模糊逻辑入门经典共34页
模糊推理课件

模糊逻辑
一切具有模糊性的语言都称为模糊语言 , 它是一种广泛使用的自然语言,如何将模 糊语言表达出来,使计算机能够模拟人的 思维去推理和判断,这就引出了语言变量 这一概念 。语言变量是以自然语言中的词、 词组或句子作为变量 。语言变量的值称为 语言值,一般也是由自然语言中的词、词 组或句子构成。语言变量的语言值通常用 模糊集合来描述,该模糊集合对应的数值 变量称作基础变量。
首先求系统的模糊关系矩阵 R
R ( A B) ( A C)
由玛达尼(Mamdani)法得
0.8 A B A B ( x, y ) 0.4 0.1 0 A C AC ( x, y ) 0.5 0.5
0.5 0.2 0.4 0.2 0.1 0.1 0 0 0.6 0.6 0.6 0.7
(6) 复原律
(7) 补余律 (模糊逻辑运算不符合) (8) av1=1 av0=a a∧1=a a ∧0=0
模糊逻辑对应于模糊集合论,模糊逻辑运算除了不满
足布尔代数里的补余律外,布尔代数的其它运算性质它都 适用。除此之外,模糊逻辑运算满足De-Morgan代数,即
对于补余运算,De-Morgan代数中是这样定义的:
于是,当x”较小“时的推理结果
B' ( y) A' ( x) R
即:
0 0 B ' ( y ) 1 0.6 0.4 0.2 0 0 0 0 1 0 0.4 0.7 0.7 0 0.3 0.3 0.3 0 0 0 0 0 0 0 0 0 0.4 0.7
模糊推理系统
模糊逻辑 模糊命题 模糊推理规则 模糊推理系统
模糊逻辑
语言是一种符号系统,通常包括自然语言和人工 语言两种。自然语言是指人类交流信息时使用的 语言,它可以表示主、客观世界的各种事物、观 念、行为、情感等。自然语言具有相当的不确定 性,其主要特征就是模糊性,这种模糊性主要是 由于自然语言中经常用到大量的模糊词(如黎明、 模范、优美、拥护等)。人工语言主要是指程序设 计语言,如我们熟悉的C语言、汇编语言等。人工 语言的格式是非常严密、且概念十分清晰。
模糊推理

④你好 ④ ④多重模糊条件句
总结
(i)在模糊控制中,模糊条件语句的条件对应于模糊控制器的输入,语 句则对应于输出。 (ii)每一条模糊条件语句对应一种控制策略。 (iii) 控制策略 模糊关系 模糊推理 推理结论 (模糊结合形式表示的输出控制量) 模糊条件语句
目前我们已经学习了三种基本的模糊条件语句,简单小结如下: 类型
若 A且B,则C; ɶ ɶ ɶ 如今 A1且 B1; ɶ ɶ 结论C1 = [( A1 × B1 ) L ]T R
ɶ
ɶ
ɶ
ɶ
( A × B) ∪ ( A × E ) ɶ ɶ ɶ ɶ
( A × B) ∪ ( A × C ) ɶ ɶ ɶ ɶ
A × B × C = ( A × B) L C ɶ ɶ ɶ ɶ ɶ ɶ
结论: 结论: y1=0.4/1+0.4/2+0.4/3+0.7/4+1/5 y1=0.4/1+0.4/2+0.4/3+0.7/4+1/5 y= 0.4/3+0.7/4+1/5 与[大]比较: y1[较大] 比较: y1[较大] 较大
② 若A则B否则C型
ɶ
ɶ
ɶ
(举例)
设模糊集合A 的论域为X, B 和 C 的论域为Y。则由 “ A则B否则C型 ” 若 ɶ ɶ ɶ ɶ ɶ ɶ 条件语句所决定的在X×Y上的模糊关系 R 为:
(1 0.6 0.3 0.2 0) °
0 0.3 0.6 1 1
0 0.3 0.6 1 1
0.4 0.4 0.6 1 1
0.7 0.7 0.6 1 1
1 0.7 0.6 1 1
=[0.4 0.4 0.4 0.7 1] y1=0.4/1+0.4/2+0.4/3+0.7/4+1/5 y1=0.4/1+0.4/2+0.4/3+0.7/4+1/5
模糊逻辑入门

