材料的电性能(1)
材料的电学性能与测试方法

材料的电学性能与测试方法引言:材料的电学性能是指材料在电场或电流作用下的响应和性质。
了解材料的电学性能对于材料的研究和应用具有重要意义。
本文将介绍几种常用的测试材料电学性能的方法。
一、电导率测试方法电导率是衡量材料导电性能的重要指标,其测试方法如下:1. 电导率测量仪器:使用四探针测试仪或电导率仪进行测量。
2. 测量步骤:将待测试材料切割成适当的样品尺寸,保持样品的几何形状和尺寸稳定。
然后将四个电极按照规定的间距连接到材料上,并确保电极与材料之间的良好接触。
最后,通过测试仪器施加电流并测量电压,根据欧姆定律计算得出材料的电导率。
二、介电常数测试方法介电常数是材料在电场中对电场强度的响应能力,测试方法如下:1. 介电常数测量仪器:使用恒流恒压法或绝缘材料测试仪进行测量。
2. 测量步骤:将待测试材料加工成平板状或柱形状样品,保证样品的几何形状和尺寸稳定。
然后将测试仪器中的电极引线与样品连接,确保电极与材料的良好接触。
接下来,在测试仪器中施加电流和电压,测量得到材料的介电常数。
三、热释电测试方法热释电是指材料在电场作用下产生的热能释放,其测试方法如下:1. 热释电测量仪器:使用热释电测试仪进行测量。
2. 测量步骤:将待测试材料切割成适当的样品尺寸,保持样品的几何形状和尺寸稳定。
然后将样品放置在测试仪器中,施加电场。
测试仪器会测量样品在电场下产生的温升,根据温升和已知的电场强度计算得出材料的热释电性能。
四、电阻温度系数测试方法电阻温度系数是指材料电阻随温度变化的程度,其测试方法如下:1. 电阻温度系数测量仪器:使用四探针测试仪或电阻测量仪进行测量。
2. 测量步骤:将待测试材料切割成细丝或片状样品,保持样品的几何形状和尺寸稳定。
然后将四个电极按照规定的间距连接到样品上,并确保电极与材料之间的良好接触。
接下来,在测试仪器中施加电流并测量电阻,随后在不同温度下重复测量电阻值。
最后,根据电阻值和温度变化计算得出材料的电阻温度系数。
材料的铁电性能课件

电场强度继续增大,最后晶体 电畴方向都趋于电场方向,类 似于单畴,极化强度达到饱和, 这相当于图中C附近的部分。
图6.26 铁电电滞回线 (Ps为自发极化强度,Ec为矫顽力)
13
2 自发极化强度Ps 极化强度达到饱和后,再增
加电场,P与E成线性关系,将这 线性部分外推至E=0时的情况, 此时在纵轴P上的截距称为饱和 极化强度或自发极化强度Ps。 3 剩余极化强度
多晶体中每个小晶粒可包含多个 电畴。由于晶体本身取向无规则,所 以各电畴分布是混乱的,因而对外不 显示极性。
单晶体,各电畴间的取向成一定的 角度,如90 °,180 ° 。
图6.31 畴壁
7
4.电畴的形成及其运动的微观机理 (1)电畴的形成
以BaTiO3为例。离子位移理论,认为自发极化主要是由 晶体中某些离子偏离了平衡位置造成的。由于离子偏离了平衡 位置,使得单位晶胞中出现了电矩。电矩之间的相互作用使偏 离平衡位置的离子在新的位置上稳定下来,与此同时晶体结构 发生了畸变。
的电滞回线很接近于矩形,Ps 和Pr很接近,而且Pr较高;陶 瓷的电滞回线中Ps与Pr相差较 多,表明陶瓷多晶体不易成为
单畴,即不易定向排列
图6.34 BaTiO3的电滞回线 20
4)铁电体的应用
①由于它有剩余极化强度,因而铁电体可用来作信息 存储、图象显示。
目前已经研制出一些透明铁电陶瓷器件,如铁电存储和 显示器件、光阀,全息照相器件等,就是利用外加电场使 铁电畴作一定的取向,使透明陶瓷的光学性质变化。铁电 体在光记忆应用方面也已受到重视,目前得到应用的是掺 镧的锆钛酸铅(PLZT)透明铁电陶瓷以及Bi4Ti3O12铁电薄膜。
