .2.数的乘方:=n aa n a a a a 个⋅⋅,其中a 叫做底数,n 叫做指数. =0a 1(其中a ≠0 且a 是实数)=-p a pa 1(其中a ≠0)3. 实数运算:先算乘方与开方,再算乘除,最后算加减;如果有括号,先算括号里面的,同一级运算按照从左到右的顺序依次进行.同一级的运算是可以相互转化的.4. 运算律的应用:主要有加法的交换律、结合律,乘法的交换律、结合律,以及分配律.(五)探究数、式规律(1)一般按照“特殊——一般——特殊”的思维过程,使用“观察——猜想——验证”的思路,最终得出正确的结果;(2)列表法与举例法是在解答探索数式规律的问题时最常用的方法.二讲题型——题型解析(一)对实数基本概念的考查.例1、【2018年广东省中考】一个正数的平方根分别是x+1和x ﹣5,则x=_____.【答案】2【解析】【分析】根据正数的两个平方根互为相反数可得关于x 的方程,解方程即可得.【详解】根据题意知x+1+x ﹣5=0,解得:x=2,故答案为:2.(二)对有效数字与科学记数法的考查.例2、【2018年广西壮族自治区贵港市中考】一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为( )A . 2.18×106B . 2.18×105C . 21.8×106D . 21.8×105【答案】A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】2180000的小数点向左移动6位得到2.18,所以2180000用科学记数法表示为2.18×106,故选A.(三)对实数的分类与大小比较的考查例3、【2018年山东省菏泽市中考】下列各数:-2,0,,0.020020002…,,,其中无理数的个数是()A.4 B.3 C.2 D.1【答案】C【解析】分析:根据无理数与有理数的概念进行判断即可得.详解:是有理数,0是有理数,是有理数,0.020020002…是无理数,是无理数,是有理数,所以无理数有2个,故选C.【点评】本题考查了无理数的概念:无限不循环小数叫做无理数.常见的形式有:开方开不尽的数,如2等;;圆周率π及一些含有π的数都是无理数.要掌握实数、有理数、无理数的定义,以及非负数、非正数等一些相关的概念.(四)对实数的运算的考查例4、【广东省2018年中考数学试题】计算:|﹣2|﹣20180+()﹣1【答案】3.【解析】【分析】按顺序先分别进行绝对值化简、0次幂的计算、负指数幂的计算,然后再按运算顺序进行计算即可得.【详解】|﹣2|﹣20180+()﹣1=2﹣1+2=3.【点睛】本题主要考查了实数的混合运算,涉及到绝对值的化简、0指数幂的运算、负指数幂的运算,熟练掌握各运算法则是解题的关键.(五) 对实数中的非负数及性质的考查例5、已知实数x ,y 满足,则以x ,y 的值为两边长的等腰三角形的周长是( )A .20或16B .20C .16D .以上答案均不对【答案】B .【解析】试题分析:根据题意得:,解得:.(1)若4是腰长,则三角形的三边长为:4、4、8,不能组成三角形;(2)若4是底边长,则三角形的三边长为:4、8、8,能组成三角形,周长为4+8+8=20.故选B .考点:1.等腰三角形的性质;2.非负数的性质;3.三角形三边关系;4.分类讨论.学科网(六)对数、式规律的考查例6、【2018年湖北省荆门市中考】将数1个1,2个,3个,…,n 个(n 为正整数)顺次排成一列:1,,,,,,…,,,…,记a 1=1,a 2=,a 3=,…,S 1=a 1,S 2=a 1+a 2,S 3=a 1+a 2+a 3,…,S n =a 1+a 2+…+a n ,则S 2018=_____.【答案】630x -=4080x y -=⎧⎨-=⎩48x y =⎧⎨=⎩【点睛】本题考查了规律型——数字的变化类,根据数列中数的排列规律找出“前2018个数里面包含:1个1,2个,3个,…,63个,2个”是解题的关键.三讲方法——方法点睛(一)解决有关实数的基本概念的问题要掌握相反数、倒数、绝对值等概念的内涵和区别.(二)(1)对于实数的分类要掌握实数、有理数、无理数的定义,以及非负数、非正数等一些相关的概念(2)实数大小的比较可以利用数轴上的点,右边的数总比左边的数大;以及绝对值比较法等比较实数大小的方法.