电容的理解以及影响因素

合集下载

中学初三物理复习电容器与电容

中学初三物理复习电容器与电容

中学初三物理复习电容器与电容电容器与电容的初步理解电容器是物理学中重要的电路元件,主要由两块导体板和介质组成。

电容器的主要作用是存储电荷,并且可以在电路中储存和释放能量。

本文将以中学初三物理复习为背景,对电容器和电容的基本概念进行介绍,并探讨其在电路中的应用。

一、电容器的基本结构和工作原理电容器由两块导体板和介质组成。

导体板通常是金属板,介质可以是空气、塑料或电介质等。

介质的特性决定了电容器的电容大小。

当电容器的两块导体板之间加上电压差时,导体板上将会存储电荷。

存储的电荷量与电压差成正比,与电容大小成反比。

二、电容的定义和计算公式电容是电容器存储电荷的能力,用C表示,单位是法拉(F)。

根据电容的定义可得:电容C等于电容器中储存的电荷量Q与电压差U的比值,即C=Q/U。

电容的SI单位是库仑(C),1库仑等于1法拉。

在实际应用中,常用的单位是微法(F),1微法等于10^-6法拉。

根据电容的定义公式,我们可以计算电容器的电容大小。

当电容器的电压为U,存储的电荷量为Q时,电容C等于Q/U。

通过改变电容器的尺寸、导体板之间的距离和介质的特性等因素,可以改变电容的大小。

三、电容器的串联和并联在实际应用中,常常需要将多个电容器连接在一起以满足不同的电路需求。

电容器可以进行串联和并联。

串联连接时,多个电容器共享相同的电荷量,但电压分配给各个电容器的比例是根据电容大小来决定的。

假设有两个电容器C1和C2,它们串联连接后的总电容Ct满足以下公式:1/Ct = 1/C1 + 1/C2。

并联连接时,多个电容器具有相同的电压,但存储的总电荷量等于各个电容器存储电荷量之和。

假设有两个电容器C1和C2,它们并联连接后的总电容Ct满足以下公式:Ct = C1 + C2。

通过串联和并联的组合,可以构建复杂的电容器网络,以满足不同电路的需求。

四、电容器在电路中的应用电容器在电路中有很多重要的应用。

以下是几个常见的例子:1. 电容器的充放电过程:当电容器两端施加电压差时,电容器开始充电。

《决定电容的因素》 学历案

《决定电容的因素》 学历案

《决定电容的因素》学历案一、学习目标1、理解电容的定义和物理意义。

2、掌握决定电容大小的因素。

3、能够运用决定电容的因素进行相关的计算和分析。

二、学习重难点1、重点(1)电容的定义和单位。

(2)决定电容大小的三个因素:极板间的正对面积、极板间的距离、电介质的介电常数。

2、难点(1)对电容概念的深入理解。

(2)运用决定电容的因素解决实际问题。

三、知识讲解(一)电容的定义电容是描述电容器容纳电荷本领的物理量。

如果一个电容器两极板之间的电压为 U,所带电荷量为 Q,则电容 C 定义为:C = Q / U 。

(二)电容的单位电容的国际单位是法拉(F),常用的单位还有微法(μF)和皮法(pF),它们之间的换算关系为:1 F =10^6 μF = 10^12 pF 。

(三)决定电容的因素1、极板间的正对面积当其他条件不变时,电容器极板间的正对面积越大,电容越大。

这是因为正对面积越大,极板上能够容纳的电荷就越多,从而使电容器容纳电荷的本领增强。

2、极板间的距离极板间的距离越小,电容越大。

从微观角度来看,极板间距离减小,电荷之间的相互作用力增强,使得电荷更容易在极板上积累,从而增大了电容。

3、电介质的介电常数电介质的介电常数越大,电容越大。

介电常数是描述电介质电学性质的物理量,不同的电介质具有不同的介电常数。

在电容器中插入电介质后,会使电容器的电容增大。

为了更直观地理解这三个因素对电容的影响,我们可以通过以下的公式来表示:C =εS /(4πkd)其中,C 表示电容,ε 表示电介质的介电常数,S 表示极板间的正对面积,d 表示极板间的距离,k 是一个常数。