1)温度对电滞回线的影响 铁电畴在外电场作用下的“转向”,使得陶瓷材料具有宏
材料的电性能

三正负电荷重心不重合而出现电偶极矩, 产生不等于零的电极化强度,使晶体自发极化,晶体的这种性质叫铁电性( ferroelectricity)。
当铁电材料受到定向压力或张力的作用时,晶体垂直于力的两侧表面会分别 带上等量的相反电荷,这种性质叫压电性(piezoelectricity)。若力的方向 反转,则两侧表面上的电荷易号。 具有压电效应的材料叫压电体。
C
εC
02:26
華中師範大學化學學院
CENTRAL CHINA NORMAL UNIVERSITY
3.介电性能的指标
(2)介电强度(dielectric strength)
介电强度是一种材料作为绝缘体时的电强度的量度。它 定义为试样被击穿时, 单位厚度承受的最大电压, 表示为伏 特每单位厚度。 介电强度越大, 绝缘材料的质量越好。 (3)介电损耗(dielectric loss)
四、铁电性与压电性
2、铁电性的表现过程
铁电材料表现铁电性的过程:
当对铁电材料施加电场时,永 久偶极子数量增加,在方向上趋向 电场方向排列,最终所有偶极子平 行于电场方向,极化强度也达到最 大程度PS。
02:26
華中師範大學化學學院
02:26
華中師範大學化學學院
CENTRAL CHINA NORMAL UNIVERSITY
二、介电性能
1.介电性能(dielectricity)概念
如果将某一均匀的电介质作为电容器的介质而置于其两 极之间,则由于电介质的极化,将使电容器的电容量比真空 为介质时的电容量增加若干倍。物体的这一性质称为介电性
F
+
-
02:26
華中師範大學化學學院
CENTRAL CHINA NORMAL UNIVERSITY
材料物理性能学之材料的电性能

材料物理性能学之材料的电性能引言材料的电性能是材料物理性能学的一个重要研究分支,它研究的是材料在电场、电流和电磁波等电学环境下的行为和性能。
材料的电性能对于材料的应用具有关键影响,比方在电子学、能源转换和传感器等领域中起着重要作用。
本文将探讨材料的电性能的根本概念、测试方法和常见的应用。
1. 电导率电导率是材料的一个根本电学性能参数,表示材料导电能力的强弱。
它常用符号σ表示,单位为S/m〔西门子/米〕。
电导率的量值越大,材料越好的导电性能。
电导率可以通过测量材料的电阻率来计算。
2. 电阻率电阻率是材料对电流流动的阻碍能力的度量,常用符号ρ表示,单位为Ω·m。
电阻率和电导率是一对相互关联的物理量,它们之间的关系可以用以下公式表示:ρ = 1/σ。
电阻率可以通过测量材料的电阻来得到。
3. 介电性能除了导电性能,材料还具有介电性能。
介电性能是材料对电场的响应能力的度量。
具有良好介电性能的材料可以阻止电流的流动,并被广泛应用于电容器、绝缘材料和电子设备等领域。
介电性能可以通过测量材料的介电常数来评估。
4. 介电常数介电常数是材料在电场中响应的能力的度量,常用符号ε表示。
介电常数可分为静电介电常数和动态介电常数。
静电介电常数表示在静电场中材料的响应能力,而动态介电常数那么表示在交变电场中材料的响应能力。
介电常数越大,材料对电场的响应能力越强。
5. 半导体材料的特性半导体材料是一类介于导体和绝缘体之间的材料,它具有特殊的电性能。
半导体材料的电导率较低,但随着温度的升高会逐渐增大。
半导体材料的导电性能可以通过添加杂质来调控,从而实现半导体器件的制造。
6. 材料的应用材料的电性能对于众多领域的应用至关重要。
