大学数学实验

合集下载

大学数学实验7差分方程

大学数学实验7差分方程

• x(k)=-p*x(k-1)-q*x(k-2); % 迭代计算
• end
exf0202
clear all n=20;
exam0202
k=(0:n)';
y1=exf0202(100, n+1,0.18);
% 给定x0, n, b,调用exf0202计算
y2=exf0202(100, n+1,0.19);
结果分析
• 自然环境下,b=0
xk axk 1 ak x0
• 人工孵化条件下 xk 1 axk b
xk ak x0 b(1 a ak1)
a k x0
b 1 ak 1 a
一阶常系数差分方程的解、平衡点及其稳定性
• 在 xk 1 axk b 中
x x • 令
k=
k+1=x得
x
b
Matlab实现
• 首先建立一个关于变量n ,r的函数
• function x=exf11(x0,n,r)
• % 建立名为exf11的函数M文件, x0,n,r 可调节
• a=1+r;
• x=x0;
% 赋初值
• for k=1:n • x(k+1)=a*x(k); 迭代计算
• end
• 在command窗口里调用exf11函数
• 代入Xk+ pXk-1 + qXk-2=0 ** 得
2 p q 0
称为差分方程的特征方程。差分方程的特征根:
1,2 p
p2 4q 2
差分方程**的解可以表为 xk c11k c22k
c1,c2 由初始条件x0,x1确定。
1,2 1, xk 0(k )
1,2 1, xk (k )

大学数学实验的内容、教学方法及开展建议

大学数学实验的内容、教学方法及开展建议

旨在培养学生的数学应用能力、创新能力和解决实际问题的能力,同 时加深学生对数学理论和方法的理解。
大学数学实验重要性
03
提升学生综合素质
促进学科交叉融合
适应社会发展需求
数学实验能够帮助学生将理论知识与实际 应用相结合,提升学生的综合素质和创新 能力。
数学实验涉及多个学科领域,有助于促进 不同学科之间的交叉融合和发展。
随着科技的不断发展,数学实验在各个领 域的应用越来越广泛,对于培养适应社会 发展需求的人才具有重要意义。
国内外发展现状与趋势
国内发展现状
国内高校逐渐重视数学实验的教 学,纷纷开设相关课程,并积极
探索有效的教学方法和手段。
国外发展现状
国外高校在数学实验教学方面具 有较高的水平,注重培养学生的 实践能力和创新能力,形成了较
实施方式
实践效果
实践表明,互动式教学法能够有效提 高学生的数学实验能力和综合素质, 培养学生的团队协作和沟通能力。
互动式教学法可以通过小组讨论、提 问、角色扮演等方式实施,以激发学 生的学习兴趣和主动性。
案例分析法在数学实验中运用
案例选择与设计
在数学实验中运用案例分析法时,应选择具有代表性的案例,并结合实验目的和内容进行 设计,以引导学生深入分析和解决问题。
案例分析过程
案例分析过程中,教师应引导学生分析案例中的数学问题和解决方法,培养学生的逻辑思 维和问题解决能力。同时,鼓励学生提出自己的见解和解决方案,以增强学生的创新意识 和实践能力。
案例总结与反思
在案例分析结束后,教师应组织学生进行总结和反思,引导学生归纳案例中的知识点和解 决方法,并思考如何将所学知识应用于实际问题中。同时,教师应对学生的表现进行评价 和反馈,以帮助学生更好地掌握数学实验技能。

