模糊控制
模糊控制理论及应用

模糊控制理论及应用模糊控制是一种基于模糊逻辑的控制方法,它能够应对现实世界的不确定性和模糊性。
本文将介绍模糊控制的基本原理、应用领域以及未来的发展趋势。
一、模糊控制的基本原理模糊控制的基本原理是基于模糊逻辑的推理和模糊集合的运算。
在传统的控制理论中,输入和输出之间的关系是通过精确的数学模型描述的,而在模糊控制中,输入和输出之间的关系是通过模糊规则来描述的。
模糊规则由模糊的IF-THEN语句组成,模糊推理通过模糊规则进行,从而得到输出的模糊集合。
最后,通过去模糊化操作将模糊集合转化为具体的输出值。
二、模糊控制的应用领域模糊控制具有广泛的应用领域,包括自动化控制、机器人控制、交通控制、电力系统、工业过程控制等。
1. 自动化控制:模糊控制在自动化控制领域中起到了重要作用。
它可以处理一些非线性和模糊性较强的系统,使系统更加稳定和鲁棒。
2. 机器人控制:在机器人控制领域,模糊控制可以处理环境的不确定性和模糊性。
通过模糊控制,机器人可以对复杂的环境做出智能响应。
3. 交通控制:模糊控制在交通控制领域中有重要的应用。
通过模糊控制,交通信号可以根据实际情况进行动态调整,提高交通的效率和安全性。
4. 电力系统:在电力系统中,模糊控制可以应对电力系统的不确定性和复杂性。
通过模糊控制,电力系统可以实现优化运行,提高供电的可靠性。
5. 工业过程控制:在工业生产中,许多过程具有非线性和不确定性特点。
模糊控制可以应对这些问题,提高生产过程的稳定性和质量。
三、模糊控制的发展趋势随着人工智能技术的发展,模糊控制也在不断演进和创新。
未来的发展趋势主要体现在以下几个方面:1. 混合控制:将模糊控制与其他控制方法相结合,形成混合控制方法。
通过混合控制,可以充分发挥各种控制方法的优势,提高系统的性能。
2. 智能化:利用人工智能技术,使模糊控制系统更加智能化。
例如,引入神经网络等技术,提高模糊控制系统的学习和适应能力。
3. 自适应控制:模糊控制可以根据系统的变化自适应地调整模糊规则和参数。
模糊控制简介

න
������������ (������)������������ (������) (������, ������)
������������
模糊逻辑与近似推理
➢ 近似推理过程: 前提1(事实):������是������’ 前提2(规则):������������ ������ 是 ������,������ℎ������������ ������ 是 ������ 结论:������是������’ 这里������’和������是论域������中的模糊集合,������’和������是论域������中的模
⋯ ������������ ������2, ������������
⋱
⋮
������������ ������������, ������1 ������������ ������������, ������2 ⋯ ������������ ������������, ������������
例:������ = {子,女},������ = {父,母},模糊关系������“子女与
父母长得相似”,用模糊矩阵表示则为:
父母
������
=
子 女
0.8 0.3
0.3 0.6
模糊控制的数学基础
➢ 模糊关系合成 设������、������、������是论域, ������是������到������的一个模糊关系, ������是������到������
模糊控制ppt课件

可编辑课件PPT
23
5. 建立模糊控制表 模糊控制规则可采用模糊规则表4-5来描述,共
49条模糊规则,各个模糊语句之间是或的关系,由第 一条语句所确定的控制规则可以计算出u1。同理,可 以由其余各条语句分别求出控制量u2,…,u49,则控制 量为模糊集合U可表示为
uu1u2 u49
可编辑课件PPT
规则模型化,然后运用推理便可对PID参数实现最佳
调整。
可编辑课件PPT
32