在电子学领域中,导电性能好的材料可以用于制造电路和导线等电子元器件。
在能源转换领域中,材料的电性能对太阳能电池和燃料电池等能源转换器件的效率和稳定性有重要影响。
在传感器领域中,材料的电性能可以用于制造压力传感器、温度传感器和湿度传感器等。
材料电化学性能的表征与评价

材料电化学性能的表征与评价材料电化学性能是指材料在电化学反应中扮演的角色。
材料的电化学性能与其材料特性相关,如晶体结构、晶格常数、晶面能、载流子扩散系数、粒径、表面积、微孔结构等。
对材料的电化学性能进行表征和评价,对于材料科学研究、能源领域的材料应用等有着非常重要的意义。
1. 电化学方法及其应用电化学方法是指利用电化学原理和方法对材料的电性能进行测定和研究,其主要应用领域包括化学反应动力学、检测企业废水、分析及检测环境污染等。
电化学方法主要有:电位法、电流法和阻抗法。
电位法是指以电位为基础的电化学方法,通过在电极上施加一定的电压或电位,测定材料在电极上的氧化还原电势、电化学反应的活化能等。
电流法是指以电流为基础的电化学方法,通过测定材料在电流作用下的电化学反应速率、电化学反应的电荷传递过程等参数进行研究。
阻抗法是指通过测定材料在不同频率下的交流阻抗与复阻抗等参数,研究材料电化学反应动力学、电化学储能器件等性能。
2. 材料电化学性能的表征材料的电化学性能可通过多种方法进行表征和评价,主要包括电极电位、电流-电位曲线、循环伏安曲线、恒电位电导谱等。
(1) 电极电位电极电位是指在特定条件下,电极与电解质溶液中的标准电极电位之差。
通常作为评价材料电化学反应中参与反应的化学物质的可逆性和难还原性的指标。
(2) 电流-电位曲线电流-电位曲线是指在恒定电压或电流条件下,记录反应体系中电极电位与电流强度与时间的关系曲线。
电流电位曲线可以表征材料在电化学反应中的活性和稳定性。
(3) 循环伏安曲线循环伏安曲线是指在设定温度和扫描速率下,记录电位和电流变化的曲线。
循环伏安曲线通过测定材料的氧化还原行为、电化学反应动力学和储能特性等方面的参数,评价材料的电化学性能。
(4) 恒电位电导谱恒电位电导谱是利用恒定电位法在不同频率下测量交流阻抗,分析材料的电导率、电负性、电化学反应动力学等方面的特性。
3. 材料电化学性能的评价材料电化学性能的评价通常包括:化学反应动力学,电化学活性、电催化活性、电抗-电容等。
材料的电学性能测试实验报告

材料的电学性能测试,实验报告实验报告:材料的电学性能测试一、引言材料的电学性能是决定其在不同应用中的关键因素。
本实验报告主要介绍几种基本的电学性能测试方法,包括电阻率测试、绝缘电阻测试和介电常数测试,并通过具体实验示例对这些方法进行详细阐述。
二、实验材料与方法1.电阻率测试电阻率是衡量材料导电性能的参数,可通过四探针法进行测量。
四探针法的基本原理是:当四个探针在材料上施加一定的电流时,通过测量两对探针之间的电压降,可以计算出材料的电阻率。
2.绝缘电阻测试绝缘电阻是衡量材料绝缘性能的重要参数,可采用直流电压源和电流表进行测量。
基本原理是:在材料两端施加一定的直流电压,然后测量流过材料的电流大小,通过计算可得材料的绝缘电阻值。
3.介电常数测试介电常数是衡量材料介电性能的参数,可采用LCR数字电桥进行测量。
LCR数字电桥具有测量精度高、读数稳定等优点。
基本原理是:在材料上施加一定频率的交流电压,测量通过材料的电流及相位差,通过计算可得材料的介电常数值。
三、实验结果与分析1.电阻率测试结果与分析在本次实验中,我们选取了铜、镍和铝三种材料进行电阻率测试。
实验结果表明,铜的电阻率最低,具有良好的导电性能;而铝和镍的电阻率较高,相对而言导电性能较弱。