大学数学实验

大学数学实验

大学数学实验项目一矩阵运算与方程组求解实验1行列式与矩阵实验目的掌握矩阵的输入方法.掌握利用Mathematica(4.0以上版本)对矩阵进行转置、加、减、数乘、相乘、乘方等运算,并能求矩阵的逆矩阵和计算方阵的行列式.基本命令在Mathematica 中,向量和矩阵是以表的形式给出的.1.表在形式上是用花括号括起来的若干表达式,表达式之间用逗号隔开.如输入{2,4,8,16}{x,x+1,y,Sqrt[2]}则输入了两个向量.2.表的生成函数(1) 最简单的数值表生成函数Range,其命令格式如下:Range[正整数n]—生成表{1,2,3,4,…,n };Range[m,n]—生成表{m ,…,n };Range[m,n,dx]—生成表{m ,…,n },步长为d x .(2)通用表的生成函数Table.例如,输入命令Table[n^3,{n,1,20,2}]则输出{1,27,125,343,729,1331,2197,3375,4913,6859}输入Table[x*y,{x,3},{y,3}]则输出{{1,2,3},{2,4,6},{3,6,9}}3.表作为向量和矩阵一层表在线性代数中表示向量,二层表表示矩阵.例如,矩阵可以用数表{{2,3},{4,5}}表示.输入A={{2,3},{4,5}}则输出{{2,3},{4,5}}命令MatrixForm[A]把矩阵A 显示成通常的矩阵形式.例如,输入命令:MatrixForm[A]则输出⎪⎪⎭⎫ ⎝⎛5432 但要注意,一般地,MatrixForm[A]代表的矩阵A 不能参与运算.输入B={1,3,5,7}输出为{1,3,5,7}输入MatrixForm[B]输出为虽然从这个形式看向量的矩阵形式是列向量,但实质上Mathematica 不区分行向量与列向量.或者说在运算时按照需要,Mathematica 自动地把向量当作行向量或列向量.下面是一个生成抽象矩阵的例子.输入Table[a[i,j],{i,4},{j,3}]MatrixForm[%]则输出注:这个矩阵也可以用命令Array 生成,如输入Array[a,{4,3}]//MatrixForm则输出与上一命令相同.4.命令IdentityMatrix[n]生成n 阶单位矩阵.例如,输入IdentityMatrix[5]则输出一个5阶单位矩阵(输出略).5.命令DiagonalMatrix[…]生成n 阶对角矩阵.例如,输入DiagonalMatrix[{b[1],b[2],b[3]}]则输出{{b[1],0,0},{0,b[2],0},{0,0,b[3]}}它是一个以b[1],b[2],b[3]为主对角线元素的3阶对角矩阵.6.矩阵的线性运算:A+B 表示矩阵A 与B 的加法;k*A 表示数k 与矩阵A 的乘法;A.B 或Dot[A,B]表示矩阵A 与矩阵B 的乘法.7.求矩阵A 的转置的命令:Transpose[A].8.求方阵A 的n 次幂的命令:MatrixPower[A,n].9.求方阵A 的逆的命令:Inverse[A].10.求向量a 与b 的内积的命令:Dot[a,b].实验举例矩阵A 的转置函数Transpose[A]例1.1求矩阵的转置.输入ma={{1,3,5,1},{7,4,6,1},{2,2,3,4}};Transpose[ma]//MatrixForm输出为如果输入Transpose[{1,2,3}]输出中提示命令有错误.由此可见,向量不区分行向量或列向量.矩阵线性运算例1.2设,291724,624543⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=B A 求.24,A B B A -+ 输入A={{3,4,5},{4,2,6}};B={{4,2,7},{1,9,2}};A+B//MatrixForm4B-2A//MatrixForm输出为如果矩阵A 的行数等于矩阵B 的列数,则可进行求AB 的运算.系统中乘法运算符为“.”,即用A.B 求A 与B 的乘积,也可以用命令Dot[A,B]实现.对方阵A ,可用MatrixPower[A,n]求其n 次幂.例1.3设,148530291724,36242543⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=mb ma 求矩阵ma 与mb 的乘积. 输入Clear[ma,mb];ma={{3,4,5,2},{4,2,6,3}}; mb={{4,2,7},{1,9,2},{0,3,5},{8,4,1}};ma.mb//MatrixForm输出为矩阵的乘法运算例1.4设,101,530291724⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=B A 求AB 与,A B T 并求.3A输入Clear[A,B];A={{4,2,7},{1,9,2},{0,3,5}};B={1,0,1};A.B输出为{11,3,5}这是列向量B 右乘矩阵A 的结果.如果输入B.A输出为{4,5,12}这是行向量B 左乘矩阵A 的结果,A B T 这里不需要先求B 的转置.求方阵A 的三次方,输入MatrixPower[A,3]//MatrixForm输出为例1.5设,421140123,321111111⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--=B A 求A AB 23-及.B A T 输入A={{?1,1,1},{1,?1,1},{1,2,3}}MatrixForm[A]B={{3,2,1},{0,4,1},{?1,2,?4}}MatrixForm[B]3A.B ?2A//MatrixFormTranspose[A].B//MatrixForm则输出A AB 23-及B A T 的运算结果分别为求方阵的逆例1.6设,5123641033252312⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=A 求.1-A输入Clear[ma]ma={{2,1,3,2},{5,2,3,3},{0,1,4,6},{3,2,1,5}};Inverse[ma]//MatrixForm则输出注:如果输入Inverse[ma//MatrixForm]则得不到所要的结果,即求矩阵的逆时必须输入矩阵的数表形式例1.7求矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--027926243043286345248127的逆矩阵. 解A={{7,12,8,24},{5,34,6,-8},{32,4,30,24},{-26,9,27,0}}MatrixForm[A]Inverse[A]//MatrixForm例1.8设,221331317230,5121435133124403⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=B A 求.1B A - 输入Clear[A,B];A={{3,0,4,4},{2,1,3,3},{1,5,3,4},{1,2,1,5}};B={{0,3,2},{7,1,3},{1,3,3},{1,2,2}};Inverse[ma].B//MatrixForm输出为对于线性方程组,b AX =如果A 是可逆矩阵,X ,b 是列向量,则其解向量为.1b A -例1.9解方程组⎪⎩⎪⎨⎧-=-+=+-=++.2442,63,723z y x z y x z y x输入Clear[A,b];A={{3,2,1},{1,-1,3},{2,4,-4}};b={7,6,-2};Inverse[A].b输出为{1,1,2}求方阵的行列式例1.10求行列式.3351110243152113------=D 输入Clear[A];A={{3,1,-1,2},{-5,1,3,-4},{2,0,1,-1},{1,-5,3,-3}};Det[A]输出为40例1.11求.11111111111122222222d d d d c c c c b b b b a a a a D ++++= 输入Clear[A,a,b,c,d];A={{a^2+1/a^2,a,1/a,1},{b^2+1/b^2,b,1/b,1},{c^2+1/c^2,c,1/c,1},{d^2+1/d^2,d,1/d,1}};Det[A]//Simplify则输出例1.12计算范德蒙行列式.1111145444342413534333231252423222154321x x x x x x x x x x x x x x x x x x x x 输入Clear[x]; Van=Table[x[j]^k,{k,0,4},{j,1,5}]//MatrixForm输出为再输入Det[van]则输出结果比较复杂(项很多)若改为输入Det[van]//Simplify或Factor[Det[van]]则有输出(x[1]-x[2])(x[1]-x[3])(x[2]-x[3])(x[1]-x[4])(x[2]-x[4])(x[3]-x[4])(x[1]-x[5])(x[2]-x[5])(x[3]-x[5])(x[4]-x[5])例1.13设矩阵,60975738723965110249746273⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=A 求.),(|,|3A A tr A 输入A={{3,7,2,6,?4},{7,9,4,2,0},{11,5,?6,9,3},{2,7,?8,3,7},{5,7,9,0,?6}}MatrixForm[A]Det[A]Tr[A]MatrixPower[A,3]//MatrixForm则输出3),(|,|A A tr A 分别为115923向量的内积向量内积的运算仍用“.”表示,也可以用命令Dot 实现例1.14求向量}3,2,1{=u 与}0,1,1{-=v 的内积.输入u={1,2,3};v={1,-1,0};u.v输出为-1或者输入Dot[u,v]所得结果相同.实验习题1.设,150421321,111111111⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--=B A 求A AB 23-及.B A ' 2.设,001001⎪⎪⎪⎭⎫ ⎝⎛=λλλA 求.10A 一般地?=k A (k 是正整数). 3.求⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+++++a a a a a 1111111111111111111111111的逆. 4.设,321011324⎪⎪⎪⎭⎫ ⎝⎛-=A 且,2B A AB +=求.B 5.利用逆矩阵解线性方程组⎪⎩⎪⎨⎧=++=++=++.353,2522,132321321321x x x x x x x x x实验2矩阵的秩与向量组的极大无关组实验目的学习利用Mathematica 求矩阵的秩,作矩阵的初等行变换;求向量组的秩与极大无关组.基本命令1.求矩阵M 的所有可能的k 阶子式组成的矩阵的命令:Minors[M,k].2.把矩阵A 化作行最简形的命令:RowReduce[A].3.把数表1,数表2,…,合并成一个数表的命令:Join[list1,list2,…].例如输入Join[{{1,0,?1},{3,2,1}},{{1,5},{4,6}}]则输出{{1,0,?1},{3,2,1},{1,5},{4,6}}实验举例求矩阵的秩例2.1设,815073*********⎪⎪⎪⎭⎫ ⎝⎛-------=M 求矩阵M 的秩. 输入Clear[M];M={{3,2,?1,?3,?2},{2,?1,3,1,?3},{7,0,5,?1,?8}};Minors[M,2]则输出{{?7,11,9,?5,5,?1,?8,8,9,11},{?14,22,18,?10,10,?2,?16,16,18,22},{7,?11,?9,5,?5,1,8,?8,?9,?11}}可见矩阵M 有不为0的二阶子式.再输入Minors[M,3]则输出{{0,0,0,0,0,0,0,0,0,0}}可见矩阵M 的三阶子式都为0.所以.2)(=M r例2.2已知矩阵⎪⎪⎪⎭⎫ ⎝⎛----=1t 0713123123M 的秩等于2,求常数t 的值. 左上角的二阶子式不等于0.三阶子式应该都等于0.输入Clear[M];M={{3,2,-1,-3},{2,-1,3,1},{7,0,t,-1}};Minors[M,3]输出为{{35-7t,45-9t,-5+t}}当5=t 时,所有的三阶子式都等于0.此时矩阵的秩等于2.例2.3求矩阵⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----3224211631095114047116的行最简形及其秩. 输入A={{6,1,1,7},{4,0,4,1},{1,2,?9,0},{?1,3,?16,?1},{2,?4,22,3}}MatrixForm[A]RowReduce[A]//MatrixForm则输出矩阵A 的行最简形根据矩阵的行最简形,便得矩阵的秩为3.矩阵的初等行变换命令RowfReduce[A]把矩阵A 化作行最简形.用初等行变换可以求矩阵的秩与矩阵的逆.例2.4设,41311221222832A ⎪⎪⎪⎭⎫ ⎝⎛--=求矩阵A 的秩. 输入Clear[A];A={{2,-3,8,2},{2,12,-2,12},{1,3,1,4}};RowReduce[A]//MatrixForm输出为因此A 的秩为2.例2.5用初等变换法求矩阵⎪⎪⎪⎭⎫ ⎝⎛343122321的逆矩阵.输入A={{1,2,3},{2,2,1},{3,4,3}}MatrixForm[A]Transpose[Join[Transpose[A],IdentityMatrix[3]]]//MatrixFormRowReduce[%]//MatrixFormInverse[A]//MatrixForm则输出矩阵A 的逆矩阵为向量组的秩矩阵的秩与它的行向量组,以及列向量组的秩相等,因此可以用命令RowReduce 求向量组的秩.例2.6求向量组)0,3,0,2(),2,5,4,0(),1,1,2,1(231=--=-=ααα的秩.将向量写作矩阵的行,输入Clear[A];A={{1,2,-1,1},{0,-4,5,-2},{2,0,3,0}};RowReduce[A]//MatrixForm则输出这里有两个非零行,矩阵的秩等于2.因此,它的行向量组的秩也等于2.例2.7向量组)7,5,1,3(),5,4,3,1(),1,1,1,1(),3,2,1,1(4321==-==αααα是否线性相关?输入Clear[A];A={{1,1,2,3},{1,?1,1,1},{1,3,4,5},{3,1,5,7}};RowReduce[A]//MatrixForm则输出向量组包含四个向量,而它的秩等于3,因此,这个向量组线性相关.例2.8向量组)3,1,1(),2,1,3(),7,2,2(321=-==ααα是否线性相关?输入Clear[A];A={{2,2,7},{3,-1,2},{1,1,3}};RowReduce[A]//MatrixForm则输出向量组包含三个向量,而它的秩等于3,因此,这个向量组线性无关.向量组的极大无关组例2.9求向量组的极大无关组,并将其它向量用极大无关组线性表示.输入Clear[A,B];A={{1,?1,2,4},{0,3,1,2},{3,0,7,14},{1,?1,2,0},{2,1,5,0}};B=Transpose[A];RowReduce[B]//MatrixForm则输出在行最简形中有三个非零行,因此向量组的秩等于3.非零行的首元素位于第一、二、四列,因此421,,ααα是向量组的一个极大无关组.第三列的前两个元素分别是3,1,于是.3213ααα+=第五列的前三个元素分别是,25,1,21-于是.25214215αααα++-= 向量组的等价可以证明:两个向量组等价的充分必要条件是:以它们为行向量构成的矩阵的行最简形具有相同的非零行,因此,还可以用命令RowReduce 证明两个向量组等价.例2.10设向量求证:向量组21,αα与21,ββ等价.将向量分别写作矩阵A ,B 的行向量,输入Clear[A,B];A={{2,1,-1,3},{3,-2,1,-2}};B={{-5,8,-5,12},{4,-5,3,-7}};RowReduce[A]//MatrixFormRowReduce[B]//MatrixForm则输出与两个行最简形相同,因此两个向量组等价.实验习题1.求矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=12412116030242201211A 的秩. 2.求t ,使得矩阵⎪⎪⎪⎭⎫ ⎝⎛-=t A 23312231的秩等于2.3.求向量组)0,0,1(),1,1,1(),1,1,0(),1,0,0(4321====αααα的秩.4.当t 取何值时,向量组),3,1(),3,2,1(),1,1,1(321t ===ααα的秩最小?5.向量组)1,1,1,1(),1,1,1,1(),1,1,1,1(),1,1,1,1(4321-=--=--==αααα是否线性相关?6.求向量组)6,5,4,3(),5,4,3,2(),4,3,2,1(321===ααα的最大线性无关组.并用极大无关组线性表示其它向量.7.设向量),6,3,3,2(),6,3,0,3(),18,3,3,8(),0,6,3,1(2121=-=-=-=ββαα求证:向量组21,αα与21,ββ等价.实验3线性方程组实验目的熟悉求解线性方程组的常用命令,能利用Mathematica 命令各类求线性方程组的解.理解计算机求解的实用意义.基本命令1.命令NullSpace []A ,给出齐次方程组0=AX 的解空间的一个基.2.命令LinearSolve []b A ,,给出非齐次线性方程组b AX =的一个特解.3.解一般方程或方程组的命令Solve 见Mathematica 入门.实验举例求齐次线性方程组的解空间设A 为n m ⨯矩阵,X 为n 维列向量,则齐次线性方程组0=AX 必定有解.若矩阵A 的秩等于n ,则只有零解;若矩阵A 的秩小于n ,则有非零解,且所有解构成一向量空间.命令NullSpace 给出齐次线性方程组0=AX 的解空间的一个基.例3.1求解线性方程组⎪⎪⎩⎪⎪⎨⎧=---=++=+--=--+.0532,0375,023,02432143243214321x x x x x x x x x x x x x x x 输入Clear[A];A={{1,1,?2,?1},{3,?2,?1,2},{0,5,7,3},{2,?3,?5,?1}};NullSpace[A]则输出{{?2,1,?2,3}}说明该齐次线性方程组的解空间是一维向量空间,且向量(?2,1,?2,3)是解空间的基. 注:如果输出为空集{},则表明解空间的基是一个空集,该方程组只有零解.例3.2求解线性方程组⎪⎪⎩⎪⎪⎨⎧=---=++=+--=-++053203750232302432143243214321x x x x x x x x x x x x x x x 输入Clear[A];A={{1,1,2,-1},{3,-2,-3,2},{0,5,7,3},{2,-3,-5,-1}};Nullspace[A]输出为{}因此解空间的基是一个空集,说明该线性方程组只有零解.例3.3向量组)7,5,1,3(),5,4,3,1(),1,1,1,1(),3,2,1,1(4321==-==αααα是否线性相关? 根据定义,如果向量组线性相关,则齐次线性方程组有非零解.输入Clear[A,B];A={{1,1,2,3},{1,?1,1,1},{1,3,4,5},{3,1,5,7}};B=Transpose[A];NullSpace[B]输出为{{?2,?1,0,1}}说明向量组线性相关,且02421=+--ααα非齐次线性方程组的特解例3.4求线性方程组⎪⎪⎩⎪⎪⎨⎧=----=++=+--=--+45322375222342432143243214321x x x x x x x x x x x x x x x 的特解.输入Clear[A,b];A={{1,1,?2,?1},{3,?2,?1,2},{0,5,7,3},{2,?3,?5,?1}};b={4,2,?2,4}LinearSolve[A,b]输出为{1,1,?1,0}注:命令LinearSolve 只给出线性方程组的一个特解.例3.5求线性方程组⎪⎪⎩⎪⎪⎨⎧=---=++=+--=--+45322375222342432143243214321x x x x x x x x x x x x x x x 的特解.输入Clear[A,b];A={{1,1,2,-1},{3,-2,-1,2},{0,5,7,3},{2,-3,-5,-1}};b={4,2,2,4}Linearsolve[A,b]输出为Linearsolve::nosol:Linearequationencounteredwhichhasnosolution.说明该方程组无解.例3.6向量)4,3,1,2(-=β是否可以由向量)1,3,2,1(1-=α,)11,12,5,5(2-=α,()3,6,3,13-=α线性表示?根据定义,如果向量β可以由向量组32,1,ααα线性相关,则非齐次线性方程组有解.输入Clear[A,B,b];A={{1,2,-3,1},{5,-5,12,11},{0,5,7,3},{1,-3,6,3}};B=Transpose[A];b={2,-1,3,4};Linearsolve[B,b]输出为 {31,31,0} 说明β可以由32,1,ααα线性表示,且213131ααβ+= 例3.7求出通过平面上三点(0,7),(1,6)和(2,9)的二次多项式,2c bx ax ++并画出其图形.根据题设条件有,924611700⎪⎩⎪⎨⎧=+⋅+⋅=+⋅+⋅=+⋅+⋅c b a c b a c b a 输入Clear[x];A={{0,0,1},{1,1,1},{4,2,1}}y={7,6,9}p=LinearSolve[A,y]Clear[a,b,c,r,s,t];{a,b,c}.{r,s,t}f[x_]=p.{x^2,x,1};Plot[f[x],{x,0,2},GridLines ?>Automatic,PlotRange ?>All];则输出c b a ,,的值为{2,?3,7}并画出二次多项式7322+-x x 的图形(略).非齐次线性方程组的通解用命令Solve 求非齐次线性方程组的通解.例3.8求出通过平面上三点(0,0),(1,1),(-1,3)以及满足9)1(,20)1(='=-'f f 的4次多项式).(x f解设,)(234e dx cx bx ax x f ++++=则有输入Clear[a,b,c,d,e];q[x_]=a*x^4+b*x^3+c*x^2+d*x+e;eqs=[q[0]==0,q[1]==1,q[-1]==3,q ’[-1]==20,q ’[1]==9];{A,y}=LinearEquationsToMatrices[eqs,{a,b,c,d}];p=LinearSolve[A,y];f[x_]=p.{x^4,x^3,x^2,x,1};Plot[f[x],{x,-1,1},GridLines->Automatic,PlotRange->All];则输出所求多项式非齐次线性方程组的通解用命令solve 求非齐次线性方程组的通解.例3.9解方程组⎪⎪⎩⎪⎪⎨⎧=+-=+-=++-=++-53323221242143143214321x x x x x x x x x x x x x x输入solve[{x-y+2z+w==1,2x-y+z+2w==3,x-z+w==2,3x-y+3w==5},{x,y,z,w}]输出为{{x →2-w+z,y →1+3z}}即3412x x x +-=,3231x x +=.于是,非齐次线性方程组的特解为(2,1,0,0).对应的齐次线性方程组的基础解系为(1,3,1,0)与(-1,0,0,1).例3.10解方程组⎪⎪⎩⎪⎪⎨⎧-=++-=++-=+-=-+-33713344324324214324321x x x x x x x x x x x x x 解法1用命令solve输入solve[{x-2y+3z-4w==4,y-z+w==-3,x+3y+w==1,-7y+3z+3w==-3},{x,y,z,w}]输出为{{x →-8,y →3,z →6,w →0}}即有唯一解81-=x ,32=x ,63=x ,04=x .解法2这个线性方程组中方程的个数等于未知数的个数,而且有唯一解,此解可以表示为b A x 1-=.其中A 是线性方程组的系数矩阵,而b 是右边常数向量.于是,可以用逆阵计算唯一解.输入Clear[A,b,x];A={{1,-2,3,-4},{0,1,-1,1},{1,3,0,1},{0,-7,3,1}};b={4,-3,1,-3};x=Inverse[A].b输出为{-8,3,6,0}解法3还可以用克拉默法计算这个线性方程组的唯一解.为计算各行列式,输入未知数的系数向量,即系数矩阵的列向量.输入Clear[a,b,c,d,e];a={1,0,1,0};b={-2,1,3,-7};c={3,-1,0,3};d={-4,1,1,1};e={4,-3,1,-3};Det[{e,b,c,d}]/Det[{a,b,c,d}]Det[{a,e,c,d}]/Det[{a,b,c,d}]Det[{a,b,e,d}]/Det[{a,b,c,d}]Det[{a,b,c,e}]/Det[{a,b,c,d}]输出为-836例3.10当a 为何值时,方程组⎪⎩⎪⎨⎧=++=++=++111321321321ax x x x ax x x x ax 无解、有唯一解、有无穷多解?当方程组有解时,求通解.先计算系数行列式,并求a ,使行列式等于0.输入Clear[a];Det[{{a,1,1},{1,a,1},{1,1,a}}];Solve[%??0,a]则输出{{a →?2},{a →1},{a →1}}当a 2-≠,a 1≠时,方程组有唯一解.输入Solve[{a*x ?y ?z ??1,x ?a*y ?z ??1,x ?y ?a*z ??1},{x,y,z}]则输出{{x →,21a +y →,21a+z →a +21}} 当a ??2时,输入Solve[{?2x+y+z==1,x ?2y+z==1,x+y ?2z==1},{x,y,z}]则输出{}说明方程组无解.当a =1时,输入Solve[{x+y+z==1,x+y+z==1,x+y+z==1},{x,y,z}]则输出{{x →1?y ?z}}}说明有无穷多个解.