(四)实例分析例 1:有两个平行板电容器,它们的极板面积相同,一个极板间距离为 d1,另一个极板间距离为 d2(d2 > d1)。

在相同的电压下,哪一个电容器所带的电荷量更多?解:根据电容的定义式 C = Q / U ,可得 Q = CU 。

又因为 C =εS /(4πkd) ,当极板面积 S 和电介质相同(即ε 相同)时,极板间距离 d 越小,电容 C 越大。

平行板电容器的电容和电量的关系

平行板电容器的电容和电量的关系

平行板电容器的电容和电量的关系平行板电容器是一种常见的电容器类型,由两块平行的金属板和介质组成。

在电容器中,电容和电量之间存在着密切的关系。

本文将探讨平行板电容器的电容和电量之间的关系,并分析影响电容和电量的因素。

一、电容的定义和计算方法电容是指电容器存储电荷的能力,也可以理解为电容器对电荷的接受能力。

电容的单位是法拉(F)。

在平行板电容器中,电容的计算公式为:C = ε₀A/d其中,C表示电容,ε₀为真空介电常数(常数值为8.85 × 10⁻¹²F/m),A表示平行板电容器的面积,d表示平行板电容器之间的距离。

二、电量的定义和计算方法电量是指通过电路中的电荷总量,是电流的积累效果。

电量的单位是库仑(C)。

电量的计算公式为:Q = CV其中,Q表示电量,C表示电容,V表示电容器中的电压。

三、电容和电量的关系电容和电量之间的关系可以通过电场强度和电势差来解释。

当平行板电容器充电时,两个平行金属板之间会形成一个电场。

电场强度E与电势差V之间满足以下关系:E = V/d其中,E表示电场强度,V表示电势差,d表示板间距离。

通过电场强度和电势差的关系,可以推导出电容和电量之间的关系:C = Q/V可以看出,电容和电量之间成反比关系。

当电容增大时,电量相对减少;反之,当电容减小时,电量相对增加。

四、影响电容和电量的因素1. 平行板电容器的面积(A):电容正比于平行板电容器的面积,面积增大会使电容增加,从而导致电量减少。

2. 平行板电容器之间的距离(d):电容反比于平行板电容器之间的距离,距离减小会使电容增加,从而导致电量减少。

3. 介质的介电常数(ε):介质的介电常数决定了电场强度和电势差之间的关系,介电常数增加会导致电场强度减小,从而使电容增加,电量减少。

综上所述,平行板电容器的电容和电量之间存在着密切的关系。

通过调节平行板电容器的面积、板间距离和介质的介电常数,可以对电容和电量进行控制和调节。

2024秋季人教版高中物理必修第三册第十章静电场中的能量《电容器的电容》

2024秋季人教版高中物理必修第三册第十章静电场中的能量《电容器的电容》

教学设计:2024秋季人教版高中物理必修第三册第十章静电场中的能量《电容器的电容》一、教学目标(核心素养)1.物理观念:理解电容器的构造、工作原理及电容的概念,掌握电容的定义式及其物理意义。

2.科学思维:通过分析电容器充电、放电过程,培养学生的逻辑推理能力和问题解决能力,理解电容是描述电容器储存电荷本领的物理量。

3.科学探究:通过实验观察电容器充放电现象,体验科学探究的过程,学习使用实验仪器测量电容的方法。

4.科学态度与责任:培养学生的实验安全意识,尊重实验数据,形成实事求是的科学态度,同时了解电容器在现实生活中的应用及其重要性。

二、教学重点•电容器的构造、工作原理及电容的概念。

•电容的定义式及其物理意义。

三、教学难点•理解电容是描述电容器储存电荷本领的物理量,而非储存电荷的多少。

•分析电容器充放电过程中电场能的变化,理解电容与电压、电荷量的关系。

四、教学资源•多媒体课件(包含电容器构造展示、充放电过程模拟、电容定义及公式推导等)。

•实验器材(电容器、电源、开关、导线、电压表、电流表等,视条件可增减)。

•教科书、教辅资料及学生预习材料。

•实验报告模板。

五、教学方法•讲授法:讲解电容器的构造、工作原理及电容的概念。

•演示法:通过多媒体或实物演示电容器充放电过程。

•实验法:组织学生进行电容器充放电实验,观察现象并记录数据。

•讨论法:引导学生讨论电容的物理意义及其与电压、电荷量的关系。

六、教学过程导入新课•生活实例引入:展示手机电池、相机闪光灯电容器等生活中的电容器应用实例,提问“这些设备中的电容器是如何工作的?它们有什么共同特点?”引导学生思考电容器的作用。