2.绝缘电阻测试结果与分析在本次实验中,我们选取了聚乙烯、聚氯乙烯和橡胶三种材料进行绝缘电阻测试。
实验结果表明,橡胶的绝缘电阻最高,具有最好的绝缘性能;而聚乙烯和聚氯乙烯的绝缘电阻相对较低,相对而言绝缘性能较弱。
3.介电常数测试结果与分析在本次实验中,我们选取了聚酰亚胺、聚碳酸酯和聚酯三种材料进行介电常数测试。
实验结果表明,聚酰亚胺的介电常数最高,具有较好的介电性能;而聚酯的介电常数相对较低,相对而言介电性能较弱。
四、结论本次实验通过电阻率测试、绝缘电阻测试和介电常数测试三种方法对不同材料的电学性能进行了评估。
实验结果表明:在导电性能方面,铜具有最好的导电性能,而铝和镍相对较弱;在绝缘性能方面,橡胶具有最好的绝缘性能,而聚乙烯和聚氯乙烯相对较弱;在介电性能方面,聚酰亚胺具有较好的介电性能,而聚酯相对较弱。
材料的介电性能
材料的介电性能材料的介电性能是指材料在电场作用下的响应能力,也是材料在电子学、光学、电磁学等领域中的重要性能参数之一。
介电性能的好坏直接影响着材料在电子器件、电力设备、通信设备等方面的应用效果。
在材料科学领域中,研究和提高材料的介电性能具有重要意义。
首先,介电常数是衡量材料介电性能的重要参数之一。
介电常数是材料在电场作用下的相对响应能力的指标,通常用ε表示。
介电常数越大,表示材料在电场作用下的响应能力越强,介电性能越好。
常见的高介电常数材料包括氧化铝、二氧化钛等,它们在电子器件中具有重要的应用价值。
其次,介电损耗是评价材料介电性能的另一个重要指标。
介电损耗是指材料在电场作用下吸收和释放能量的能力,通常用tanδ表示。
介电损耗越小,表示材料在电场作用下的能量损耗越小,介电性能越好。
在高频电子器件和微波器件中,要求材料的介电损耗尽可能小,以保证信号的传输和处理效果。
此外,介电强度也是衡量材料介电性能的重要参数之一。
介电强度是指材料在电场作用下能够承受的最大电场强度,通常用E表示。
介电强度越大,表示材料在电场作用下的抗击穿能力越强,介电性能越好。
在电力设备和高压电子器件中,要求材料的介电强度能够承受高电场强度,以保证设备的安全和稳定运行。
综上所述,材料的介电性能是材料科学中的重要研究内容之一。
通过研究和提高材料的介电常数、介电损耗和介电强度等参数,可以改善材料在电子学、电力设备、通信设备等领域的应用效果,推动相关领域的科学技术发展。
希望本文对材料的介电性能有所帮助,也希望相关领域的科研工作者能够进一步深入研究,推动材料科学的发展。
材料电学性能
高分子材料的电学性能高分子092班学号:5701109061 姓名:林尤琳摘要:种类繁多的高分子材料的电学性能是丰富多彩的。
多数聚合物材料具有卓越的电绝缘性能,其电阻率高、介电损耗小,电击穿强度高,加之又具有良好的力学性能、耐化学腐蚀性及易成型加工性能,使它比其他绝缘材料具有更大实用价值,已成为电气工业不可或缺的材料。
关键词:高分子材料电学性能静电导电介电常数高分子材料的电学性能是指在外加电场作用下材料所表现出来的介电性能、导电性能、电击穿性质以及与其他材料接触、摩擦时所引起的表面静电性质等。
电学性能是材料最基本的属性之一,这是因为构成材料的原子和分子都是由电子的相互作用形成的,电子相互作用是材料各种性能的根源.电子的微观相互作用同时是产生材料宏观性能,包括电学性能的微观基础。
在电场作用下产生的电流、极化现象、静电现象、光发射和光吸收现象都与其材料内部的电子运动相关。
深入、系统了解材料的电学性能在材料的制备、应用等方面都具有非常重要的意义。
(1)一、聚合物的介电性介电性是指高聚物在电场作用下,表现出对静电能的储存和损耗的性质。