❖ 模糊逻辑取消二值之间非此即彼的对立,用隶属 度表示二值间的过度状态
例如,“室温在27ºC是高温度”,这个命题真值如何呢?
模糊集合与隶属度函数
❖ 古典集合:对于任意一个集合A,论域中的任何 一个元素x,或者属于A,或者不属于A。集合A 也可以由其特征函数定义:
A (A B) A, A (A B) A
A U A, A U A A , A
A A A B A B, A B A B
模糊逻辑
❖ 经典逻辑是二值逻辑,其中一个变元只有“真” 和“假”(1和0)两种取值,其间不存在任何 第三值。
❖ 模糊逻辑也属于一种多值逻辑,在模糊逻辑中, 变元的值可以是[0,1]区间上的任意实数。
❖ 幂等律 ❖ 交换律 ❖ 结合律
❖ 分配律
❖ 吸收律 ❖ 两极律
❖ 复原律 ❖ 摩根律
A A A, A A A A B B A, A B B A (A B) C A (B C) (A B) C A (B C)
A (B C) (A B) (A C) A (B C) (A B) (A C)
1 , x A fA (x) 0 , x A
❖ 模糊集合:论域上的元素可以“部分地属于”集 合A 。一个元素属于集合A的程度称为隶属度, 模糊集合可用隶属度函数定义。
定义 设存在一个普通集合U,U到[0,1]区间的任一映射f都可以确定U的 一个模糊子集,称为U上的模糊集合A。其中映射f叫做模糊集的隶属度函 数,对于U上一个元素u, f(u)叫做u对于模糊集的隶属度,也可写作A(u)
隶属度 隶属度 隶属度
1.0 0.8 0.6 0.4 0.2 0.0
0
模糊推理基础

模糊推理基础模糊推理基础模糊推理是一种基于模糊逻辑的推理方法,它能够处理现实世界中存在的不确定性和模糊性。
在传统的推理方法中,命题的真假只有两种可能,即真或假,而在模糊推理中,命题的真假不再是二元的,而是一个连续的区间。
这种推理方法可以更好地适应人类思维的特点,能够处理不完全和不确定的信息,广泛应用于人工智能、控制系统、决策分析等领域。
模糊推理的基本原理是将模糊集合与模糊逻辑相结合。
模糊集合是一种介于传统集合和模糊逻辑之间的数学概念,它可以用来描述现实世界中模糊和不确定的概念。
在模糊集合中,每个元素都有一个隶属度,表示它属于该集合的程度。
这样,一个命题的真假可以表示为一个隶属度的区间。
模糊逻辑是一种扩展了传统逻辑的形式体系,它引入了模糊命题和模糊推理规则。
模糊命题是一种具有模糊隶属度的命题,它可以表示为“如果A,则B”,其中A和B都是模糊集合。
模糊推理规则是一种描述了命题之间关系的规则,它可以用来推导出新的命题。
在模糊推理中,推理过程包括模糊化、规则匹配、推理和去模糊化四个步骤。
首先,将输入的模糊命题转化为模糊集合,并进行隶属度的计算。
然后,根据事先定义好的模糊推理规则,对输入的命题进行匹配。
匹配成功后,根据推理规则和隶属度的计算,得到新的命题。
最后,将新的命题进行去模糊化处理,得到最终的推理结果。
模糊推理在实际应用中具有广泛的应用价值。
例如,在人工智能领域中,模糊推理可以用于处理自然语言的不确定性和模糊性,实现智能对话和问答系统。
在控制系统中,模糊推理可以用于处理传感器数据的噪声和不确定性,提高系统的鲁棒性和稳定性。
在决策分析中,模糊推理可以用于处理多指标决策问题,帮助决策者做出更准确和合理的决策。
然而,模糊推理也存在一些挑战和限制。
首先,模糊推理需要事先定义好的模糊集合和推理规则,这对于复杂问题来说可能是困难的。
其次,模糊推理需要大量的计算资源和时间,尤其是在处理大规模问题时。
此外,模糊推理对输入数据的准确性要求较高,如果输入数据存在误差或不完整性,可能会导致推理结果的不准确性。
模糊逻辑系统介绍课件

02
模糊分类器设计:利用模糊逻辑对数据进行分类和识别
03
模糊聚类分析:通过模糊逻辑对数据进行聚类分析
04
模糊决策分析:利用模糊逻辑进行决策分析和优化
模糊逻辑系统的 应用案例
模糊逻辑系统在控制领域的应用
01
模糊逻辑控制 器:用于控制 复杂系统的输 出,提高系统 的稳定性和准
确性
02
03
模糊逻辑自适 应控制:根据 系统状态和输 入信号的变化, 自动调整控制 参数,实现最
04
并、交、补等。
模糊关系
01
模糊关系是一种 描述事物之间关 系的概念,它允 许事物之间存在 一定程度的不确 定性和模糊性。
02
模糊关系可以用 一个模糊集合来 表示,其中包含 了事物之间关系 的各种可能性。
03
模糊关系的程度可 以通过隶属度函数 来衡量,隶属度函 数是一个定义在模 糊集合上的函数, 它表示一个元素属 于该集合的程度。
模糊逻辑系统的应用领域
控制领域:模糊逻辑系统 可以用于控制系统的设计 和优化,提高系统的稳定 性和准确性。
医疗领域:模糊逻辑系统 可以用于医疗诊断和治疗, 帮助医生做出更准确的诊 断和治疗方案。
交通领域:模糊逻辑系统 可以用于交通控制系统的 设计和优化,提高交通系 统的效率和安全性。
工业领域:模糊逻辑系统 可以用于工业控制系统的 设计和优化,提高工业生 产的效率和稳定性。
模糊推理的应用广 泛,包括控制、决 策、模式识别等领 域。
模糊逻辑系统的 设计方法
模糊逻辑系统的设计步骤
确定模糊逻辑系 统的目标:明确 系统的功能、性 能和需求
建立模糊逻辑模 型:根据目标, 建立模糊逻辑模 型,包括输入、 输出和模糊规则
模糊逻辑推理

模糊推理
• 模糊推理问题的解决思路
– 第1步.将已知的规则归纳为前因与结果两论域 间的模糊关系。 – 第2步.将前因论域的现有知识与归纳得到的模 糊关系进行合成运算,推出当前知识下的结论。
模糊推理
由规则得到模糊关系的常用方法 规则:IF X=A THEN Y=B
Mamdani方法(最小运算)
R C A B A B
模糊推理
合成运算方法的选择
最大-最小合成法(Zadeh)
B ( y) A ( x ) R ( x, y ) x X
' '
最大-代数积合成法(Kaufmann)
B ( y) A ( x ) R ( x, y ) x X
' '
举例:货车倒车
装卸站台
x=10,
90
[90, 270 ]
[40, 40 ]
x,y
x [0,20]
货车终点位置 ( x f , f ) (10,90)
x=20
x=0
规则:
R (1, 2 ) : if 是S 3和x是S1 , then 是S 3 ; R
★非单点模糊化
输入模糊集合 A是非单点模糊器, 即:x x时, A ( x) 1; x x时, A ( x) 0, 随x的变化(偏离 x), A ( x)逐渐减小。
2 x
k
mx
k
2. 规则库
一般情况下,规则 R l 可以表示如下:
l l R l : if u1是A1 , u2 是A2 , ,u p 是Alp , then v是G l
• 特点:知识满足规则与否是确定的,因此 结论也是确定的
模糊逻辑系统介绍课件

