人教版初中数学九年级下册第24章圆第一课时圆的有关性质复习教案

合集下载

人教版九年级数学上册教案:第24章圆》24.1圆的有关性质

人教版九年级数学上册教案:第24章圆》24.1圆的有关性质
3.设计更多具有挑战性的问题和实践活动,激发学生的兴趣和探究欲望。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了圆的基本概念、重要性质和实际应用。同时,我们也通过实践活动和小组讨论加深了对圆的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的教学过程中,我发现同学们对圆的基本概念和性质掌握得还算不错。大家在讨论和实践活动中都表现得挺积极的,这让我感到很欣慰。不过,我也注意到在讲解重点和难点时,有些同学似乎还存在一定的困惑。
首先,关于圆的性质,特别是切线与半径垂直这一性质,我觉得我还需要找到更直观、易懂的方法来解释。可能通过动画或者实物演示,能够让学生更直观地理解这一概念。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解圆的基本概念。圆是平面上所有与给定点距离相等的点的集合。它是几何图形中最基本的图形之一,具有很多独特的性质和应用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了圆在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调圆的性质和弧、弦、圆心角之间的关系这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
e.圆的内接四边形的对角互补;
f.圆的内接多边形中,边数越多,面积越大,当边数趋于无穷时,面积趋于圆的面积。
3.弧、弦、圆心角之间的关系。

24.4圆复习教案

24.4圆复习教案

第24章圆小结与复习教学目标知识技能梳理本单元知识,使学生全面理解本章知识,提高学生逻辑思维能力和分析解决问题的能力.过程与方法重视渗透数学思想与方法,进一步培养推理能力.情感态度价值观培养学生对数学的好奇心与求知欲,养成质疑和独立思考的学习习惯,感受知识的实际应用价值,同时加强学生的思维意识.重难点、关键重点:垂径定理及推论、圆周角定理及推论,切线的性质与判定,正多边形的有关计算.难点:几何知识的综合应用.关键:抓住基础知识进行复习,并且注意将圆的有关知识与其他知识进行联系。

教学准备教师准备:制作课件,精选习题学生准备:写一份本章知识结构图.教学过程知识网络图表∙【师生共识】1.平分弦(不是直径)的直径垂直于弦,•并且平分弦所对的两条弧及其运用.2.在同圆或等圆中,相等的圆心角所对的弧相等,•所对的弦也相等及其运用.3.在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弧所对的圆心角的一半及其运用.4.半圆(或直径)所对的圆周角是直角,90•°的圆周角所对的弦是直径及其运用.5.不在同一直线上的三个点确定一个圆.6.直线L和⊙O相交⇔d<r;直线L和圆相切⇔d=r;直线L和⊙O相离⇔d>r及其运用.7.圆的切线垂直于过切点的半径及其运用.8.•经过半径的外端并且垂直于这条半径的直线是圆的切线并利用它解决一些具体问题.9.从圆外一点可以引圆的两条切线,它们的切线长相等,•这一点和圆心的连线平分两条切线的夹角及其运用.10.两圆的位置关系:d与r1和r2之间的关系:外离⇔d>r1+r2;外切⇔d=r1+r2;相交⇔│r2-r1│<d<r1+r2;内切⇔d=│r1-r2│;内含⇔d<│r2-r1│.11.正多边形和圆中的半径R、边心距r、中心角θ之间的等量关系并应用这个等量关系解决具体题目.12.n °的圆心角所对的弧长为L=180n R π,n °的圆心角的扇形面积是S 扇形=2360n R π及其运用这两个公式进行计算.13.圆锥的侧面积和全面积的计算.一、 范例点击例1:例⊙O 的半径为10cm ,弦AB ∥CD ,AB=16,CD=12,则AB 、CD 间的距离是__________ . 例2:如图,AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到点C,使DC=BD,连接AC 交⊙O 与点F.(1)AB 与AC 的大小有什么关系?为什么?(2)按角的大小分类, 请你判断△ABC 属于哪一类三角形, 并说明理由解::(1)方法1 连接DO. ∵OD 是△ABC 的中位线,∴DO ∥CA.∵∠ODB =∠C ,∴OD =BO ∴∠OBD =∠ODB ,∴∠OBD =∠ACB , ∴AB =AC方法2 连接AD ,∵AB 是⊙O 的直径,∴AD ⊥BC , ∵BD =CD ,∴AB =AC. 方法3 连接DO. ∵OD 是△ABC 的中位线, ∴OD=ACOB=OD=AB ∴AB=AC(2) 连接AD ,∵AB 是⊙O 的直径,∴∠ADB =90° ∴∠B <∠ADB =90°.∠C <∠ADB =90°. ∴∠B 、∠C 为锐角.∵AC 和⊙O 交于点F ,连接BF , ∴∠A <∠BFC =90°. ∴△ABC 为锐角三角形例3:已知:如图,△ABC 中,AC =BC ,以BC 为直径的⊙O 交AB 于点D ,过点D 作DE ⊥AC 于点E ,交BC 的延长线于点F .求证:(1)AD =BD ;(2)DF 是⊙O 的切线.OFDCBA例4.如图,在矩形ABCD 中,AB=20cm ,BC=4cm ,点p 从A 开始折线A ——B ——C ——D 以4cm/秒的 速度 移动,点Q 从C 开始沿CD 边以1cm/秒的速度移动,如果点P 、Q 分别从A 、C 同时出发,当其中一点到达D 时,另一点也随之停止运动,设运动的时间t (秒)(1)t 为何值时,四边形APQD 为矩形/(2)如图(2),如果⊙P 和⊙Q 的半径都是2cm ,那么t 为何值时, ⊙P 和⊙Q 外切?【活动方略】学生独立思考、独立解题. 教师巡视、指导,并选取两名学生上台书写解答过程(或用投影仪展示学生的解答过程)【设计意图】为学生提供实际演练的机会,加强对已学知识的复习并检查对新知识的掌握情况.二、 随堂巩固课本P130 复习题24 第1、3、6、8、9、11、12、14、15题三、 小结作业1.问题:谈一谈本节课自己的收获和感受?2.作业:课本P130 复习题24 第2、4、5、7、10、13题 【活动方略】教师引导学生归纳小结,学生反思学习和解决问题的过程. 学生独立完成作业,教师批改、总结.【设计意图】通过归纳总结,课外作业,使学生优化概念,内化知识。

九年级数学《圆的基本性质》复习课教案

九年级数学《圆的基本性质》复习课教案

九年级数学《圆的基本性质》复习课教案教学目标:熟悉本章所有的定理。

教学重点:圆中有关的定理教学难点:圆中有关的定理的应用教学方法:谈话法教学辅助:多媒体教学过程:1、2、在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆。

固定的端点O叫做圆心,线段OA叫做半径,以点O为圆心的圆,记作☉O,读作“圆O3、篮球是圆吗?–圆必须在一个平面内?以3cm为半径画圆,能画多少个??以点O为圆心画圆,能画多少个??由此,你发现半径和圆心分别有什么作用?–半径确定圆的大小;圆心确定圆的位置?圆是“圆周”还是“圆面”?–圆是一条封闭曲线?圆周上的点与圆心有什么关系?4、点与圆的位置关系?圆是到定点(圆心)的距离等于定长(半径)的点的集合。

?圆的内部是到圆心的距离小于半径的点的集合。

?圆的外部是到圆心的距离大于半径的点的集合。

?由此,你发现点与圆的位置关系是由什么来决定的呢?5、圆的有关性质思考:确定一条直线的条件是什么?类比联想:是否也存在由几个点确定一个圆呢?讨论:经过一个点,能作出多少个圆?经过两个点,如何作圆,能作多少个?经过三个点,如何作圆,能作多少个?6、经过三角形的三个顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,三角形叫做圆的内接三角形。