通常用介电常数和介电损耗来表示。
(2)根据高聚物中各种基团的有效偶极距μ,可以把高聚物按极性的大小分成四类:非极性(μ=0):聚乙烯、聚丙烯、聚丁二烯、聚四氟乙烯等弱极性(μ≤0。
5):聚苯乙烯、天然橡胶等极性(μ>0。
5):聚氯乙烯、尼龙、有机玻璃等强极性(μ>0.7):聚乙烯醇、聚酯、聚丙烯腈、酚醛树脂、氨基塑料等聚合物在电场下会发生以下几种极化:(1)电子极化,(2)原子极化,(3)偶极极化.聚合物的极化程度用介电常数ε表示式中:V为直流电压;Qo、Q分别为真空电容器和介质电容器的两极板上产生的电荷;Q’为由于介质极化而在极板上感应的电荷.非极性分子只有电子和原子极化,ε较小;极性分子除有上述两种极化外,还有偶极极化,ε较大。
此外还有以下因素影响ε:(1)极性基团在分子链上的位置。
常用绝缘材料的电性能
常用绝缘材料的电性能1.介电常数介电常数是绝缘材料表征其存储能力的重要参数。
它是绝缘材料中电场与介质中本身极化所产生的电场之比。
介质的介电常数一般大于真空介电常数1,在绝缘应用中,常用绝缘材料的介电常数通常在2到15之间。
较高的介电常数意味着绝缘材料可以存储更多的电荷,具有较高的电容性能。
在常用绝缘材料中,空气的介电常数接近于真空的介电常数,约为1、聚乙烯的介电常数约为2.2,聚氯乙烯的介电常数约为3,聚酰亚胺的介电常数约为3.4,云母的介电常数约为6-7,而玻璃的介电常数较高,通常达到9-112.介质损耗角正切介质损耗角正切是绝缘材料中电能转换为热能损耗的参数。
它与介质的损耗性能密切相关。
较低的损耗角正切表示绝缘材料更能有效地存储电能而不产生大量的热能损耗。
在常用绝缘材料中,空气和聚乙烯的损耗角正切非常低,常常小于0.0001、而聚氯乙烯的损耗角正切较高,一般在0.01左右。
聚酰亚胺的损耗角正切约为0.006,云母的损耗角正切为0.002-0.007,玻璃的损耗角正切在0.001-0.01范围内。
3.绝缘电阻绝缘电阻是衡量绝缘材料导电性能的参数。
它表示绝缘材料对电流的阻碍能力,越高则表示绝缘材料的导电性能越差。
常见绝缘材料的绝缘电阻在不同条件下可能有所不同。
例如,在标准温度和湿度条件下,聚氯乙烯的绝缘电阻通常在10^12 Ω·cm以上,聚酰亚胺的绝缘电阻可达10^14 Ω·cm,而云母的绝缘电阻通常在10^12-10^15 Ω·cm范围内。
4.耐电压耐电压是指绝缘材料能够承受的最大电压,它衡量了绝缘材料对电压的耐受能力。
高耐电压意味着绝缘材料能在高电场强度下仍能保持绝缘状态。
综上所述,介电常数、介质损耗角正切、绝缘电阻和耐电压是常用绝缘材料的主要电性能指标。
不同绝缘材料在这些指标上存在差异,需根据具体应用需求选择合适的材料。
绝缘材料的电气性能
绝缘材料的电气性能绝缘材料的电气性能主要表现在电场作用下材料的导电性能、介电性能及绝缘强度。
它们分别以绝缘电阻率ρ(或电导γ)、相对介电常数εr、介质损耗角tanδ及击穿强度EB四个参数来表示。
(1)绝缘电阻率和绝缘电阻任何电介质都不行能是肯定的绝缘体,总存在一些带电质点,主要为本征离子和杂质离子。
在电场的作用下,它们可作有方向的运动,形成漏导电流,通常又称为泄漏电流。
电阻支路的电流Ii即为漏导电流;流经电容和电阻串联支路的电流Ia称为汲取电流,是由缓慢极化和离子体积电荷形成的电流;电容支路的电流IC称为充电电流,是由几何电容等效应构成的电流。
①在正常工作时(稳态),漏导电流打算了绝缘材料的导电性,因此,漏导支路的电阻越大,说明材料的绝缘性能越好。
②温度、湿度、杂质含量、电磁场强度的增加都会降低电介质材料的电阻率。