由于操作者经验不易精确描述,控制过程中各种 信号量以及评价指标不易定量表示,所以人们运用 模糊数学的基本理论和方法,把规则的条件、操作 用模糊集表示,并把这些模糊控制规则以及有关信 息(如初始PID参数等)作为知识存入计算机知识库中 ,然后计算机根据控制系统的实际响应情况,运用 模糊推理,即可自动实现对PID参数的最佳调整,这 就是模糊自适应PID控制,其结构如图4-15所示。
可编辑课件PPT
31
随着计算机技术的发展,人们利用人工智能的
方法将操作人员的调整经验作为知识存入计算机中
,根据现场实际情况,计算机能自动调整PID参数,
这样就出现了智能PID控制器。这种控制器把古典的
PID控制与先进的专家系统相结合,实现系统的最佳
控制。这种控制必须精确地确定对象模型,首先将
操作人员(专家)长期实践积累的经验知识用控制
糊控制的维数。
可编辑课件PPT
10
(1)一维模糊控制器 如图所示,一维模糊控制器的 输入变量往往选择为受控量和输入给定的偏差量E。由 于仅仅采用偏差值,很难反映过程的动态特性品质, 因此,所能获得的系统动态性能是不能令人满意的。 这种一维模糊控制器往往被用于一阶被控对象。
可编辑课件PPT
控制系统中的模糊控制与神经网络控制比较

控制系统中的模糊控制与神经网络控制比较在现代控制系统中,模糊控制和神经网络控制是两种常见的控制方法。
它们都具有一定的优势和特点,但是又各自存在一些局限性。
本文将就这两种控制方法进行比较,旨在帮助读者更好地理解和选择适合自己需求的控制方法。
一、模糊控制模糊控制是一种基于模糊逻辑的控制方法,它将人的直观经验与控制系统的数学模型相结合,用来应对系统模型不确定或难以建模的情况。
模糊控制系统由模糊化、模糊推理和解模糊化三个主要部分组成。
1、模糊控制的优势(1)适应不确定性:模糊控制可以很好地应对系统参数变化、环境变化等不确定性因素,因为它不需要准确的数学模型。
(2)处理非线性系统:对于非线性系统,模糊控制可以通过模糊化和模糊推理来逼近系统的动态特性,因此具备较好的适应性。
(3)易于理解和调试:模糊规则基于经验知识,形式简单易懂,参数调节相对容易,操作员或工程师可以理解和调试模糊控制系统。
2、模糊控制的局限性(1)计算复杂性:模糊控制系统需要进行模糊化、模糊推理和解模糊化等操作,这些操作可能导致计算量大、实时性差,不适合对响应时间要求较高的控制系统。
(2)难以优化:模糊控制的参数调节通常是基于试错法,缺乏理论指导,难以进行精确优化,因此对于某些需要高精度控制的系统效果并不理想。
二、神经网络控制神经网络控制是一种利用人工神经网络模拟生物神经网络的结构和功能来实现控制的方法。
神经网络控制系统由输入层、隐含层和输出层构成,通过训练神经网络来实现控制效果。
1、神经网络控制的优势(1)适应性强:神经网络具有强大的自适应性能,能够适应未知系统或具有时变性质的系统,从而在控制过程中实现自学习和自适应。
(2)映射能力强:神经网络可以将非线性映射问题转化为线性可分问题进行处理,从而更好地逼近系统的非线性特性。
(3)具备优化能力:可以通过合理的网络结构和训练算法,实现对网络参数的优化,从而提高控制系统的性能。
2、神经网络控制的局限性(1)训练需耗时:神经网络控制需要通过大量的数据训练神经网络,这可能需要耗费较长的时间,并且对数据质量和标定要求较高。
模糊控制与PID控制的比较

模糊控制与PID控制的比较自20世纪60年代中期起,模糊控制逐渐崭露头角,其优越性也引起了人们的关注。
除了模糊控制,当今热门的控制算法之一是PID控制。
那么,模糊控制与PID控制之间的区别是什么呢?它们各自的优缺点是什么?在特定的应用场合下,哪种控制算法更适用?一、模糊控制概述模糊控制是一种无需准确模型或参数即可执行复杂控制系统的方法,它仅使用模糊逻辑来描述输入和输出之间的关系。
模糊控制系统的输入和输出都是模糊变量。
与其他控制方法相比,模糊控制系统可以更好地处理不确定性和模糊性,具有更强的容错能力和适应性。
模糊控制系统由四个主要组成部分组成:模糊化、模糊推理、解模糊化和规则库。
模糊化部分将传感器输出信号转换为模糊变量,模糊推理部分使用模糊逻辑基于模糊规则将模糊变量转换为控制信号,解模糊化部分将控制信号转换为精确的控制信号,规则库存储了模糊规则及其权重。