7、垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

?如图,P为⊙O的弦BA延长线上一点,PA=AB=2,PO =5,求⊙O的半径。

?关于弦的问题,常常需要过圆心作弦的垂线段,这是一条非常重要的辅助线。

?圆心到弦的距离、半径、弦长构成直角三角形,便将问题转化为直角三角形的问题。

8、(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦并且平分弦所对的另一条弧。

圆的两条平行弦所夹的弧相等9、圆的性质?圆是轴对称图形,每一条直径所在的直线都是对称轴。

人教版九年级数学24章《圆》全章教案

人教版九年级数学24章《圆》全章教案

人教版九年级数学24章《圆》全章教案课时计划第9周第24课(章、单元)第1节第 1课时2014 年10月29日课时计划第9周第24课(章、单元)第1节第2课时2014 年10月30日课时计划第9周第24课(章、单元)第1节第3课时2014 年10月31日课时计划第10周第24课(章、单元)第1节第 4课时2014 年11月3日课时计划第10周第24课(章、单元)第2节第 1课时2014 年11月5日课时计划第10周第24课(章、单元)第2节第 2 课时2014 年11月6日例1、已知:AB是⊙O的直径,∠ABT=45°,AT=AB.求证:AT是⊙的切线.例2、如图9,AB是⊙O的直径,点D在AB的延长线上,且BD=OB,点C在⊙O上,∠CAB=30°,求证:DC是⊙O的切线.例3、如图,BC是⊙O的直径,A是弦BD延长线上一点,切线DE平分AC于E,求证:AC是⊙O的切线四、练习1.已知⊙O的半径为5cm,点O到直线a的距离为3cm,则⊙O与直线a的位置关系是课时计划第11周第 24课(章、单元)第2节第 3课时2014 年11月12日角形三条角平分线的交点)思考:一张三角形的铁皮,如何在它上面截下一块圆形的用料,并且使圆的面积尽可能大呢?四、运用举例:例1:已知:在△ABC中,BC=14,AC=9,AB=13,它的内切圆分别和BC、AC、AB切于点D、E、F,求AF、BD和CE的长。

解:(略)例2:直角三角形的两直角边分别是5cm, 12cm 则其内切圆的半径为______。

五、练习:P100 练习 P101 1六、小结:复述本节所学内容板书设计:切线长定理1、切线长定义:经过圆外一点的圆的切线上,这点和切点之间线段的长,叫做这点到圆的切线长。

2、切线长定理:从圆外一点可以引圆的两条切课时计划第 11周第24课(章、单元)第2节第4课时2014 年11月13日课时计划第11周第24课(章、单元)第3节第1课时2014 年11月14日课时计划第12周第24课(章、单元)第4节第 1课时2014 年11月17日课 时 计 划第12周第 24课(章、单元)第4节 第2课时2014 年11月19日课时计划第12周第 24课(章、单元)第5节第 1课时2014 年11月20日为半圆上一点,的垂线CP,P为垂足,于点F.求证:AD=CD.3、在Rt△ABC中,∠C=90°,AC=3 cm,BC=4 cm,以点C为圆心,2.4 cm为半径画圆.求(1)AB的中点D与⊙C的位置关系;(2)直线AB 与⊙C的位置关系.图24-17。

九年级数学第二十四章——圆(课时教案、学案)人教版

九年级数学第二十四章——圆(课时教案、学案)人教版

24.1 圆(教案)一.内容及其解析1.内容:本节主要内容是圆的概念以及与圆有关的一些性质,本节又分为四个小节:第一小节的主要内容是圆的定义及一些相关概念;第二小节是结合研究圆的对称性得到了垂径定律及有关的结论;第三小节是从圆的旋转不变性出发,推出了弧、弦、圆心角之间的相等关系。

第四小节主要介绍圆周角的概念、圆周角定律及推论。

是今后进一步学习圆的相关内容的基础。

2.解析:与圆有关的概念比较多,对于这些概念,教学时要引导学生分析它们之间的区别与联系。

如直径和弦———直径是弦,是经过圆心的特殊弦,但弦不一定是直径;又如弧与尤弧、劣弧———尤弧、劣弧都是弧但尤弧大于半圆,劣弧小于半圆。

垂径定理可以帮助学生分析定理的题设和结论,并可将定律改述为:一条直线若满足:①过圆心;②垂直于弦,则可推出:③平分弦;④平分弦所对的尤弧;⑤平分弦所对的劣弧,这样可以加深学生对定律的理解。

弧、弦、圆心角之间的相等关系是论证同圆或等圆中弧相等、角相等、线段线段的主要依据。

圆周角有两个特征:①角的顶点在圆上;②角的两边都与圆相交,二者缺一不可。

圆周角定理的证明,分三种情况讨论。

在三种情况中,第一种情况是特殊情况,是证明的基础,其他两种情况都可以转化为第一种情况来解决,转化的条件是添加以角的顶点为端的直径为辅助线这种由特殊到一般的思想方法,应当让学生注意和掌握。