•知识回顾:简要回顾静电场的基本概念和性质,为引入电容器做铺垫。

新课教学1.电容器的构造与工作原理:•展示电容器实物或图片,介绍电容器的基本构造,包括两个彼此绝缘又相互靠近的导体(极板)和中间的绝缘介质。

•通过多媒体演示或实物展示,说明电容器的工作原理——当电容器两极板间存在电势差时,极板上的电荷会重新分布,形成电场,储存电能。

【高中物理】人教版必修第三册学案:第十章 第四节 电容器的电容

【高中物理】人教版必修第三册学案:第十章 第四节 电容器的电容

第十章第4节电容器的电容学习目标1.知道电容器的概念2.理解电容的定义及定义方法3.知道改变平行板电容器电容大小的方法。

重点难点1.认识常见的电容器,通过实验感知电容器的充、放电现象。

(重点)2.掌握电容的定义、公式、单位,并会应用定义式进行简单的计算。

(难点)3.了解影响平行板电容器大小的因素,了解平行板电容器的电容公式。

(重点)自主探究一、电容器和电容1.电容器的组成两个彼此绝缘的导体,当靠得很近且之间存有电介质时,就组成一电容器。

2.电容器的充放电过程充电过程放电过程定义使电容器带电的过程中和掉电容器所带电荷的过程方法将电容器的两极板与电源两极相连用导线将电容器的两极板接通场强变化极板间的场强增强极板间的场强减小能量转化其他能转化为电能电能转化为其他能3.电容(1)定义:电容器所带的电荷量Q与电容器两极板间的电势差U的比值,公式为C=Q U。

(2)物理意义:表示电容器容纳电荷本领的物理量。

(3)单位:1 F=106μF=1012 pF。

二、平行板电容器及常见电容器1.平行板电容器(1)构成:由两个彼此绝缘的平行金属板。

(2)电容的决定因素:两板间距离d,两板的正对面积S,两板间电介质的相对介电常数εr。

(3)关系式:C=εr S4πkd。

2.常见电容器分类⎩⎪⎨⎪⎧按电介质分:聚苯乙烯电容器、陶瓷电容器、 电解电容器等按电容是否可变分:固定电容器、可变电容器 3.电容器的额定电压和击穿电压(1)额定电压:电容器能够长期正常工作时的电压。