(2)介电常数介电常数是表明电介质极化特征的性能参数。
介电常数愈大,电介质极化力量愈强,产生的束缚电荷就愈多。
束缚电荷也产生电场,且该电场总是减弱外电场的。
现用电容器来说明介电常数的物理意义。
设电容器极板间为真空时,其电容量为Co,而当极板间布满某种电介质时,其电容量变为C,则C与Co的比值即该电介质的相对介电常数,即:在填充电介质以后,由于电介质的极化,使靠近电介质表面处消失了束缚电荷,与其对应,在极板上的自由电荷也相应增加,即填充电介质之后,极板上容纳了更多的自由电荷,说明电容被增大。
因此,可以看出,相对介电常数总是大于1的。
绝缘材料的介电常数受电源频率、温度、湿度等因素而产生变化。
频率增加,介电常数减小。
温度增加,介电常数增大;但当温度超过某一限度后,由于热运动加剧,极化反而困难一些,介电常数减小。
湿度增加,电介质的介电常数明显增加,因此,通过测量介电常数,能够推断电介质受潮程度。
大气压力对气体材料的介电常数有明显影响,压力增大,密度就增大,相对介电增大。
(3)介质损耗在沟通电压作用下,电介质中的部分电能不行逆地转变成热能,这部分能量叫做介质损耗。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、迁移数(迁移率、输运数) 表征材料导电载流子种类对导电贡献的参数是迁移数
σx表示某一种载流子输运电荷的电导率 σT各种载流子输运电荷形成的总电导率
ti>0.99的导体称为离子(电)导体 ti<0.99的导体称为混和(电)导体
第二章 材料的电性能
第一节 材料的导电性能
3、霍尔效应
第一节 材料的导电性能 最后,利用能带理论严格导出电导率表达式
①n nef表示单位体积内实际参加传导过程的电子数。 ②m m *,称m *为电子的有效质量,它是考虑晶体点阵 对电场作用的结果
此式不仅适用于金属,也适用于非金属. 能完整地反映晶体导电的物理本质。
第二章 材料的电性能
第一节 材料的导电性能
当施加的电场在导体中产生电流时,电流密度J正比 于电场强度E,其比例常数σ即为电导率
欧姆定律的微分形式
第二章 材料的电性能
第一节 材料的导电性能
对一截均匀导电体, 存在如下关系:
欧姆定律
S i
L
电阻率的单位是Ω•m Ω•cm或μΩ• cm
ρ与材料的本质有关,是表征材料导电性能的重要参数
第二章 材料的电性能
自由电子密度有关 霍尔系数RH有如下表达式:
1 RH nie
第二章 材料的电性能
第一节 材料的导电性能
4、电解效应 离子电导的特征是具有电解效应。 利用电解效应可以检验 材料是否存在离子导电 可以半顶载流子是正离子还是负离子
第二章 材料的电性能
第一节 材料的导电性能 2.1.2 电子类载流子导电 一、金属的导电机制 对金属导电的认识是不断深入的。最初,利用经典 自由电子理论导出金属电导率表达式为
式中:m为电子质量;v为电子运动平均速度;n为电子密度; e为电子电量;l为平均自由程。
第二章 材料的电性能
第一节 材料的导电性能
其后,利用量子自由电子理论导出电导率表达式
式中:n为金属电子密度;e为电子电荷;m为电子质量;lF 和vF分别为费米面附近电子平均自由程和运动速度。
第二章 材料的电性能
电子电导的特征是具有霍尔效应。
置于磁场中的静止载流导体,当它的电流方向与磁场方 向不一致时,载流导体上平行于电流和磁场方向上的两 个面之间产生电动势差,这种现象称霍尔效应。
第二章 材料的电性能
第一节 材料的导电性能
形成的电场EH,称为霍尔场。表征霍尔场的物 理参数称为霍尔系数,定义为:
表示霍尔效应的强弱 霍尔系数只与金属中
因而金属电阻率在不同温度范围与温度变化关系是不 同的