非齐次线性方程组的特解为(1,0,0),对应的齐次线性方程组的基础解系为为(?1,1,0)与(?1,0,1).例3.11求非齐次线性方程组⎪⎩⎪⎨⎧-=+-+=-+-=+-+2534422312432143214321x x x x x x x x x x x x 的通解.解法1输入A={{2,1,?1,1},{3,?2,1,?3},{1,4,?3,5}};b={1,4,?2};particular=LinearSolve[A,b]nullspacebasis=NullSpace[A]generalsolution=t*nullspacebasis[[1]]+k*nullspacebasis[[2]]+Flatten[particular]generalsolution//MatrixForm解法2输入B={{2,1,?1,1,1},{3,?2,1,?3,4},{1,4,?3,5,?2}}RowReduce[B]//MatrixForm根据增广矩阵的行最简形,易知方程组有无穷多解.其通解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛007/57/6107/97/1017/57/14321t k x x x x (k ,t 为任意常数)实验习题1.解方程组⎪⎩⎪⎨⎧=++=++=+-.024,02,032321321321x x x x x x x x x2.解方程组⎪⎩⎪⎨⎧=++-=++-=++-.0111784,02463,03542432143214321x x x x x x x x x x x x3.解方程组⎪⎩⎪⎨⎧-=-+-=+-=-+-.22,3,44324314324321x x x x x x x x x x4.解方程组⎪⎩⎪⎨⎧=++-=+++=-++.254,32,22432143214321x x x x x x x x x x x x5.用三种方法求方程组⎪⎪⎩⎪⎪⎨⎧=-+=-+=-+=-+127875329934,8852321321321321x x x x x x x x x x x x 的唯一解.6.当b a ,为何值时,方程组⎪⎪⎩⎪⎪⎨⎧-=+++=--+-=++=+++1232)3(122043214324324321ax x x x b x x a x x x x x x x x 有唯一解、无解、有无穷多解?对后 者求通解.实验4交通流模型(综合实验)实验目的利用线性代数中向量和矩阵的运算,线性方程组的求解等知识,建立交通流模型.掌握线性代数在交通规划方面的应用.应用举例假设某城市部分单行街道的交通流量(每小时通过的车辆数)如图4.1所示.300300300200500x x 8x 图4?1 试建立数学模型确定该交通网络未知部分的具体流量.假定上述问题满足下列两个基本假设(1)全部流入网络的流量等于全部流出网络的流量;(2)全部流入一个节点的流量等于流出此节点的流量.于是,根据图4.1及上述基本两个假设,可建立该问题的线性方程组即若将上述矩阵方程记为b Ax =,则问题就转化为求b Ax =的全部解.下面我们利用Mathmatica 软件来求解1、输入矩阵A ,并利用RowReduce[A ]命令求得A 的秩为8.输入RowReduce[A]//MatrixFormOut[2]//MatrixForm=则输出2、应用命令NullSpace[A]求出齐次线性方程组0=Ax 的基础解系.输入In[3]:=NullSpace[A]//MatrixFormOut[3]//MatrixForm=则输出由此即得到所求齐次线性方程组的基础解系:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=+=00000110110011100000212211C C c c ξξη,(21,C C 为任意常数). 3、输入增广阵(Ab ),求出其秩为8,由,108)()(=<==n Ab r A r 知方程组有无穷多个解.输入RowReduce[Ab]//MatrixFormOut[5]//MatrixForm=则输出4、应用命令LinearSolve[A,b],求得非齐次线性方程组b Ax =的一个特解.输入LinearSolve[A,b]Out[9]={{800},{0},{200},{500},{0},{800},{1000},{0},{400},{600}}则得到所求非齐次线性方程组的一个特解:综上所述,我们就得到了非齐次线性方程组b Ax =的全部解为,*2211*ξξξξη++++=C C x (21,C C 为任意常数).在解的表示式中,x 的每一个分量即为交通网络中未知部分的具体流量,该问题有无穷多解(为什么?并思考其实际意义).本模型具有实际应用价值,求出该模型的解,可以为交通规划设计部门提供解决交通堵塞、车流运行不畅等问题的方法,知道在何处应建设立交桥,那条路应设计多宽等,为城镇交通规划提供科学的指导意见.但是,在本模型中,我们只考虑了单行街道这样一种简单情形,更复杂的情形留待读者在更高一级的课程中去研究.此外,本模型还可推广到电路分析中的网络节点流量等问题中.实验报告请读者应用本模型的思想方法,为你所在或你熟悉的城镇建立一个区域的交通流量模型.并提供一个具体的解决方案,即从无穷多个解中根据具体限制确定出一个具体的解决方案.。