二、PID控制概述比例积分微分(PID)控制是一种经典的控制算法,其控制草图由三个部分组成。
比例项(P)根据当前误差大小进行输出,积分项(I)可以消除稳态误差,微分项(D)可以提高系统的稳定性并抑制系统的震荡。
PID控制器的设计基于系统的数学模型,在许多应用中,这个模型是已知的。
在这些情况下,PID控制器可以通过调整不同部分的增益以进行优化。
三、模糊控制与PID控制的对比1. 精度PID控制器可以实现非常高的精度,特别是在恒定环境下,模糊控制器具有更高的容错能力和适应性,而且围绕控制正常的范围内快速做出反应。
2. 调节PID调节通常是更容易实现的PLC控制器中自动化开发环境的系统。
Fuzzy可能更多地需要手动调整和对规则进行逐步精细的训练,但它也可以被训练自动化。
3. 适应性模糊控制器的好处是可以轻松地处理不确定性和模糊性,因此可以应对复杂环境。
PID控制器则对不确定性和模糊性更加敏感,而且会因不确定性的变化而导致过度响应或不足响应的问题。
4. 实际应用PID控制器广泛应用于许多领域,如化工、制造和机械工程。
52. 模糊控制在自动驾驶中的作用是什么?

52. 模糊控制在自动驾驶中的作用是什么?52、模糊控制在自动驾驶中的作用是什么?在当今科技飞速发展的时代,自动驾驶技术无疑是一项引人瞩目的创新成果。
而在实现自动驾驶的过程中,各种先进的控制技术发挥着至关重要的作用,其中模糊控制就是一个不可或缺的部分。
那么,什么是模糊控制呢?简单来说,模糊控制是一种基于模糊逻辑的控制方法。
与传统的精确控制不同,模糊控制并不追求精确的数值计算和严格的数学模型,而是通过对模糊信息的处理和推理,来实现对系统的有效控制。
在自动驾驶领域,环境的复杂性和不确定性是巨大的挑战。
道路状况、交通信号、其他车辆和行人的行为等都是难以精确预测和建模的变量。
而模糊控制的优势就在于它能够很好地应对这种不确定性。
例如,在判断与前方车辆的安全距离时,传统的控制方法可能会依据精确的速度、距离等数值来计算,但实际情况中,“安全距离”这个概念本身就是模糊的。
模糊控制可以综合考虑多种因素,如车速、相对速度、天气条件等,给出一个相对灵活和适应性强的控制策略。
模糊控制在自动驾驶中的一个重要作用是处理感知数据的不确定性。
自动驾驶车辆通过各种传感器收集大量的数据,如摄像头图像、激光雷达测量值、毫米波雷达信息等。
然而,这些传感器的数据可能存在误差、噪声和不确定性。
模糊控制能够将这些不精确的数据进行模糊化处理,提取出有用的信息,并据此做出合理的决策。
再比如,在自动驾驶的路径规划中,模糊控制可以根据复杂的路况和交通规则,生成相对平滑和安全的行驶路径。
它可以考虑道路的宽窄、弯道的曲率、交通流量等模糊因素,使车辆在不同的道路条件下都能做出恰当的行驶决策。
此外,模糊控制还能够提高自动驾驶系统的适应性和鲁棒性。
当遇到突发情况或异常情况时,如恶劣天气、道路施工、交通意外等,传统的控制方法可能会因为超出预设的模型范围而失效。
而模糊控制可以凭借其对模糊信息的处理能力,迅速调整控制策略,以保证车辆的安全行驶。
在自动驾驶的决策过程中,模糊控制也发挥着关键作用。
人工智能控制技术课件:模糊控制

模糊集合
模糊控制是以模糊集合论作为数学基础。经典集合一般指具有某种属性的、确定的、
彼此间可以区别的事物的全体。事物的含义是广泛的,可以是具体元素也可以是抽象
概念。在经典集合论中,一个事物要么属于该集合,要么不属于该集合,两者必居其一,
没有模棱两可的情况。这表明经典集合论所表达概念的内涵和外延都必须是明确的。
1000
1000
9992
9820
的隶属度 1 =
= 1,其余为: 2 =
= 0.9992, 3 =
=
1000
1000
1000
9980
9910
0.982, 4 =
= 0.998, 5 =
= 0.991,整体模糊集可表示为:
1000
1000
1
0.9992
0.982
0.998
《人工智能控制技术》
模糊控制
模糊空基本原理
模糊控制是建立在模糊数学的基础上,模糊数学是研究和处理模糊性现
象的一种数学理论和方法。在生产实践、科学实验以及日常生活中,人
们经常会遇到模糊概念(或现象)。例如,大与小、轻与重、快与慢、动与
静、深与浅、美与丑等都包含着一定的模糊概念。随着科学技术的发展,
度是2 ,依此类推,式中“+”不是常规意义的加号,在模糊集中
一般表示“与”的关系。连续模糊集合的表达式为:A =
)( /其中“” 和“/”符号也不是一般意义的数学符号,
在模糊集中表示“构成”和“隶属”。
模糊集合
假设论域U = {管段1,管段2,管段3,管段4,管段5},传感器采
1+|
模糊控制的原理

模糊控制的原理
模糊控制是一种基于模糊逻辑原理的控制方法,它通过将非精确的输入信息转化为具有模糊性质的模糊输入,并通过模糊规则和模糊推理来生成模糊输出,最终将其转化为实际的控制量。
模糊控制包括模糊化、模糊推理和去模糊化三个步骤。
在模糊化阶段,将输入信息通过模糊化函数转化为模糊输入。
通常采用隶属函数来描述输入信息的隶属度,如三角形函数、梯形函数等。
模糊化函数将不确定的输入信息映射为隶属度在[0,1]之间的模糊集合。
接下来,在模糊推理阶段,通过建立一组模糊规则来进行推理。
模糊规则包括模糊条件和模糊结论。
通过匹配输入信息的隶属度和规则中的条件隶属度,可以得到一组规则的激活度。
然后,根据激活度和规则结论的隶属度,计算出模糊输出。
最后,在去模糊化阶段,将模糊输出转化为实际的控制量。
通常采用去模糊化方法来获得一个具体的输出值。
常用的去模糊化方法包括质心法、加权平均法等。
这些方法将模糊输出的隶属度函数与去模糊化函数相结合,得到一个实际的输出值。
模糊控制方法的优点是可以处理非线性、不确定性和模糊性的控制问题,适用于那些难以用精确数学模型描述的系统。
它广泛应用于工业控制、机器人、交通控制等领域,取得了很好的效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录摘要 (1)1.模糊控制简介 (3)1.1模糊控制的历史背景 (3)1.2模糊控制的基本原理 (4)1.3模糊算法的四个步骤 (4)2.基于单片机的液位模糊控制器的设计 (5)2.1设计的基本原理 (5)2.2设计的基本步骤 (5)2.3.设计的基本内容 (6)2.3.1模糊控制器的结构设计 (6)2.3.2模糊控制规则的设计 (7)2.3.3模糊推理及其模糊量的非模糊化方法 (9)2.4模糊控制器的程序实现 (10)2.5程序编写中的几点说明 (11)3.程序流程图 (12)4.液位控制部分 (13)5.设计小结 (13)参考文献 (14)摘要随着科技的不断进步,工业生产过程已经向大型化、精细化、现代化以及复杂性发展,一般的常规控制方法已经不能满足实际生产的需求。
智能型控制算法应运而生,在众多的算法中,模糊控制算法利用计算机来实现人的控制经验,是模糊理论与计算机技术、自动化技术相结合的产物,由于其良好的控制特性而得到了广泛应用。
本报告对模糊控制基于单片机对液位的控制理论及其智能优化控制策略和方法上作出详尽的研究,建立了一种控制系统。
在系统的构建中,应用单片机89C51做为核心控制部分,采用模糊控制算法进行控制。
控制系统根据设定值将得到的实际位置和偏差变化率进行模糊化,建立模糊控制规则表,将优化后的参数变化量,在模糊控制器的控制下实现转动控制。
通过对常规控制器、纯模糊控制器和具有自整定功能的模糊控制器进行仿真对比。
关键词:模糊控制、自动化技术、优化控制。
AbstractThe abstract along with the technical unceasing progress, the industrial production process already to the large scale, the fine refinement, the modernization as well as the complex development, the general convention control method already could not satisfy the actual production the demand.The intelligence control algorithm arises at the historic moment, in the multitudinous algorithms, controls the algorithm to realize human's control experience fuzzily using the computer, is product which the fuzzy theory and the computer technology, the automated technology unify, obtained the widespread application as a result of its good control characteristic.This report makes the exhaustive research to the fuzzy control based on the monolithic integrated circuit to the fluid position control theory and in the intelligent optimization control strategy and the method, has established one kind of control system.In the system construction, does using monolithic integrated circuit 89C51 for the core control section, uses the fuzzy control algorithm to carry on the control.The control system the physical location and the deviation rate of change which obtains according to the setting value carries on the fuzzy, establishes the fuzzy control rule table, will optimize after the parameter change quantity, will realize the rotation control in under the fuzzy controller control.Through to the conventional controller, the pure fuzzy controller and has the self regulating to decide the function the fuzzy controller to carry on the simulation contrast.Key word: Fuzzy control, automated technology, optimized control.1.模糊控制简介1.1模糊控制的历史背景1965年美国自动控制理论专家L A Zadeh首次提出了模糊集合,1974年英国E H Mamdani首先将模糊控制应用于锅炉和蒸汽机的自动控制。
目前,模糊控制作为20 世纪90年代的高新技术,得到非常广泛的应用,被公认为简单而有效的控制技术。
模糊控制技术是近代控制理论中的一种高级策略和新颖技术。
模糊控制技术基于模糊数学理论,通过模拟人的近似推理和综合决策过程,使控制算法的可控性、适应性和合理性提高,成为智能控制技术的一个重要分支。
在传统的控制领域里,控制系统动态模式的精确与否是影响控制优劣的最主要关键,系统动态的信息越详细,则越能达到精确控制的目的。
然而,对于复杂的系统,由于变量太多,往往难以正确的描述系统的动态,于是工程师便利用各种方法来简化系统动态,以达成控制的目的,但却不尽理想。
换言之,传统的控制理论对于明确系统有强而有力的控制能力,但对于过于复杂或难以精确描述的系统,则显得无能为力了。
因此便尝试着以模糊数学来处理这些控制问题。
模糊控制是一种以模糊数学为基础的计算机数字控制。
模糊控制系统的组成内同于一般的数字控制系统。
在现实世界中,随着工业过程H益走向大型化、连续化、复杂化,很多系统极其复杂,具有高度的非线性、强耦合性、不确定性、信息不完全性和大时滞等特性,并存在苛刻的约束条件,使常规控制无法得到满意的控制效果。
由此,先进的工业控制技术也就应运而生。
先进控制的目标就是为了解决那些采用常规控制效果不佳甚至无法对付的复杂工业过程控制问题。
先进控制的实现通常需要足够的计算能力作为支持,其主要技术内容有:过程辨识技术;过程变量的采集、处理和软测量技术;先进控制算法,如传统的串级、比值、前馈控制等和发展中的鲁棒控制、神经网络控制、模糊控制等以及过程的故障检测、预报、诊断和处理。
1.2模糊控制的基本原理模糊控制属于智能控制的范畴,它是以模糊数学和模糊逻辑唯理论基础、模仿人的思维方式而统筹考虑的一种控制方式。
它是以模糊集合论、模糊语言变量和模糊逻辑推理为基础的一种计算机数学控制。
模糊控制模仿人的思维方式。
计算控制量时并不需要参数的精确量,而是以参数的模糊信息的模糊形式,然后再经过饭模糊化处理输出具体的控制量。
器控制方框图如下:1.3模糊算法的四个步骤1.根据本次采样得到的系统输出值,计算所选择的系统的输入变量;2.价格输入变量的精确值变为模糊量;3.根据输入变量(模糊量)及模糊控制规则,按模糊推理合成规则计算控制量(模糊);4.有上述所得到的控制量(模糊量)计算精确的控制量。
传感器 被控对象 执行机构A/DD/A计算变量模糊化模糊推理反模糊化图1 模糊控制原理图2.基于单片机的液位模糊控制器的设计2.1设计的基本原理液面控制由于其应用及其普遍,种类繁多,其中不乏一些大型的复杂系统,譬如在石油化工等工业生产中。
它主要有以下几个特点:1.时滞性很大。
在大型、复杂的液位控制系统中当改变进出容器的液体流量来控制液位时,控制效果在较长的时间后才可以体现,这会使得最后的稳态误差较大,液位在期望值附近波动。
2.时变性。
液位控制一般是控制液体的流入量的大小来控制液位的,流出量是根据后续工艺生产的需求而调节的,这种需求的数量和速度是不断变化的。
3.非线性。
容器内液体流出量不仅随后续工艺生产需求变化,即使在控制阀门保持不变的情况下,实际的流出量也随着液位高度的变化而发生一种非线性的变化。
这几个特点需要将智能控制方法引入到液位的控制系统中来。
2.2设计的基本步骤第一步:在采样时刻,采样系统的输出值,然后根据所选择的系统的输入变量来进行计算,得到输入变量的具体值。
一般系统通常选择误差及误差的变化情况作为输入变量。
第二步:将输入变量的精确值变为模糊量。
当然,在这之前需要先确定模糊变量的基本论域、模糊子集论域、模糊词集及隶属函数,系统中输入变量的实际变化范围称为变量的基本论域,对于模糊控制输入所要求的变化范围称为它们的模糊子集论域。
模糊子集论域的确定和下一步的模糊推理中需要的模糊值有关。
模糊值可用模糊词集来表示,人们对数值的模糊表示一般可用大、中、小加以区别,再加上正负模糊词集就可表示为:{负大,负中,负小,零,正小,正中,正大}一般系统的输入变量的模糊子集论域所含的元素个数应为词集总数的两倍以上,这样才能确保模糊词集能较好地覆盖模糊子集论域,避免出现失控现象。
针对上面选用的模糊词集,模糊子集论域可选择为:公式 1 隶属函数 {-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6 }对于一个模糊控制系统,它的控制器输入变量的实际范围一般不会正好和模糊子集论域一致,这时就需要进行转化.假如基本论域为[a ,b],模糊子集论域为[m ,n],则将一个精确输入量x 转化到模糊子集论域中的变量y 是通过以下公式来实现的:y=(n-m)*[x-(b-a)/2]/(b-a) (1)模糊子集论域和模糊词集之间是通过隶属函数来联系的。
模糊变量的隶属函数就和普通变量的特征函数一样,但它的取值范围并不是单纯的0或1,而是在[0,1]之间连续变化。
隶属函数的形状常采用梯形、三角形、钟形、高斯形等。