第二章 材料的电性能
第一节 材料的导电性能
金属电阻温度曲线
1) 在温度T>2/3 θD 时 ρ(t) =αT
2) 当温度T<< θD 时 ρ(t)œT5
3) 在极低温度(2K)时 ρ(t)œT2
第二章 材料的电性能
第一节 材料的导电性能
a) 通常,金属熔化时电阻增高1.5~2倍。但也有反常, 如锑随温度升高,电阻也增加,熔化时电阻反常地下 降了,原因是在熔化时,由共价键结合变化为金属键 结合料的导电性能
在低温下“电子-电子”散射对电阻的贡献是显著的, 但除了最低的温度以外,在所有温度下大多数金属的 电阻都取决于“电子-声子” 散射。必须指出点阵的热 振动在不同温区存在差异。
(根据德拜理论,原子热运动的特征在两个温度区域 存在本质的差别,划分这两个区域的温度θD称为德拜 温度或特征温度)
量子力学可以证明,当电子波在绝对零度下通过一个 完整的晶体点阵时,它将不受散射而无阻碍的传播,这 时电阻为零。只有在晶体点阵完整性遭到破坏的地方, 电子波才受到散射(不相干散射),这就会产生电阻-金 属产生电阻的根本原因。由于温度引起的离子运动(热 振动)振幅的变化(通常用振幅的均方值表示),以及晶 体中异类原子、位错、点缺陷等都会使理想晶体点阵的 周期性遭到破坏。这样,电子波在这些地方发生散射而 产生电阻,降低导电性。
第二章 材料的电性能
材料的导电性能
电导的物理现象 电子类载流子导电 离子类载流子导电 半导体和超导体 材料电性能测量及应
用举例
材料的介电性能
介质的极化 介质的损耗 介电强度 材料的压电性能 材料的铁电性能 材料介电性能测量及
应用举例
第二章 材料的电性能
第一节 材料的导电性能 2.1.1 电导的物理现象 一、电导的宏观参数-电阻率、电导率
高温时
低温时
ρʹ是与杂质的浓度、电缺陷和位错有关的电阻率。 ρL(T)是与温度有关的电阻率。
第二章 材料的电性能
第一节 材料的导电性能 三、电阻率与温度的关系 金属的温度愈高,电阻也愈大。若以ρ0和ρt表示金属 在0 ℃和T℃温度下的电阻率,则电阻与温度关系为:
在t 温度下金属的电阻温度系数:
第二章 材料的电性能
第一节 材料的导电性能
二、电导的物理特性
1、载流子 电流是电荷在空间的定向运动。 任何一种物质,只要存在带电荷的自由粒子——
载流子,就可以在电场下产生导电电流。 金属中: 自由电子 无机材料中:
电子(负电子/空穴)——电子电导 离子(正、负离子/空穴)——离子电导
第二章 材料的电性能
第二章 材料的电性能
第一节 材料的导电性能 根据电导率公式,电阻率ρ可表示为:
其中 =1/ lF,称为散射系数
温度愈高,离子振幅愈大.电子愈容易受到散射, 故可认为散射系数μ与温度成正比,因为电子速度 和数目基本上与温度无关。
第二章 材料的电性能
第一节 材料的导电性能
二、马西森定律 考虑金属和合金中不但含有杂质和合金元素,而且还有 晶体缺陷, 散射系数应该由两部分组成
其中,散射系数μT与温度成正比. Δμ与杂质浓度成正比,与温度无关
注:理想金属的电阻对应着两种散射机制:声子散射和电子 散射,可以看成为基本电阻,这个电阻在绝对零度时为零 在有缺陷的晶体中可以发生电子在杂质和缺陷上的散射, 这是绝对零度下金属残余电阻。
第二章 材料的电性能
第一节 材料的导电性能
马西森(Matthissen)和沃格特(Vogt)早期根据 对金属固溶体中的溶质原子的浓度较小,以致于可以 略去它们之间的相互影响,把金属的电阻看成由金属 的基本电阻ρL(T)和残余电阻ρʹ组成,这就是马西森定 律( Matthissen Rule),用下式表示: