波动方程
研究数学中的波动方程

波动方程是数学中一种非常重要的方程类型,用于描述波的传播和振动的现象。
波动方程的研究,不仅可以帮助我们深入理解波动现象的特性,还可以应用于各个领域,如声波、光波、电磁波等。
首先,我们来从最基本的形式开始理解波动方程。
波动方程通常描述了一个波动量随时间和空间的变化规律。
在一维情况下,波动方程可以表示为:∂²u/∂t² = c²∂²u/∂x²其中u表示波动量,t表示时间,x表示空间坐标,c表示波速。
这个方程可以直观地解释波的传播特性:当波动量u随时间t变化时,它的二阶时间导数∂²u/∂t²表示了波动量的加速度;而当u随空间x变化时,它的二阶空间导数∂²u/∂x²表示了波动量的曲率。
因此,波动方程实际上描述的是波动量在时间和空间上的变化情况。
波动方程的解决方案通常需要使用一些数学工具和技巧,比如分离变量法、拉普拉斯变换等。
这些方法可以帮助我们求解波动方程,得到波动量u关于时间和空间的函数表达式。
根据初始条件和边界条件,我们可以计算出具体的波动量分布,从而研究波的传播和振动的特性。
在实际应用中,波动方程的研究具有广泛的意义和应用价值。
例如,在声学中,波动方程可以用来描述声波的传播和振动;在光学中,波动方程可以用来描述光波的传播和干涉现象。
此外,波动方程还可以应用于地震学、天体物理学等领域,帮助我们理解地震波、天体运动等自然现象。
波动方程的研究还可以与其他科学学科相结合,形成交叉学科研究。
例如,生物学中的生物振动现象,可以通过波动方程和生物力学的相结合来进行探索和研究。
这种交叉学科的研究,有助于我们更深入地理解生物振动现象,并为相关领域的应用提供理论基础。
总之,波动方程在数学中是一个重要的方程类型,可以帮助我们深入理解波动现象的特性。
通过对波动方程的研究,我们可以求解出具体的波动量分布,并研究波的传播和振动的特性。
同时,波动方程的研究也可以应用于各个学科和领域,帮助我们更好地理解和应用波动现象。
第四章分离变量法-波动方程

2 l nπ an = ∫ ϕ ( x ) sin xdx = 0 0 l l 2 l nπ bn = ∫0ψ ( x) sin l xdx nπ a
l l 2 2 nπ nπ = xdx + ∫ l (l − x) sin xdx ∫0 x sin nπ a l l 2
2l 2l 2 nπ = sin 2 2 nπ a n π 2 2
A+ B = 0 Ae
−λl
X ''( x) + λ X ( x) = 0
X (0) = 0,
X (l ) = 0
A=B=0
−λl
X =0
+ Be −
=0
2)λ = 0 3)λ > 0
A=0
X ( x) = Ax + B
A= B=0
X =0
方程通解为
X ( x) = A cos λ x + B sin λ x
∂ 2u ∂ 2u = a2 2 , 0 < x < l, t > 0 ∂t 2 ∂x t >0 u (0, t ) = 0, u (l , t ) = 0, ∂u ( x,0) u ( x,0) = ϕ ( x), = ψ ( x), 0 ≤ x ≤ l ∂t u ( x, t ) = X ( x )T (t ) X ′′ + λX = 0 ▪分离变量
而振幅依赖于点x的位置.
ml , m = 0,1,2,⋯ 弦上位于 x = 处的点在振动过程中保持 n
不动称为节点。这种形态的振动称为驻波。
t=t0时:
nπ un ( x, t0 ) = An cos(ωnt0 − θ n ) sin x l
第六章_波动方程

一、波动方程
7.2.3 一维势垒的简单讨论 粒子在I区,具有能量E>0。各区 的势垒如下,求粒子在各区出现 的几率。
0 (0<x<x1) [I区] V=
V2>E (x1<x<x2) [II区]
0 (x>x2) [III区]
一、波动方程 列出此问题的薛定谔方程:
2 d 2u V x u Eu 2 2m dx d 2u 2m 2 V E u 2 dx
此方程比较难解,令 x,
2
2
(1)
mk 2
4
那么
d 2u 2mE mk 2 2 2 2 4 u 0 2 d
(2)
一、波动方程 令括号内第二项的常数部分为1,用λ代替括号内第一项,那么 2化简为:
d 2u 2 u 0, 2 d
波动方程
一、波动方程
第七章 波动方程
波动方程(wave equation)是一种重要的偏微分方程,主要 描述自然界中的各种的波动现象,例如声波,光波和水波。波动方 程抽象自声学,电磁学,和流体力学等领域。
历史上许多科学家,如达朗贝尔、欧拉、丹尼尔²伯努利和拉格朗日等在研 究乐器等物体中的弦振动问题时,都对波动方程理论作出过重要贡献。
px i x
所以动量px可以用算符 i 来表示。同理有 x
p y i y
pz i z
一、波动方程
那么
p p p p 2 2 2 x y z 2 2
2 2 2 2 2 x 2 y 2 z 2
波函数两边取对t的偏导
i E , t
第三章波动方程

拉普拉斯算子: 拉普拉斯算子: 1 ∂ 1 ∂ 1 ∂u ∂u ) + (sin α ∇ 2u = 2 ( r 2 r ∂r r ∂α ∂r r ⋅ sin α ∂α ∂u ∂ u ↓← = =0 ∂ α ∂β
2 1 ∂u ∂ 2 u 2 ∂u 2 ∂ u )= 2 + = 2 ( 2r +r 2 r ∂r r ∂r ∂r ∂r
13
3.2 无限大、均匀各向同性介质中的球面波
2、坐标变换和球坐标下球面纵波的传播方程解 、
已知球面纵波传播波动方程如下: 已知球面纵波传播波动方程如下: ∂ 2ϕ − VP2 ∇ 2ϕ = 0 ∂t 2 此式是直角坐标系中的波动方程, 此式是直角坐标系中的波动方程,需转换到球 坐标系中, 坐标系中,即
为了定量地描述微观粒子的状态,量子力学中引入了 为了定量地描述微观粒子的状态, 波函数,并用ψ表示。一般来讲,波函数是空间和时间 波函数, 表示。一般来讲, 的函数,并且是复函数,即ψ=ψ(x,y,z,t)。 的函数,并且是复函数,
7
无限大、 3.1 无限大、均匀各向同性介质中的平面波
一、沿任意方向传播的平面波
如果使 t −
播的波,即向震源方向传播的波,称为聚会波。聚会波只存在于t 播的波,即向震源方向传播的波,称为聚会波。聚会波只存在于t为 负值的情况,这与实际不合,则该波是不存在的。 负值的情况,这与实际不合,则该波是不存在的。
16
因此,上式又可写为: 因此,上式又可写为:
ϕ=
ϕ
1 r ) = c1 ( t − r r VP
10
无限大、均匀各向同性介质中的波动方程的解有两组。 无限大、均匀各向同性介质中的波动方程的解有两组。 第一组解: 第一组解:当 V = V p = ( λ + 2 µ ) / ρ 时,
第一章_波动方程

u ( 3) 2 x 0 y x 2u 2u 2u ( 4) 2 2 2 sin x xy y x
( 5)
2u x
2
2
3u x y
假定有垂直于x轴方向的外力存在,并设其线密度为F(x,t),则 弦段(x, x+Δx)上的外力为:
x x
x
F ( x ,t) dx
它在时间段(t, t+Δt)内的冲量为:
t x
t t x x
F ( x , t ) dx dt
数学物理方程
第一章 波动方程
于是有:
2 2 u ( x , t ) u ( x , t ) [ 2 T F ( x , t )] dx dt 0 2 t x t x t t x x
u T x
x a
k u x a
或
u u 0 x xa
数学物理方程
第一章 波动方程
§1.2 定解条件
同一类物理现象中,各个具体问题又各有其特殊性。边
界条件和初始条件反映了具体问题的特殊环境和历史,即
个性。 初始条件:够用来说明某一具体物理现象初始状态的条件。 边界条件:能够用来说明某一具体物理现象边界上的约束 情况的条件。 其他条件:能够用来说明某一具体物理现象情况的条件。
y
M'
T'
u ( x, t ) sin tan x u ( x dx, t ) sin ' tan ' x
ds
'
T
M
gds
x x dx x
数学物理方程
波动理论波动方程知识点总结

波动理论波动方程知识点总结波动方程是波动理论中的重要内容,研究波的传播和特性具有重要意义。
本文对波动方程的相关知识点进行总结,以帮助读者更好地理解和应用波动理论。
一、波动方程的基本概念波动方程是描述波的传播过程中波动量随时间和空间的变化关系的数学表达式。
一般形式为:∂²u/∂t² = v²∇²u其中,u表示波动量,t表示时间,v表示波速,∇²表示拉普拉斯算子。
二、波动方程的解法1. 分离变量法:将波动量u表示为时间和空间两个变量的乘积,将波动方程转化为两个偏微分方程,分别对时间和空间变量求解。
2. 化简为常微分方程:将波动方程应用于特定情境,通过适当的变换,将波动方程化简为常微分方程,再进行求解。
3. 利用傅里叶变换:将波动方程通过傅里叶变换或拉普拉斯变换转化为频域或复频域的代数方程,再进行求解。
三、波动方程的应用1. 声波传播:声波是由介质中的分子振动引起的机械波,通过波动方程可以描述声波在空气、水等介质中传播的特性,如声速、声强等。
2. 光波传播:光波是电磁波的一种,通过波动方程可以研究光的干涉、衍射、反射等现象,解释光的传播规律和光学器件的性质。
3. 地震波传播:地震波是地震过程中的弹性波,通过波动方程可以描述地震波在地球内部传播的规律,有助于地震监测和震害预测。
4. 电磁波传播:电磁波是由电场和磁场耦合产生的波动现象,在电磁学中应用波动方程可以研究电磁波在空间中传播的特性和应用于通信、雷达等领域。
5. 水波传播:水波是液体表面的波动现象,通过波动方程可以研究水波的传播和液面形态的变化,解释液体中的波浪、涌浪、潮汐等现象。
四、波动方程的性质和定解问题1. 唯一性:波动方程的解具有唯一性,即满足初值和边值问题的解是唯一的。
2. 叠加原理:波动方程具有线性叠加性质,一系统的波动解可以通过各个部分的波动解线性叠加而得到。
3. 边界条件:波动方程的求解需要给定适当的边界条件,例如固定端、自由端、吸收边界等,以确保解满足实际问题的物理要求。
数理方程第2章波动方程

π
2π sin x,"" l
kπ 2 π 1,cos l x, cos x,""cos l l
π
x,"
是[0, l]上的正交函数列
⎧l , m=n≠0 ⎪ l mπ nπ ⎪2 = cos cos ∫0 l x l xdx ⎨ l m = n = 0 ⎪ ⎪ ⎩0 m≠n
17
例:
2 ⎧ ∂ 2u u ∂ 2 = , t > 0, 0 < x < l a ⎪ ∂t 2 2 ∂x ⎪ ⎪ u (0, t ) = u ( l , t ) = 0, ⎨ ⎪ u ( x , 0) = x ( l − x ), ⎪ 2π x ⎪ u t ( x , 0) = sin l ⎩
kπ X k ( x) = Bk sin x l
所以定解问题的级数形式解为
u ( x, t ) = ∑ X k ( x)Tk (t )
k =1
kπ a kπ a ⎞ kπ ⎛ t + bk sin t ⎟ sin x = ∑ ⎜ ak cos l l ⎠ l k =1 ⎝ ak =Bk Ck ,bk =Bk Dk .
8π at 8π x u ( x, t ) = 3cos sin sin + 5 cos l l l l
π at
πx
23
• 其它边界条件的混合问题
2 ⎧ ∂ 2u u ∂ 2 x ∈ (0, l ), t > 0 ⎪ ∂t 2 = a ∂x 2 , ⎪ ⎪ ⎨u ( x, 0) = ϕ ( x), ut ( x, 0) = ψ ( x), x ∈ [0, l ] ⎪u (0, t ) = u (l , t ) = 0, t≥0 x x ⎪ ⎪ ⎩
波动方程

x at 0 0; 1 x at d x at / 2a; 0 x at 1 2a 1 / 2a; x at 1
%ex602; (p159) 无限长弦波动的解析解(初位移为0, 初速不为0) clear; M=100; N=80; a=1.0; L=10; T1=8; dx=L/M; dt=T1/N; x=-L:dx:L; t=0:dt:T1;[X,T]=meshgrid(x,t); xp=X+a*T; xp(find(xp<=0))=0; xp(find(xp>=1))=1; xm=X-a*T; xm(find(xm<=0))=0; xm(find(xm>=1))=1; S=(xp-xm)/(2*a); figure(1); h=plot(x,S(1,:),'linewidth',3); axis([-L L 0 .6]); set(h,'erasemode','xor'); for k=2:N+1; pause(0.01); set(h,'ydata',S(k,:)); drawnow; end;
2l Bn 2 2 cos3nπ / 7 cos4nπ / 7 nπa An 0;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
波动方程
波动方程的由来:
薛定谔有广泛的兴趣和多面手的能力,但在量子理论的研究上,他起步很晚,行进也缓慢而曲折。
1925 年,他完成了“关于爱因斯坦气体理论的研究”的论文。
这篇论文以量子论为基础,利用德布罗意关于物质粒子的波动性理论,推导出爱因斯坦玻色气体统计规律,成为薛定谔创立波动力学前夕闪亮登场的一笔。
同年11 月,薛定谔在苏黎世联邦理工学院举办了关于德布罗意论文的讲座,第一次讲座并不太令人满意,第二次讲座他拿出了波动方程,他的波动力学就此亮相。
随后,薛定谔继续研究,终于完成了波动力学论文。
他分两次寄出,第一篇投寄到《物理年鉴》杂志。
杂志编辑部收到该论文的时间是1926年1月26日,论文题目是“本征值问题的量子化”。
4 周之后,他以同样的题目发表了第二篇,接着在未来的不到半年的时间里,他一连发表了6 篇论文。
薛定谔通过力学和光学之间的哈密顿类比,不仅推出了波动方程,还进一步分析了波动力学与几何学的关系,讨论了波动方程在单电子谐振动和双原子分子理论中的应用,得到了与实验数据一致的结果。
特别值得一提的是,薛定谔以非常优雅的数学形式在力学和光学中做出类比,从中表述了量子的波动规律。
这6 篇论文创立了波动力学的完整框架,系统地回答了当时已知的各种量子现象。
薛定谔的成果令整个物理界为之震惊,并引发了与矩阵力学派之争。
1933 年,薛定谔与他的对手海森堡一起获得了诺贝尔物理学奖。