除此之外常用的方法有“差值比较法”适用于比较任何两数的大小;“商值比较法”只适用于比较两个正数的大小;“平方法”、“倒数法”常用于比较二次根式的大小;“底数比较法”、“指数比较法”常用于比较幂的大小.(三)解决与非负数的性质相关的问题的关键是掌握:(1)常见的非负数有;任何一个实数a的绝对值是非负数,即|a|≥0;任何一个实数a的平方是非负数,即a2≥0;若a为非负数,则a也为非负数,即a≥0;(2)非负数具有的性质是:非负数有最小值,最小值为0;有限个非负数的和仍是非负数;几个非负数之和等于0,则每个非负数都等于0.(四)对于实数的运算(1)熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等的运算.(2)注意运算顺序,分清先算什么,再算什么.(五)科学记数法:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.当原数绝对值大于10时,写成a×10n的形式,其中1≤|a|<10,n等于原数的整数位数减1;当原数绝对值小于1时,写成a×10-n 的形式,其中1≤|a|<10,n等于原数左边第一个非零的数字前的所有零的个数(包括小数点前面的零).(六)解决探索数、式规律问题的方法常见的有列表法和举例法.四练实题——随堂小练1.下列各数中,绝对值最大的数是( ) A.﹣3B.﹣2C.0D.1【答案】A.【解析】|﹣3|>|﹣2|>1>|0|,故选A.2.在﹣,0,﹣2,,1这五个数中,最小的数为( )A .0B .12-C .﹣2D 13.【答案】C .3.古生物学家发现350 000 000年前,地球上每年大约是400天,用科学记数法表示350 000 000=【答案】3.5×108.【解析】将350 000 000用科学记数法表示为:3.5×1084.已知x 、y 为实数,且y=92-x ﹣29x -+4,则x ﹣y= 【答案】﹣1或﹣7.【解析】由题意得x 2﹣9≥0,x 2﹣9≤0,∴x 2﹣9=0,解得x=±3,∴y=4,∴x ﹣y=﹣1或﹣7.5.观察以下等式:32﹣12=8,52﹣12=24,72﹣12=48,92﹣12=80,…由以上规律可以得出第n 个等式为 .【答案】(2n+1)2﹣(2n ﹣1)2=8n 6与0.5.(填“>”、“=”、“<”)【答案】>【解析】1-2,2>0,0.考点:实数大小比较.7. 高斯函数[x],也称为取整函数,即[x]表示不超过x的最大整数.例如:[2.3]=2,[﹣1.5]=﹣2.则下列结论:①[﹣2.1]+[1]=﹣2;②[x]+[﹣x]=0;③若[x+1]=3,则x的取值范围是2≤x<3;④当﹣1≤x<1时,[x+1]+[﹣x+1]的值为0、1、2.其中正确的结论有(写出所有正确结论的序号).【答案】①③.【分析】根据[x]表示不超过x的最大整数,即可解答.【解析】①[﹣2.1]+[1]=﹣3+1=﹣2,正确;②[x]+[﹣x]=0,错误,例如:[2.5]=2,[﹣2.5]=﹣3,2+(﹣3)≠0;③若[x+1]=3,则x的取值范围是2≤x<3,正确;④当﹣1≤x<1时,0≤x+1<2,﹣1<﹣x+1≤1,[x+1]+[﹣x+1]的值为2,故错误.故答案为:①③.考点:有理数的混合运算;新定义.8.(2-2014)0-2cos30°-(12)-1.-1.【解析】原式.9.计算:4sin45°+|﹣2|(13)0.【答案】3.【解析】考点:1.实数的运算;2.特殊角三角函数值;3.零指数幂.10.计算:(12)﹣1﹣|(1﹣π)0.【答案】.【解析】试题分析:根据负整数指数幂,去绝对值,二次根式的化简以及零指数幂的计算法则计算.试题解析:原式=2+1=3+考点:实数的运算;零指数幂;负整数指数幂.五练原创——预测提升1.在我市2016年春季房地产展示交易会上,全市房地产开发企业提供房源的参展面积达到5400000平方米,将数据5400000用科学记数法表示为( )A .0.54×107B .54×105C .5.4×106D .5.4×107【答案】C .【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,n 的值为这个数的整数位数减1,所以5400000=5.4×106,故选C .2.若2(a+3)的值与4互为相反数,则a 的值为( )A .﹣1B .﹣72C .﹣5D .12【答案】C.