演讲人
目录
01. 模糊逻辑系统的基本概念 02. 模糊逻辑系统的设计方法 03. 模糊逻辑系统的应用案例 04. 模糊逻辑系统的发展趋势
模糊逻辑系统的基本 概念
模糊逻辑的定义
模糊逻辑是一种基于模糊集合 理论的逻辑系统
模糊逻辑处理的是模糊的、不 确定的信息
模糊逻辑可以用于描述和处理 现实世界中的模糊现象
05
设计模糊逻辑系统的参数调整方 法:设计系统的参数调Байду номын сангаас方法, 实现系统的优化和自适应控制
02
建立模糊逻辑系统的数学模型: 使用模糊数学方法建立系统的数 学模型
04
设计模糊逻辑系统的输入输出接 口:设计系统的输入输出接口, 实现系统的控制功能
06
设计模糊逻辑系统的仿真和测试 方法:设计系统的仿真和测试方 法,验证系统的性能和稳定性
模糊逻辑系统可以处理不确定性和模糊性, 而深度学习可以处理大数据和高维数据。
模糊逻辑系统与深度学习的结合可以实现更 高效的模型训练和预测。
模糊逻辑系统与深度学习的结合可以应用于 各种领域,如医疗、金融、交通等。
模糊逻辑系统在物联网中的应用
STEP1
STEP2
STEP3
STEP4
模糊逻辑系 统在物联网 设备中的智 能控制
问题的决策和优化。
模糊逻辑系统在智能机器人中的应用:模糊逻辑 03 系统可以应用于智能机器人中,实现对机器人的
控制和优化。
模糊逻辑系统在智能医疗系统中的应用:模糊逻 04 辑系统可以应用于智能医疗系统中,实现对疾病
的诊断和治疗。
谢谢
02
模糊逻辑自适应 控制:根据系统 状态和输入信号 的变化,自动调 整控制参数,实 现最优控制
模糊推理

R ( A B) ( A C)
B1 A1 R
相应的模糊推理结论为:
(i)
A
条件
模糊控制器
语句
B或 C
(ii)
控制策略如:若水位偏低,则开大阀门,否则关小阀 门。
例:某电热烘干炉依靠人工连续调节外加电压,以便克服各种干扰达到恒 温烘干的目的。操作工人的经验是“如果炉温低,则外加电压高,否则 电压不很高。” 如果炉高很低,试确定外加电压应该如何调节? 设‘x表示炉温,y表示电压,则上述问题可叙述为“若x低则y高,否则 不很高。”如果x很低,试问y如何?
AB ( x, y) [ A ( x) B ( y)] [1 A ( x)]
对上式模糊关系,可用模糊关系矩阵表示为:
RA B A B ( A E )
上式中E为全称矩阵。相应的模糊推理为:
B1 A1 RAB
结论: y1=0.4/1+0.4/2+0.4/3+0.7/4+1/5 y= 0.4/3+0.7/4+1/5 与[大]比较: y1[较大]
② 若A则B否则C型
(举例)
B C A 若A则B否则C型 ” 设模糊集合 的论域为X, 和 的论域为 R Y。则由 “
条件语句所决定的在X×Y上的模糊关系 为:
R中元素的求法:有相应的x,y带代入求 R( x, y) 公式中求出.
[大]=0.4/3+0.7/4+1/5 [小}=1/1+0.7/2+0.4/3 [较小}=1/1+0.6/2+0.3/3+0.2/4 0 0.3 0.6 1 1 0 0.3 0.6 1 1 0.4 0.4 0.6 1 1 0.7 0.7 0.6 1 1 1 0.7 0.6 1 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6
、
露
凝
无
游
氛
,
天
高
风
景
澈
。
7、翩翩新 来燕,双双入我庐 ,先巢故尚在,相 将还旧居。
8
、
吁
嗟
身
后
名
,
于
我
若
浮
烟
。
9、 陶渊 明( 约 365年 —427年 ),字 元亮, (又 一说名 潜,字 渊明 )号五 柳先生 ,私 谥“靖 节”, 东晋 末期南 朝宋初 期诗 人、文 学家、 辞赋 家、散
1
0
、
倚
南
窗
以
寄
傲
,
பைடு நூலகம்
审
容
膝
之
易
安
。
谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
55、 为 中 华 之 崛起而 读书。 ——周 恩来
文 家 。汉 族 ,东 晋 浔阳 柴桑 人 (今 江西 九江 ) 。曾 做过 几 年小 官, 后辞 官 回家 ,从 此 隐居 ,田 园生 活 是陶 渊明 诗 的主 要题 材, 相 关作 品有 《饮 酒 》 、 《 归 园 田 居 》 、 《 桃花 源 记 》 、 《 五 柳先 生 传 》 、 《 归 去来 兮 辞 》 等 。