二.目标及其解析1.目标①理解圆的定义,理解弧、弦、半圆、直径等有关概念。

②使学生理解圆的轴对称性,掌握垂径定理及其他结论,并学会应用这些结论解决一些有关证明、计算和作图问题。

③使学生掌握圆的旋转不变性,掌握圆心角的概念以及弧、弦、圆心角之间的相等关系并能运用这些关系解决有关的证明、计算问题。

④理解圆周角的概念,掌握圆周角定理及其推论并运用它们进行论证和计算。

通过圆周角定理的证明使学生了解分情况证明命题的思想和方法。

2.解析①向学生介绍“圆是到定点的距离等于定长的点的集合”.。

2020学年数学九年级下册第24章圆24.2圆的基本性质教案

2020学年数学九年级下册第24章圆24.2圆的基本性质教案

24.2 圆的基本性质第1课时圆的概念和性质┃教学过程设计┃的信息写下来.教师点拨,学生看教材写:圆弧:圆上任意两点间的部分叫做圆弧,简称弧.弦:连接圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径.如右图,以A、B为端点的弧记作AB,读作“圆弧AB”或“弧AB”;线段AB是⊙O的一条弦,弦CD是⊙O的一条直径.大于半圆的弧称为优弧,小于半圆的弧称为劣弧.圆的任意一条直径的两个端点分圆成两条弧,每一条弧叫半圆弧,简称半圆.半圆是弧,但弧不一定是半圆;半圆既不是劣弧,也不是优弧.直径是弦,但弦不一定是直径.教师还要说明弓形,等圆,等弧的定义.通过小组交流,教师点拨,实现知识系统化.三、运用新知,解决问题1.教材练习第2题.2.教材练习第3题.主要是通过练习题来巩固学生所学习的知识,提高小组合作能力和水平.四、课堂小结,提炼观点今天我们学习了什么知识?你有哪些收获?还有什么问题吗?通过简短的总结,让学生对本节知识形成整体框架.五、布置作业,巩固提升教材习题24.2第1题.加深认识,深化提高.┃教学小结┃24.2 圆的基本性质第2课时垂径定理及其逆定理┃教学过程设计┃求证:AE=EB,»AD=»DB (或»AC=»CB) 分析:如图,连接OA、OB,则OA=OB.可通过证明Rt△OAE和Rt△OBE全等,结合轴对称证明.3.探究活动2:垂径定理的推论.你能写出垂径定理的逆命题吗?这个逆命题正确吗?平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.若AB是⊙O的一条弦,且AP=BP,过点P作直径CD,则AB⊥CD,»AC=»BC, »AD=»BD. 思考:平分弧的直径垂直于平分这条弧所对的弦吗?教师引导学生先写出垂径定理的逆命题,再判断出此逆命题是正确的.根据逆命题画出图形,写出已知,求证.引导学生仿照垂径定理的证明来证明这个命学会用类比的方法解决问题,掌握垂径定理的逆定理.会利用垂径定理解决问题.┃教学小结┃24.2 圆的基本性质第3课时弦、弧、圆心角、弦心距间的关系【教学目标】┃教学过程设计┃┃教学小结┃24.2 圆的基本性质第4课时圆的确定┃教学过程设计┃┃教学小结┃。

人教版初中数学九年级下册第24章圆第一课时圆的有关性质复习教案

人教版初中数学九年级下册第24章圆第一课时圆的有关性质复习教案
(1)求证:△POD≌△ABO;
(2)若直线l:y=kx +b经过圆心P和点D,求直线l的解析式.
第1、2题学生课下独立完成,延续课堂.
第3题课下交流讨论有选择性完成.
以生为本,正视学生学习能力、认知水平等个体差异,让不同的学生都能学有所得,学有所成,体验学习带来的成功与快乐.
三、【板书设计】
易错点总结:
(3)如果∠AOB=∠COD,那么________,______.
(4)如果AB=CD,OE⊥AB于E,OF⊥CD于F,OE与OF相等吗?为什么?
第2题图第3题图
通过回顾练习,生总结归纳所用知识点、方法及规律,然后组内交流,补充完善对问题的认识和方法.




【自主探究】
例(1)如图,AB是⊙O直径,C是⊙O上一点,OD是半径,且OD//AC。求证:CD=BD
师:首先这个四边形已经是一个什么四边形?——矩形.
那再证一个什么条件,矩形就能成为正方形了?
由弧AD=弧BD,你能得到哪些结论?由弧你想到了什么?
生1:连接OD,
D是弧AB中点
DF=CF
矩形CFDG是正方形
生2:连接AD,BD
弧AD=弧BD AD=BD
矩形CFDG是正方形
师:在圆中,我们不要忽视弧的作用,它是弦与角转化的桥梁.
教师展示问题,学生有针对性独立思考解答,
完成后师生间展评.




1.1.知识结构图
2.本这节课你收获了什么?
师生梳理本课的知识点及及注意问——归结本节课所复习的内容,梳理知识,构建思维导图,凸显数学思想方法.
对内容的升华理解认识


一、必做题:

人教版九年级上册数学教案:第24章《圆的复习》教学设计

人教版九年级上册数学教案:第24章《圆的复习》教学设计

第24章《圆的复习》教学设计一、内容和内容解析1.内容对本章内容进行梳理总结建立知识体系,综合应用本章知识解决问题.2.内容解析圆是继三角形、四边形等基本图形后的又一个重要内容,在生活中有着广泛的应用.圆是平面几何中最基本的图形之一,在几何中有着重要的地位.在本章内容的学习过程中,需要学生通过观察、测量、实验、归纳、对比、类比等方法发现图形的性质.同时,还要注意体会通过“推理”获得数学结论的方法,培养言之有据的习惯和有条理地思考、表达的能力.本课的教学重点:复习与圆有关的知识,建立本章知识结构.二、目标和目标解析1.目标(1)复习本章的重点内容,整理本章知识,形成知识体系,体会利用圆的知识综合解决问题的思路和方法.(2)进一步发展推理能力,能够具备有条理地思考和表达的能力.2.目标解析达成目标(1)的标志是:通过复习本章的主要内容,理解圆的有关知识,体会用圆的知识解决问题的思路和方法等.并能结合知识体系的构建过程,研究几何问题的一般思路和方法.达成目标(2)的标志是:学生能够在较复杂的问题情境中应用本章所学的图形的性质和判定方法进行推理,解决问题.三、教学问题诊断分析学生在前面具体内容的学习中已经接触过应用本章所学习的知识进行推理,这就要学生在复习课中既要对所学的知识能够重新回忆出来,又要在原有的基础上进行知识的建构,建立起不同知识之间的内在联系,从而建立起本章的知识结构,形成知识体系.本节课教学难点:本章知识点间的内在联系,知识体系的建构.四、教学过程设计1.知识梳理问题1 同学们我们整理一下本章所学的主要知识,请大家说一说能发现它们之间的联系吗?师生活动:教师组织学生说出本章的知识结构图,然后展示部分学生画的知识结构图,并请这些学生简要说明自己所画知识结构图.最后,教师出示课本上的知识结构图.设计意图:教师展示本章的知识结构图,主要是让他们自己能够主动建构本章的知识结构,形成知识体系,这有利于提高学生对本章知识的整体把握.然后,教师出示本章知识结构,主要是帮助学生形成正确的、全面的知识结构.通过这样方式,突破本节课的难点.二、主要定理:问题2 在圆的这一章我们学了一些定理,下面我们一起回顾一下:1、在同圆或等圆中,相等的圆心角,等弧,等弦之间的关系是什么?2、垂径定理的主要内容是什么?推论?注意什么?2、圆周角定理内容是什么?3、点和圆有怎样的位置关系?直线和圆呢?圆和圆呢?怎样判断这些位置关系呢?4、圆的切线有什么性质?如何判断一条直线是圆的切线?.师生活动:教师出示问题,引导学生回顾本章所学的内容,梳理本章知识.学生先独立思考这些问题,然后,教师与其他学生一起交流,设计意图:通过4个问题,让学生对本章的知识点做一个梳理,为下一步建立本章的知识结构体系做好铺垫.三、基本运用:典型例题(2017年牡丹江中考)问题1、如图,在⊙O中,弧AC=弧CB,CD ⊥OA于D,CE ⊥OB于E,求证:AD=BE证明:∵AC=BC,∴∠AOC= ∠BOC.∵CD⊥OA,CE⊥OB,∴∠CDO= ∠CEO=90°∵CO=CO∴△COD≌△COE∴DO=EO∵AO=BO∴AD=BE师生活动:学生独立完成,教师请学生上台讲解自己的解题思路和做法,其他同学补充.教师强调解题格式,展示学生中书写规范的.最后教师引导学生总结本题所用数学知识和思想方法.设计意图:通过本题,学生要会详细的证明过程.例:如图所示,OB为⊙O的半径,弦CD⊥OB于点E,且与AB相较于点F,点C是弧AB的中点,求证:CF=BF证明:∵CD ⊥OB,OB为⊙O的半径∴BD=BC∵C为弧AB的中点,∴弧AC=弧∴AC=BD∴ ∠ABC= ∠BCD;∴CF=BF变式:.已知,如图,AB是⊙O的直径,C为AE 的中点,CD⊥AB于D,交AE于F。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆的有关性质复习教案一、【教材分析】
二、【教学流程】
知识回顾2.如图:在⊙O中,
⑴若MN⊥AB,MN为直径则________,_________,
________;
⑵若AC=BC,MN为直径,AB不是直径,则________,
_________,________;
⑶若MN⊥AB,AC=BC则______,_______,______;
⑷若AM BM
=,MN为直径,则________,
_________,________;
3.已知:如图,AB、CD是⊙O的两条弦:
(1)如果AB=CD,那么 _______,_______.
(2)如果AB CD
=那么 _________,______.
(3)如果∠AOB=∠COD,那么 ________,______.
(4)如果AB=CD,OE⊥AB于E,OF⊥CD于F,OE与OF
相等吗为什么
第2题图第3题图
习,生总结归
纳所用知识
点、方法及规
律,然后组内
交流,补充完
善对问题的认
识和方法.
【自主探究】
例(1)如图,AB是⊙O直
径,C是⊙O上一点,OD是
A
D
C
B
O
E
F
M
N
B
A
C
·O
综合运用半径,且
OD OD
AC//
COD
ACO
BOD
A∠
=