(2)击穿电压:电介质被击穿时在电容器两极板上的极限电压,若电压超过这一限度,则电容器就会损坏。

课堂小测(1)其他条件不变时,平行板电容器的电容随极板正对面积的增大而增大。

(√)(2)其他条件不变时,平行板电容器的电容随极板间距离的增大而增大。

(×) (3)任何电介质的相对介电常数都大于1。

(√) (4)某电容器上标有“1.5 μF 9 V”的字样,则该电容器的击穿电压为9 V 。

高一物理《电容器的电容》知识点总结

高一物理《电容器的电容》知识点总结

高一物理《电容器的电容》知识点总结一、电容器1.基本构造:任何两个彼此绝缘又相距很近的导体,都可以看成一个电容器.2.充电、放电:使电容器两个极板分别带上等量异种电荷,这个过程叫充电.使电容器两极板上的电荷中和,电容器不再带电,这个过程叫放电.3.从能量的角度区分充电与放电:充电是从电源获得能量储存在电容器中,放电是把电容器中的能量转化为其他形式的能量.4.电容器的电荷量:其中一个极板所带电荷量的绝对值.二、电容1.定义:电容器所带电荷量Q 与电容器两极板之间的电势差U 之比.2.定义式:C =Q U. 3.单位:电容的国际单位是法拉,符号为F ,常用的单位还有微法和皮法,1 F =106 μF =1012 pF .4.物理意义:电容器的电容是表示电容器容纳电荷本领的物理量,在数值上等于使两极板之间的电势差为1 V 时,电容器所带的电荷量.5.击穿电压与额定电压(1)击穿电压:电介质不被击穿时加在电容器两极板上的极限电压,若电压超过这一限度,电容器就会损坏.(2)额定电压:电容器外壳上标的工作电压,也是电容器正常工作所能承受的最大电压,额定电压比击穿电压低.三、平行板电容器的电容1.结构:由两个平行且彼此绝缘的金属板构成.2.电容的决定因素:电容C 与两极板间电介质的相对介电常数εr 成正比,跟极板的正对面积S 成正比,跟极板间的距离d 成反比.3.电容的决定式:C =εr S 4πkd ,εr为电介质的相对介电常数,k 为静电力常量.当两极板间是真空时,C =S 4πkd. 四、电容器深度理解1.静电计实质上也是一种验电器,把验电器的金属球与一个导体连接,金属外壳与另一个导体相连(或者金属外壳与另一个导体同时接地),从验电器指针偏转角度的大小可以推知两个导体间电势差的大小.2.C =Q U 与C =εr S 4πkd的比较 (1)C =Q U 是电容的定义式,对某一电容器来说,Q ∝U 但C =Q U不变,反映电容器容纳电荷本领的大小;(2)C =εr S 4πkd 是平行板电容器电容的决定式,C ∝εr ,C ∝S ,C ∝1d ,反映了影响电容大小的因素.3.平行板电容器动态问题的分析方法抓住不变量,分析变化量,紧抓三个公式:C =Q U 、E =U d 和C =εr S 4πkd4.平行板电容器的两类典型问题(1)开关S 保持闭合,两极板间的电势差U 恒定,Q =CU =εr SU 4πkd ∝εr S d ,E =U d ∝1d. (2)充电后断开S ,电荷量Q 恒定,U =Q C =4πkdQ εr S ∝d εr S ,E =U d =4πkQ εr S ∝1εr S.。

高中物理精品试题: 电容器的电容

高中物理精品试题: 电容器的电容

10.4 电容器的电容学习目标1.知道什么是电容器。

2.理解电容器电容的概念及其定义式C=Q/U,并能用来进行有关计算。

3.知道平行板电容器的电容与哪些因素有关。

4.知道公式C=εr S4πkd及其含义。

重点:电容的概念。

难点:电容的引入与理解。

研究影响平行板电容器电容大小因素的实验探究。

知识点一、电容器1.构造:彼此绝缘而又相距很近的两个导体,就构成一个电容器。

2.功能(1)充电:把电容器的两个极板与电源的正负极相连,使两个极板上带上等量异种电荷的过程。

特点(如下左图所示):①充电电流:电流方向为逆时针方向,电流由大到小;①电容器所带电荷量增加;①电容器两极板间电压升高;①电容器中电场强度增加;当电容器充电结束后,电容器所在电路中无电流,电容器两极板间电压与充电电压相等;①充电后,电容器从电源中获取的能量称为电场能。

(2)放电:用导线把充电后的电容器的两个极板接通,两个极板上的异种就会中和,电容器失去电荷的过程。

特点(如上右图所示):①放电电流:电流方向是从正极板流出,电流是由大变小;①电容器上电荷量减少;①电容器两极板间电压降低;①电容器中电场强度减弱;①电容器的电场能转化成其他形式的能。

注意:放电的过程实际上就是电容器极板正、负电荷中和的过程,当放电结束时,电路中无电流。

3.带电荷量:充电后一个极板上的带电荷量的绝对值。

4.电容器的额定电压和击穿电压加在电容器上的电压不能超过某一限度,超过这个限度,电介质将被击穿,电容器损坏,这个极限电压称为击穿电压,电容器工作的电压低于击穿电压。

额定电压是指电容器长期工作时所能承受的电压,比击穿电压要低,电容器上一般都标明电容器的电容和额定电压的数值。

【题1】下列关于电容器的叙述中正确的是A.电容器是储存电荷和电能的容器,只有带电的容器才称为电容器B.任何两个彼此绝缘而又相互靠近的导体,都能组成电容器,而且跟这两个导体是否带电无关C.电容器所带的电荷量是指每个极板所带电荷量的绝对值D.电容器充电过程是将其他形式的能转变成电容器的电能并储存起来;电容器放电过程是将电容器储存的电能转化为其他形式的能知识点二、电容1.定义:电容器所带电荷量与两极板间电势差的比值叫电容。

高三物理电容电感知识点

高三物理电容电感知识点

高三物理电容电感知识点电容和电感是电路中常见的元件,具有重要的应用价值。

在高三物理学习中,了解电容和电感的基本知识点对于理解电路和解决相关问题非常重要。

本文将为您介绍高三物理中与电容和电感相关的几个重要知识点。

1. 电容器的基本概念和性质电容器是由两个导体板和之间的绝缘介质组成的。

电容的单位是法拉(F),常用的是微法(μF)和皮法(pF)。

电容器的电容量与导体板的面积成正比,与板间距和绝缘介质的介电常数成反比。

电容器有充电和放电过程,其充放电过程中的电荷量和电压满足一定的规律。

2. 并联和串联电容器在电路中,多个电容器可以并联或串联连接。

并联电容器的总电容量等于各电容器电容量之和,而串联电容器的总电容量满足分式求和的规律。

这个概念在实际电路中非常重要,可以用来计算电路的总电容量,判断电路的等效电容情况。

3. 电容器的充放电特性当电容器与直流电源相连时,电容器会发生充电过程。

电容器的充电速率与电容器的电容量和电阻值有关。

当电容器与导线断开连接并与电阻相连时,电容器会发生放电过程。

电容器的放电过程可以通过电流、电压和时间的关系来描述。

4. 电感的基本概念和性质电感是导体中产生的感应电动势与电流变化率之比。

电感的单位是亨利(H)。

通常使用的是毫亨(mH)和微亨(μH)。

电感元件通常由线圈构成,导线的长度、截面积和匝数都是影响电感的因素。

电感器在电路中常用于控制电流、滤波、储能等方面。

5. 电感对交流电的影响电感元件对交流电的影响非常重要。

在交流电路中,电感具有阻碍电流变化的特性。

通过电感的存在,可以使电路产生阻抗,从而影响电流和电压的分布。

电感元件与电容元件可以相互作用,形成电路的谐振。

这在电路设计和信号处理中具有重要意义。

6. 电容和电感在电路中的应用电容和电感在电路中有多种应用。

电容可以用于储能、滤波、调节电流等方面。

电感常用于制造和调节电路的感应电动势、阻抗匹配和频率选择。

它们在电子产品、通信系统、电力传输等领域都有广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电容的理解以及影响因素电容器与电容1.对于电容器的认识,下列说法正确的是( )A .它常见于交流电路与电气设备中B .对直流电路,它也是一个很重要的元件C .它具有容纳电荷的本领D .电容器可以按导体的形状分类,也可以按绝缘介质的不同分类1.关于电容器和电容的概念,下列说法正确的是( ).A .任何两个彼此绝缘又互相靠近的导体都可以看成是一个电容器B .用电源对平行板电容器充电后,两极板一定带有等量异种电荷C .某一电容器带电荷量越多,它的电容就越大D .某一电容器两板间的电压越高,它的电容就越大2.有一个正放电的电容器,若使它的电荷量减少3×10-6 C ,其电压降为原来的13,则 A .电容器原来带的电荷量是9×10-6 CB .电容器原来带的电荷量是4.5×10-6 CC .电容器原来的电压可能是5 VD .电容器原来的电压可能是5×10-7 V2.如图所示,四个图象描述了对给定的电容器充电时,电容器电量Q 、电压U 和电容C 三者的关系,正确的图象有( )16.一个平行板电容器,当其电荷量增加ΔQ =1.0×10-6C 时,两板间的电压升高ΔU =10 V ,则此电容器的电容C = F .若两板间电压为35 V ,此时电容器带电荷量Q = C.17.平行板电容器两板间距为4cm ,带电5.0×10-8C ,板间电场强度为4.5×104N /C ,则其电容C = F ,若保持其他条件不变而使两板正对面积减为原来的1/4,则其电容变为 .1.下列关于电容器和电容的说法中,正确的是( )A.根据C=Q/U可知,电容器的电容与其所带电荷量成正比,跟两板间的电压成反比B.对于确定的电容器,其所带的电荷量与两板间的电压(小于击穿电压且不为零)成正比C.无论电容器的电压如何变化(小于击穿电压且不为零),它所带的电荷量与电压比值恒定不变D.电容器的电容是表示电容器容纳电荷本领的物理量,其大小与加在两板上的电压无关3.电容器A的电容比电容器B的电容大,这表明()A.A所带的电荷量比B多B.A比B有更大的容纳电荷的本领C.A的体积比B大D.两电容器的电压都改变1 V时,A的电荷量改变比B的大4.关于电容器的充放电,下列说法中正确的是( ) A.充放电过程中外电路有瞬间电流B.充放电过程中外电路有恒定电流C.充电过程中电源提供的电能全部转化为内能D.放电过程中电容器中的电场能逐渐减小5.一平行板电容器始终与电池相连,现将一块均匀的电介质板插进电容器恰好充满两极板间的空间,与未插电介质时相比( ).A.电容器所带的电荷量增大B.电容器的电容增大C.两极板间各处电场强度减小D.两极板间的电势差减小6.下列关于电容器的说法中,正确的是( ).A.电容越大的电容器,带电荷量也一定越多B.电容器不带电时,其电容为零C.由C=Q/U可知,C不变时,只要Q不断增加,则U可无限制地增大D.电容器的电容跟它是否带电无关7.一个电容器的规格是“10µF、50V”则( ).A.这个电容器加上50V电压时,电容量才是10µFB.这个电容器的最大电容量为10µF ,带电荷量较少时,电容量小于10µFC.这个电容器上加的电压不能低于50VD.这个电容器的电容量总等于10µF平行板电容器3.本节展示了两个关于电容器电容的公式:C =U Q 和C =kd 4S πε。

关于它们的说法,正确的是( )A .从C = UQ 可以看出,电容的大小取决于带电量和电压 B .从C =kd4S πε可以看出,电容的大小取决于电介质的种类、导体的形状和两位置关系 C .它们都适用于各种电容器D .C = U Q 是适用于各种电容器的定义式,C =kd4S πε是只适用于平行板电容器的决定式5.有两个平行板电容器,它们的电容之比为5∶4,它们的带电荷量之比为5∶1,两极板间距离之比为4∶3,则两极板间电压之比和电场强度之比分别为( ).A .4∶1 1∶3B .1∶4 3∶1C .4∶1 3∶1D .4∶1 4∶32.A 对于水平放置的平行板电容器,下列说法正确的是( )A.将两极板的间距加大,电容将增大B.将两极板平行错开,使正对面积减小,电容将减小C.在下板的内表面上放置一面积和极板相等、厚度小于极板间距的陶瓷板,电容将增大D.在下板的内表面上放置一面积和极板相等、厚度小于极板间距的铝板,电容将增大电源电压和电量不变的情况电压不变的情况5.连接在电源两极板上的平行板电容器,当两极板间的距离减小时,电容器的电容C将 ,带电量Q 将 ,电势差U 将 ,极板间的电场强度E 将 (以上四空均填“增大”、“减小”或“不变”)。

6.如图所示,有一个由电池、电阻和电容器组成的电路,当把电容器的两块极板错开一定位置时,在错开的过程中( )A .电容器C 的电容减小B .电容器C 的电量不变C .电阻R 上有方向向左的电流D .电阻R 上有方向向右的电流8、如图所示,平行板电容器与电池相连,当二极板间距离减小后,则二板间的电压U 和电场强度E ,电容器电容C 及电量Q 与原来相比[ ]。

A .U 不变,E 不变,C 不变,Q 不变B .U 不变,E 变小,C 变小,Q 变小C .U 不变,E 变大,C 变大,Q 变大D .U 不变,E 不变,C 变大,Q 变小3.连接在电源两极上的平行板电容器,当两极板间距离减小时 ( ).A .电容器的电容C 变大B .电容器极板的带电荷量变大C .电容器两极板间的电势差U 变大D .电容器两极板间的电场强度E 变大 电量不变的情况7.如图所示,一平行板电容器充电后与电源断开,正极板接地,在两极板间有一个正点电荷固定在P 点。

若用E 表示两极板间的电压、E 表示极板间的场强、ε表示正点电荷的电势能,并令负极板保持不动,而将正极板向下移到图中的虚线位置,则( )A .E 增大,U 减小B .E 不变,U 增大C .E 增大,ε减小D .U 增大,ε增大10、如图所示,把电容为C 的电容器接在电压为U 的电路中,讨论在下列情况下,电容器的电容、带电量和电势差的变化(1)接通S ,使电容器的两极板间距离减为原来的一半(2)S 接通后再断开,使电容器两极板的正对面积减为原来的一半18.如图l —7—10所示,平行放置的金屑板A 、B 组成一只平行板电容器,对以下两种情况:(1)保持开关S 闭合,使A 板向右平移错开一些;(2)S 闭合后再断开,然后使A 板向上平移拉开些.讨论电容器两扳间的电势差U 、电荷量Q 、板间场强E 的变化情况.8.如图1—7—7所示,先接通S 使电容器充电,然后断开S .当增大两极板间距离时,电容器所带电荷量Q 、电容C 、两板间电势差U ,电容器两极板间场强E 的变化情况是( )A .Q 变小,C 不变,U 不变,E 变小B .Q 变小,C 变小,U 不变,E 不变C .Q 不变,C 变小,U 变大,E 不变D .Q 不变,C 变小,U 变小,E 变小5.B 平行板电容器保持与直流电源两极连接,充电平衡后,两极板间的电压是U ,充电荷量为Q ,两极板间场强为E ,电容为C 现将两极板间距离减小,则引起变化的情况是( )A .Q 变大B .C 变大 C .E 不变D .U 变小6.B 上题中,如果电容器充电平衡后与电源断开.将两板间距离减小,引起变化情况是( )A .Q 变大B .C 变大 C .E 不变D .U 变小8.B 电容器两极板间电压一定,若正极板不动,将负极板远离正极板移动,则极板间某一给定的点与负极板间的电势差将( )A .变大B .变小C .不变D .以上结论均有可能验电器的作用和理解图l —7—10图l —7—74.右图中展示了研究平行板电容器电容的实验。

电容器充电后与电源断开,电量Q 将不变,与电容器相连的静电计用来测量电容器的 。

在常见的电介质中,由于空气的 是最小的,当插入其它的电介质板时,电容器的电容将(填“增大”、“减小”或“不变”),于是我们发现,静电计指针偏角 (填“增大”、“减小”或“不变”)。

9、如图所示,当平行板电容器带电后,静电计的指针偏转一定角度若不改变A 、B 两极板带的电量而减少两极板间的距离,同时在两极板间插入电介质,那么静电计指针的偏转角度[ ]A 一定减小B 一定增大C 一定不变D 可能不变4.用控制变量法,可以研究影响平行板电容器电容的因素(如图1-8-9所示).设两极板正对面积为S ,极板间的距离为d ,静电计指针偏角为θ.实验中,极板所带电荷量不变,若( ). A .保持S 不变,增大d ,则θ变大B .保持S 不变,增大d ,则θ变小C .保持d 不变,减小S ,则θ变小D .保持d 不变,减小S ,则θ不变1.用控制变量法,可以研究影响平行板电容器的因素(如图)。

设两极板正对面积为S,极板间的距离为d,静电计指针偏角为θ。

实验中,极板所带电荷量不变,若A. 保持S 不变,增大d ,则θ变大B. 保持S 不变,增大d ,则θ变小C. 保持d 不变,增大S ,则θ变小D. 保持d 不变,增大S ,则θ不变9.B 在如图所示的实验装置中,平行板电容器的极板A与一灵敏的静电计相接,极板B 接地.若极板B 稍向上移动一点,由观察到的静电计指针变化做出平行板电容器电容变小的结论的依据是( )A .两极板间的电压不变,极板上的电荷量变小B .两极板间的电压不变,极板上的电荷量变大C .极板上的电荷量几乎不变,两极板间的电压变大D .极板上的电荷量几乎不变,两极板间的电压变小关于电量的变化和电流流动6.传感器是一种采集信息的重要器件,如图1-8-10所示的是一种测定压力的电容式传感器,当待测压力F 作用于可动膜片电极上时,以下说法中正确的是( ).A .若F 向上压膜片电极,电路中有从a 到b 的电流B .若F 向上压膜片电极,电路中有从b 到a 的电流C .若F 向上压膜片电极,电路中不会出现电流D .若电流表有示数,则说明压力F 发生变化11、传感器是一种采集信息的重要器件.如图1—7-13所示是一种测定压力的电容式传感器,A 为固定电极,B 为可动电极,组成一个电容大小可变的电容器.可动电极两端固定,当待测压力施加在可动电极上时,可动电极发生形变,从而改变了电容器的电容.现将此电容式传感器与零刻度在中央的灵敏电流表和电源串联成闭合电路,已知电流从电流表正接线柱流入时指针向右偏转.当待测压力增大时,以下说法正确的是: ( )A.电容器的电容将减小B.电容器的电荷量将增加C.灵敏电流表的指针向左偏D.灵敏电流表的指针向右偏 13 .图1—7—15所示是一个由电池、电阻R 与平行板电容器组成的串联电路.在增大电容器两极板间距离的过程中 ( )A .电阻R 中没有电流B .电容器的电容变小C .电阻R 中有从a 流向b 的电流D .电阻R 中有从b 流向a 的电流7.B 如图所示的电路中,电容器的两极板始终和电源相连,若将两极板间的距离增大,电路中将出现的情况是( )A .有电流流动,方向从a 顺时针流向bB .有电流流动,方向从b 逆时针流向aC .无电流流动D .无法判断19.如图1—7—11中.下列几种电路情况中有无电流?若有电流,电阻R 上电流方向如何?①合上开关S 瞬间;图l —7—15图l —7—13②合上S后又将电容器C的两板距离增大.8.如图1-8-12所示,C为中间插有电介质的电容器,a和b为其两极板,a板接地;P和Q为两竖直放置的平行金属板,在两板间用绝缘线悬挂一带电小球;P板与b板用导线相连,Q板接地.开始时悬线静止在竖直方向,在b板带电后,悬线偏转了α角度.在以下方法中,能使悬线的偏角α变大的是( ).A.缩小a、b间的距离B.加大a、b间的距离C.取出a、b两极板间的电介质D.换一块形状大小相同、介电常数更大的电介质12.平行板电容器的两极板A、B接于电池两极,一个带正电小球悬挂在电容器内部,闭合开关S,电容器充电,这时悬线偏离竖直方向夹角为θ,如图1—7—14所示.那么( )A.保持开关S闭合,带正电的A板向B板靠近,则θ增大B.保持开关S闭合,带正电的A板向B板靠近,则θ椤不变C.开关S断开,带正电的A板向B板靠近,则θ增大D.开关S断开,带正电的A板向B板靠近,则θ不变图l—7—14带点粒子在电极板中的运动和趋势9.如图1-8-13所示,已知平行板电容器两极板间距离d =4 mm ,充电后两极板电势差为120 V .A 板带正电,若它的电容为3 μF ,且P 到A 板距离为1 mm.求:(1)每一板的带电荷量;(2)一个电子在P 点具有的电势能;(3)一个电子从B 板出发到A 板获得的动能;(4)两板间的电场强度.10.如图1-8-14所示,一平行板电容器跟一电源相接,当S 闭合时,平行板电容器极板A 、B 间的一带电液滴恰好静止.若将两板间距离增大为原来的两倍,那么液滴的运动状态如何变化?若先将S 断开,再将两板间距离增大为原来的两倍,液滴的运动状态又将如何变化?14.如图1—7—16所示,两平行金属板水平放置并接到电源上,一个带电微粒P 位于两板间恰好平衡,现用外力将P 固定住,然后使两板各绕其中点转过α角,如图虚线所示,再撤去外力,则带电微粒P 在两板间 ( )A .保持静止B .水平向左做直线运动C .向右下方运动D .不知α角的值无法确定P 的运动状态2、一平行板电容器充电后与电源断开,负极板接地,在两极板间有一正电荷(电量很小)固定在P 点,如图5所示,以E 表示两极板间的场强,U 表示电容器的电压,W 表示正电荷在P 点的电势能,若保持负极板不动,将正极板移到图中虚线所示的位置,则A.U 变小,E 不变. B .E 变大,W 变大C .U 变小,W 变大D .U 不变,W 不变。

相关文档
最新文档