【解析】已知2(a+3)的值与4互为相反数,根据互为相反数的两个数的和为0可得2(a+3)+4=0,解得a=﹣5,故选C.3.数轴上点A 表示的实数可能是( )A .7B .10C .17D .26【答案】C.【解析】 ∵4<17<5,∴数轴上点A 表示的实数可能是17;故选C .4.下列各数:227,π,cos60°,0 A .1个B .2个C .3个D .4个【答案】B .【解析】据无理数定义得有,π 是无理数.故选B .学科网5.有一个数值转换器,原理如下:当输入的x=256时,输出的y 等于( )A 、2B 、4C 、2D 、22【答案】C .6.若21(3)0a b -++=,则a b =() A .1B .-1 C .3 D .-3【答案】D.【解析】∵21(3)0a b -++=,∴a-1=0,b+3=0,∴a=1,b=-3,∴1(3)3a b =-=-.故选D.7.按照如图的操作步骤,若输入x 的值为2,则输出的值是_____.(用科学计算器计算或笔算)【答案】2【解析】【分析】将x=2代入程序框图中计算即可得到结果.【详解】将x=2代入得:3×22﹣10=12﹣10=2,故答案为:2.【点睛】本题考查了代数式求值,熟练掌握运算法则是解本题的关键.8. 古希腊数学家把1、3、6、10、15、21、…叫做三角形数,其中1是第一个三角形数,3是第二个三角形数,6是第三个三角形数,…,依此类推,第100个三角形数是 .【答案】5050.【分析】设第n 个三角形数为a n ,分析给定的三角形数,根据数的变化找出变化规律“a n =1+2+…+n =(1)2n n +”,依此规律即可得出结论.【解析】设第n 个三角形数为a n ,∵a 1=1,a 2=3=1+2,a 3=6=1+2+3,a 4=10=1+2+3+4,…∴a n =1+2+…+n =(1)2n n +,将n =100代入a n ,得:a 100=100(1001)2+=5050,故答案为:5050.9. 阅读理解题:定义:如果一个数的平方等于-1,记为21i =-,这个数i 叫做虚数单位,把形如a bi +(,a b 为实数)的数叫做复数,其中a 叫这个复数的实部,b 叫做这个复数的虚部,它的加、减,乘法运算与整式的加、减、乘法运算类似.例如计算:()()()()253251372i i i i-++=++-+=+()()()21212221213i i i i i i i +´-=´-+´-=+-++=+;根据以上信息,完成下列问题:(1)填空:3i =_________,4i =___________;(2)计算:()()134i i +´-;(3)计算:232017i i i i ++++ .【答案】(1)﹣i ,1;(2)7﹣i ;(3)i .【分析】(1)把i 2=﹣1代入求出即可;(2)根据多项式乘以多项式的计算法则进行计算,再把i 2=﹣1代入求出即可;(3)先根据复数的定义计算,再合并即可求解.10. 观察下列等式:第一个等式:122211132222121a ==-+´+´++;第二个等式:2222232111322(2)2121a ==-+´+´++;第三个等式:3332342111322(2)2121a ==-+´+´++;第四个等式:4442452111322(2)2121a ==-+´+´++;按上述规律,回答下列问题:(1)请写出第六个等式:a 6= = ;(2)用含n 的代数式表示第n 个等式:a n == ;(3)a 1+a 2+a 3+a 4+a 5+a 6= (得出最简结果);。
2013年中考数学专题复习第1讲:实数(含答案)

2013年中考数学专题复习第一讲 实数【基础知识回顾】 一、实数的分类:1、按实数的定义分类: 实数2、按实数的正负分类:实数【名师提醒:1、正确理解实数的分类。
如:2π是 数,不是 数,722是 数,不是 数。
2、0既不是 数,也不是 数,但它是自然数】 二、实数的基本概念和性质1、数轴:规定了 、 、 的直线叫做数轴, 和数轴上的点是一一对应的,数轴的作用有 、 、 等。
2、相反数:只有 不同的两个数叫做互为相反数,a 的相反数是 ,0的相反数是 ,a 、b 互为相反数⇔3、倒数:实数a 的倒数是 , 没有倒数,a 、b 互为倒数⇔4、绝对值:在数轴上表示一个数的点离开 的距离叫做这个数的绝对值。
a =⎪ ⎪ ⎪⎪⎩ ⎪ ⎪ ⎪ ⎪ ⎨ ⎧ ⎩ ⎨ ⎧ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎨ ⎧ ⎩ ⎨ ⎧ ⎪ ⎩ ⎪⎨ ⎧ 正无理数无理数 负分数 _ 零 正整数 整数 有理数无限不循环小数⎩⎨⎧⎩⎨⎧负有理数负零正无理数正实数实数(a >0)(a <0)0 (a =0)有限小数或无限循环数因为绝对值表示的是距离,所以一个数的绝对值是 数,我们学过的非负数有三个: 、 、 。
【名师提醒:a +b 的相反数是 ,a -b 的相反数是 ,0是唯一一个没有倒数的数,相反数等于本身的数是 ,倒数等于本身的数是 ,绝对值等于本身的数是 】三、科学记数法、近似数和有效数字。
1、科学记数法:把一个较大或较小的数写成 的形式叫做科学记数法。
其中a 的取值范围是 。
2、近似数和有效数字:一般的,将一个数四舍五入后的到的数称为这个数的近似数,这时,从 数字起到近似数的最后一位止,中间所有的数字都叫这个数的有效数字。
【名师提醒:1、科学记数法不仅可以表示较大的数,也可以表示较小的数,其中a 的取值范围一样,n 的取值不同,当表示较大数时,n 的值是原整数数位减一,表示较小的数时,n 是负整数,它的绝对值等于原数中左起第一个非零数字前零的个数(含整数数位上的零)。
专题4.2 实数及实数运算(解析版)

【教学目标】1【教学重难点】12【知识亮解】知识点一:实数(、、、、、.2【解析】、、....﹣=,则=,表示的数为:﹣=,即拼成的正方形的边长为,故答案为:;)由勾股定理得:=,∴点表示的数为﹣,故答案为:﹣2×2×2×+2×2×=为.现象二:为求…的值,设计了如图()请你利用这个几何图形求…的值为)再设计一个能求…的值的几何图形.小图形的面积是,所以…表示的面积等于﹣.在划分图形时每次划分都是4××1×4,阴影部分正方形的边长=;如图所示:)…=﹣,如图所示.:﹣.轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
(2)绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
正数的绝对值等于它本身;负数的绝对值等于它的相反数;零的绝对值既可以看成是它本身,也可看成它的相反数。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
(3)倒数如果ab=1,则a 与b 互为倒数,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
2、数轴和实数大小比较规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
比较大小时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。
(2)求差比较:设a 、b 是实数,,0b a b a >⇔>- ,0b a b a =⇔=- ba b a <⇔<-0(3)求商比较法:设a 、b 是两正实数;1;1;1b a bab a b a b a b a <⇔<=⇔=>⇔>(4)绝对值比较法:设a 、b 是两负实数,则b a b a <⇔>。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实数知识点一:无理数1 无理数的概念:无限不循环小数叫做无理数. 注意:(1)所有开方开不尽的方根都是无理数,不是所有带根号的数都是无理数. (2)圆周率π及一些含π的数是无理数. (3)不循环的无限小数是无理数.(4)有理数可化为分数,而无理数则不能化为分数. 2 无理数的性质:设a 为有理数,b 为无理数,则a+b ,a-b 是无理数;3、判断方法:①定义是判断一个数是不是无理数的重要依据;②有理数都可以写成分数的形式,而无理数则不能写成分数的形式(两个整数的商).4等;②含有π一类数,如5π,3+π等;③以无限不循环小数的形式出现的特定结构的数,如0.2020020002…(相邻两个2之间0的个数逐渐加1).二、知识点+例题+练习一、无理数的判断1.判断一个数是不是无理数,必须看它是否同时满足两个条件:无限小数和不循环小数这两者缺一不可.2.带根号的数并不都是无理数,而开方开不尽的数才是无理数. 【例1】0;3227;1.1010010001…,无理数的个数是 A .5B .4C .3D .2【答案】C【解析】因为02273π;1.1010010001…是无限不循环小数,所以无理数有3个,故选C .【变式训练1-1】在,–2018,π这四个数中,无理数是A .B .–2018CD .Π【答案】D1、实数的概念:有理数和无理数统称为实数.2、实数的分类: (1)实数按定义分类:0⎧⎧⎫⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎧⎨⎪⎪⎨⎪⎪⎪⎩⎭⎩⎪⎪⎫⎧⎪⎪⎨⎬⎪⎪⎩⎭⎩正整数整数负整数有理数有限小数或无限循环小数正分数实数分数负分数正无理数无理数无限不循环小数负无理数( 2 )按正负分类:227227例题精讲二、实数的概念和分类1.实数的分类有不同的方法,但要按同一标准,做到不重不漏.2.对实数进行分类时,应先对某些数进行计算或化简,然后根据最后结果进行分类.【例1】在5π131401232,,,.,,----中,其中__________是整数,__________是无理数,__________是有理数.【答案】01-;π5131401322,,;,,.,---- 【例2】将这些数按要求填入下列集合中:0.01001001…,4,122-,3.2,0,-1,-(-5),-|-5|负数集合{ …};分数集合{…};非负整数集合{…};无理数集合{…}.【解析】负数集合{122-,-1,-|-5| 分数集合{122-,3.2…}; 非负整数集合{4,0,-(-5)…};无理数集合{0.01001001…,【变式训练2-1】判断正误.(1)实数是由正实数和负实数组成.( ) (2)0属于正实数.( )(3)数轴上的点和实数是一一对应的.( )(4)如果一个数的立方等于它本身,那么这个数是±1.( )(5)若x =x =( )【答案】(1)×;(2)×;(3)√;(4)×;(5)√.【变式训练2-2】下列说法错误的是( )A .实数都可以表示在数轴上B .数轴上的点不全是有理数C .坐标系中的点的坐标都是实数对 D【答案】D【变式训练2-3】下列说法正确的是( )A .无理数都是无限不循环小数B .无限小数都是无理数C .有理数都是有限小数D .带根号的数都是无理数【答案】A【变式训练2-4】 把下列各数填入相应的集合:-1、π、 3.14-、12、7.0、0(1)有理数集合{ }; (2)无理数集合{ }; (3)整数集合{ }; (4)正实数集合{ }; (5)负实数集合{ }.【答案】(1)-1 3.14-、12、7.0、0(2-、(3)-10;(4、π、127.0 ;(5)-1、 3.14-、(1)任何实数a ,都有一个相反数-a .(2)任何非0实数a ,都有倒数1a.(3)正实数的绝对值是它本身,负实数的绝对值是它的相反数,0的绝对值是0.(4)正实数大于0,负实数小于0;两个正实数,绝对值大的数大,两个负实数,绝对值大的反而小.一、相反数与绝对值求一个有理数的相反数和绝对值与求一个实数的相反数和绝对值的意义是一样的,实数a 的相反数是-a ,一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,0的绝对值是0.【例1的相反数是A .BC .D 【答案】A【解析】根据相反数的定义可知:2的相反数是2-,故选A . 【例2】3-π的绝对值是 A .3-π B .π-3 C .3 D .π【答案】B【解析】∵3−π<0,∴|3−π|=π−3,故选B .【例3】 A .相反数 B .倒数 C .绝对值 D .算术平方根【答案】A【解析】A .【变式训练3-1的相反数是________;的倒数是________;35-的绝对值是________.【答案】【变式训练3-2】3.141π-=______;=-|2332|______.【答案】-3.141π;【变式训练3-3】若||x =x =______;若||1x ,则x =______.【答案】1或11 实数与数轴上的点一一对应:即数轴上的每一个点都可以用一个实数来表示,反过来,每个实数都可以在数轴上找到表示它的点. 2、两个实数比较大小:1.数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大;2.正实数大于0,负实数小于0,正实数大于一切负实数,两个负实数比较,绝对值大的反而小.【例1】如图,数轴上点P 表示的数可能是AB .C .–3.2D .【答案】B≈2.65 3.16,设点P 表示的实数为x ,由数轴可知,–3<x <–2,∴符合题意的数为.故选B .【例2】和数轴上的点成一一对应关系的数是A .自然数B .有理数C .无理数D .实数【答案】D【解析】数轴上的点不仅表示有理数,还表示所有的无理数,即实数与数轴上得点是一一对应的,故选D .【例3】已知实数m 、n 在数轴上对应点的位置如图所示,则下列判断错误的是A .m <0B .n >0C .n >mD .n <m【答案】D【解析】由数轴上的点,得m <0<n ,所以m <0,n >0,n >m 都正确,即选项A ,B ,C 判断正确,选项D 判断错误.故选D .【变式训练4-1】已知数轴上A 、B 两点表示的数分别为–3A 、B 间的距离为__________. 【解析】A 、B 两点表示的数分别为–3和A 、B 间的距离为3),故答案为:.【变式训练4-2】如图,点A 、B 、C 在数轴上,O 为原点,且BO :OC :CA =2:1:5. (1)如果点C 表示的数是x ,请直接写出点A 、B 表示的数; (2)如果点A 表示的数比点C 表示的数两倍还大4,求线段AB 的长.【解析】(1)∵BO :OC :CA =2:1:5,点C 表示的数是x , ∴点A 、B 表示的数分别为:6x ,–2x ;(2)设点C 表示的数是y ,则点A 表示的数为6y , 由题意得,6y =2y +4, 解得:y =1,∴点C 表示的数是1,点A 表示的数是6,点B 表示的数是–2, ∴AB =8. 二、比较大小【例4】 ) A .7~8之间 B .8.0~8.5之间 C .8.5~9.0之间D .9~10之间【答案】C【例5】 实数2.6 ( )A .2.6<<B .2.6C 2.6<D 2.6<【答案】B【变式训练4-3】一个正方体水晶砖,体积为1002cm ,它的棱长大约在 ( ) A .4~5cm 之间 B .5~6cm 之间 C .6~7cm 之间 D .7~8cm 之间【答案】A【变式训练4-4】把下列各数按照由大到小的顺序,用不等号连接起来.4,4-,153-,1.414,π,0.6, ,34-,【答案】314 1.4140.64543π>>>>>>->-.1.在进行实数的运算时,有理数的运算法则、运算性质、运算顺序、运算律等同样适用.2.在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算. 【例1】计算下列各式:(1)221.【解析】(1=-.(2)原式21=1=.【变式训练5-1】计算题(1)32716949+- (2) 233)32(1000216-++【解析】(1)32716949+-71333=-+=-; (2)233)32(1000216-++226101633=++=. 【答案】(1)3-;(2)2163.1.在下列实数中,属于无理数的是 A .0BC .3D .2.在每两个1之间依次多一个中,无理数的个数是 A .1个 B .2个C .3个D .4个3的值在 A .0和1之间B .1和2之间C .2和3之间D .3和4之间4.下列四个数中,最小的一个数是 A .5的绝对值是A .3B .6.下列说法中,正确的个数有 ①不带根号的数都是有理数; ②无限小数都是无理数;③任何实数都可以进行开立方运算;1313.140.231.131331333133331(3π-,,,,……3)B 3-.C -.D π-.3-1C 3.1D 3-.④不是分数. A .0个B .1个C .2个D .3个7.下列各组数中互为相反数的一组是 A .-|-2|B .-4与C .与D .8.如图,数轴上点P 表示的数可能是AB.C . 3.4-D.92-的相反数是__________,绝对值是__________. 10.计算:+-=__________.11__________. 12=__________(=__________. 13.把下列各数填入相应的集合内:4230.15,-7.5,-π,0,23.. ①有理数集合:{ …}; ②无理数集合:{ …}; ③正实数集合:{ …}; ④负实数集合:{…}.14.已知:x 是|-3|的相反数,y 是-2的绝对值,求2x 2-y 2的值.515.已知ab的小数部分,|c,求a -b +c 的值.16.已知5的小数部分分别是a 、b,则(a +b )(a–b )=__________.17.6的整数部分是a ,小数部分是b .(1)a =__________,b=__________.(2)求3a –b 的值.18.如图,点A ,一只蚂蚁从点A沿数轴向右直爬2个单位后到达点B,设点B 所表示的数为n .(1)求n的值;(2)求|n +1|+(n –2)的值.答案:1.【答案】B【解析】0、3、是无理数.故选B . 2.【答案】C【解析】,π,1.131331333133331……(每两个1之间依次多一个3)是无理数,故选C . 3.【答案】B【解析】∵<2的值在:1和2之间.故选B .4.【答案】D【解析】∵7<8<9<π2,3<π,∴>–π,∴最小的一个数是–π.故选D . 13<<3--5.【答案】A.–3的绝对值是3.故选A.6.【答案】C【解析】①不带根号的数不一定是有理数,如π,错误;②无限不循环小数是无理数,错误;③任何实数都可以进行开立方运算,正确;不是分数,正确;故选C.8.【答案】B【解析】由图可知,P点表示的数在之间,故选B.9.【答案】22;--2-的相反数是2-,绝对值是2-,故答案为:22;--10.【答案】【解析】(35+-=+-,故答案为.11.【答案】【解析】它们互为相反数,分别是故答案为:121)3(1-13-1.3=-13.【解析】有理数集合:{4,230.15,-7.5,0,23.…};,π-…};4,230.15,23.…}; ④负实数集合:{-7.5,π-…}.14.【解析】∵x 是|−3|的相反数,∴x 是3的相反数−3,即x =−3.∵y 是−2的绝对值,∴y =2.∴22229414x y -=⨯-=.15.【解析】∵<3,∴a =2,b-2,∵|c,∴c当ca -b +c =4;当c =a -b +c =4-.16.【答案】5【解析】∵与5a 、b ,∴a =(–2,b=(5)–2=3,∴(a+b )(a –b )=–2+32–5.故答案为:5.17.【解析】(1)∵,∴<3.∴–23.∴6–2>66–3,∴4>63.∴a =3,b =3(2)3a –b =3×3–(3=9–1. 下列命题中,错误的命题个数是( )(1)2a -没有平方根; (2)100的算术平方根是10,记作10100=± (3)数轴上的点不是表示有理数,就是表示无理数; (4)2是最小的无理数.A .1个B .2个C .3个D .4个【答案】C2. 若22b a =,则下列等式成立的是( )A .33b a =B .b a =C .b a =D . ||||b a =【答案】D3. 已知坐标平面内一点A(2-,3),将点A A ′的坐标为 .【答案】(2--四、课后作业4.已知10<<x ,则21x x x x 、、、的大小关系是__________________________(用“>”连接). 【解析】可以采用特殊值法解题,如14x =.【答案】21x x x>>5.计算:(1(2)2(2)-【解析】(111213333-=- ;(2)2(2)-11433231423=⨯+-⨯=+-=. 【答案】(1) 13- ; (2)4.6.已知一个长方体封闭水箱的容积是1620立方分米,它的长、宽、高的比试5:4:3,则水箱的长、宽、高 各是多少分米?做这个水箱要用多少平方分米的板材?【解析】在列方程解应用题时,要注意见比设k 的应用.【答案】长、宽、高各是15分米,12分米,9分米;846平方分米.7.已知实数a ,满足0a =,求11a a -++的值.【解析】0a ,0a a a ∴++=,20a a +=,0a ∴=,112a a -++=【答案】28.先阅读理解,再回答下列问题:,且12<<的整数部分为1;23<2;=34<的整数部分为3;n 为正整数)的整数部分为______,请说明理由.【解析】n2(1)n n n n +=+,又22(1)(1)n n n n <+<+,1n n ∴<+(n 为正整数),∴整数部分为n .【答案】n9. 计算下列各组算式,观察各组之间有什么关系,请你把这个规律总结出来,然后完成后面的填空.(1(2(3(4(5= ;(6= (0,0)a b ≥≥.【解析】(5(6【答案】(5;(610.若a 为217-的整数部分,1-b 是9的平方根,且a b b a -=-||,求b a +的算术平方根.【解析】161725,45,223,2a <<∴<∴<<∴=,14b b -==或2b =-.又a b b a -=-,b a ∴≥,2,4a b ∴==,.。