=

∴,
OC
OA=
∴ACO
A∠
=

DOB
COD∠
=

∴BD
CD=
∴有其他证明
方法吗
组二:连接AD,OD
AC//
,OA=OD

=

∴CAD OAD
ODA∠
=
∴弧CD=弧BD∴CD=BD
师:由圆周角相等,我们可以得到弧相等(或
圆心角相等),从而得到弦相等.这种证法利
用了圆心角、圆周角与弧的关系.在同圆或等
圆中,同弧或等弧所对的圆周角相等,都等于
所对圆心角的一半;相等的圆周角所对的弧相
等.这样,证弦相等,又多了两条途径:可以
考虑去证弧相等,也可以考虑去证圆周角相
(学生分组交
流,一会后学
生汇报成果.)
从不同
的方法
中进行
知识整

等.
师:还有其他方法吗
组三:连接BC,
AB是直径0
90
=

∴ACB
AC
OD
BC⊥
∴∴
垂径定理及逆定理体现了直径、弧、弦三种量之间的关系:直径垂直弦、直径平分弦、直径平分弧,这三个结论中,只要有一个成立,则另两个也同时成立.但要注意,若条件是直径平分弦,则这条弦必须不是直径,另两个结论才会成立.垂径定理及逆定理体现的是圆的轴对称性.
而在圆中,要构造直角,大家要想到直径所对的圆周(边总结,边
在黑板上抽离
基本图形)
(同时在黑板
上画出这个基
本图形)
从不同
的方法
中进行
知识整

角是直角;而0
90的圆周角所对的弦是直径。

连直径,作直角是圆中常添的辅助线方法。

在圆中构造直角,还常作弦心距,弦心距、弦的一半、半径构成一个直角三角形,这在计算题中用得较多.
师:还有其他方法吗
组四:延长DO交⊙O于点E,连接AE.
OD
AC//
∴弧AE=弧CD
∴AE=CD
BOD
AOE∠
=

BD
AE=
∴∴CD=BD
师:这也是圆中的一种基本图形,由弦平行,(同时在黑板上抽离这个基本图形.)
可以得到所夹弧相等。

这个结论我们书上证明过,可以证一对内错角又是圆周角相等得到. 若不添加任何辅助线,你能证明出来吗(提示:已知的相等两角A ∠、BOD ∠的度数分别与弧的度数有什么关系) 组五:A ∠ =
2
1
弧BC 的度数 BOD ∠=弧BD 的度数

2
1
弧BC =弧BD =弧CD ∴CD=BD 师:圆周角度数等于所对弧度数的一半,圆心角度数等于所对弧的度数.
(2):延长AC 、BD 交于点E ,连接BC ,请判断:下面结论中正确的是______________. ①
AB =AE ②BD =DE ③∠E =2∠EBC
④ ⑤△ECD ∽△EBA
(3)过点D 做DG ⊥AE ,垂足为G ,则四边形DGCF
从不同
的方法中进行知识整合
为什么四边形为什么
(4)移动点D位置,使点D在弧AB中点处,令点C在弧AD之间,过D做DF⊥BC,DG⊥AE,垂足为E、F,则四边形DGCF是什么四边形为什么
师:首先这个四边形已经是一个什么四边形——矩形.
那再证一个什么条件,矩形就能成为正方形了从不同的方法中进行知识整合
由弧AD =弧BD ,你能得到哪些结论由弧你想到了什么 生1:连接OD ,
D 是弧AB 中点 ∴090=∠BOD
0452
1
=∠=
∠∴BOD BCD ∴DF =CF ∴矩形CFDG 是正方形
生2:连接AD ,BD
弧AD =弧BD ∴AD =BD
090,=∠=∠∠=∠DFB AGD FBD GAD
DBF DAG ∆≅∆∴ DF DG =∴
∴矩形CFDG 是正方形
师:在圆中,我们
不要忽视弧的作用,它是弦与角转
化的桥梁.
【组内交流】
学生根据问题解决的思路和解题中所呈现的问题进行组内交流,归纳出方法、规律、技巧.
直1. 如图,A、P、B、C是圆上的四个点,∠APC=∠
CPB=60°,AP、CB的延长线相交于点D.
(1)求证:△ABC是等边三角形;
(2)若∠PAC=90°,AB=23,求PD的长.
2. 在⊙O中,直径AB=6,BC是弦,∠ABC=30°,
点P在BC上,点Q在⊙O上,且OP⊥PQ.
(1)如图(1),当PQ∥AB时,求PQ的长度;
(2)如图(2),当点P在BC上移动时,求PQ长的最
教师展示问
题,学生有针
对性独立思考
解答,
完成后师生间
展评.
P
D
C
B
A
击中考大值.
3. 如图,⊙O的半径为1,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.
(1)判断△ABC的形状:_ ;
(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;
(3)当点P位于AB

的什么位置时,
四边形APBC的面积最大求出最大
面积

善整合1.1.知识结构图














-
-
-



圆周角定理
的弧的概念
距的关系
圆心角、弦、弧、弦心
旋转不变性
垂径定理
轴对称
性质
点的轨迹
不在同一直线上的三点
定义
1
2.本这节课你收获了什么
师生梳理本课
的知识点及及
注意问——归
结本节课所复
习的内容,梳
理知识,构建
思维导图,凸
显数学思想方
法.
对内容
的升华
理解认

作业一、必做题:
1. 1. 如图,若AB是⊙O的直径,CD是⊙O的弦,
∠ABD=55°,则∠BCD的度数为( ) . A. 35°
B.45°C.55°D.75°
2. 如图,MN为⊙O的直径,A、B是⊙O上的两点,
第1、2题学生
课下独立完
成,延续课堂.
以生为
本,正
视学生
学习能
力、认
知水平
等个体
差异,
让不同
过A作AC⊥MN于点C,过B作BD⊥MN于点D,P为DC上的任意一点,若MN=20,AC=8,BD=6,则PA+PB的最小值是________.
二、选做题:
3. 如图,直径为OA的⊙P与x轴交于O、A两点,点B、C把OA三等分,连接PC并延长PC交y轴于点D(0,3).
(1)求证:△POD≌△ABO;
(2)若直线l:y=kx+b经过圆心P和点D,求直线l的解析式.第3题课下交
流讨论有选择
性完成.
的学生
都能学
有所
得,学
有所
成,体
验学习
带来的
成功与
快乐.
三、【板书设计】
四、【教后反思】。

相关文档
最新文档