高等数学数学实验报告(两篇)

高等数学数学实验报告(两篇)

引言概述:高等数学数学实验报告(二)旨在对高等数学的相关实验进行探究与研究。

本次实验报告共分为五个大点,每个大点讨论了不同的实验内容。

在每个大点下,我们进一步细分了五到九个小点,对实验过程、数据收集、数据分析等进行了详细描述。

通过本次实验,我们可以更好地理解高等数学的概念和应用。

正文内容:一、微分方程实验1.利用欧拉法求解微分方程a.介绍欧拉法的原理和步骤b.详细阐述欧拉法在实际问题中的应用c.给出具体的实例,展示欧拉法的计算步骤2.应用微分方程建立模型求解实际问题a.介绍微分方程模型的建立方法b.给出一个具体的实际问题,使用微分方程建立模型c.详细阐述模型求解步骤和结果分析3.使用MATLAB求解微分方程a.MATLAB求解微分方程的基本语法和函数b.给出一个具体的微分方程问题,在MATLAB中进行求解c.分析结果的准确性和稳定性二、级数实验1.了解级数的概念和性质a.简要介绍级数的定义和基本概念b.阐述级数收敛和发散的判别法c.讨论级数的性质和重要定理2.使用级数展开函数a.介绍级数展开函数的原理和步骤b.给出一个函数,使用级数展开进行近似计算c.分析级数近似计算的精确度和效果3.级数的收敛性与运算a.讨论级数收敛性的判别法b.介绍级数的运算性质和求和法则c.给出具体的例题,进行级数的运算和求和三、多元函数极值与最值实验1.多元函数的极值点求解a.介绍多元函数的极值点的定义和求解方法b.给出一个多元函数的实例,详细阐述求解过程c.分析极值点对应的函数值和意义2.多元函数的条件极值与最值a.讨论多元函数的条件极值的判定法b.给出一个具体的多元函数,求解其条件极值和最值c.分析条件极值和最值对应的函数值和意义3.利用MATLAB进行多元函数极值与最值的计算a.MATLAB求解多元函数极值与最值的基本语法和函数b.给出一个多元函数的具体问题,在MATLAB中进行求解c.分析结果的准确性和可行性四、曲线积分与曲面积分实验1.曲线积分的计算方法与应用a.介绍曲线积分的定义和计算方法b.给出一个具体的曲线积分问题,详细阐述计算过程c.分析曲线积分结果的几何意义2.曲线积分的应用举例a.讨论曲线积分在实际问题中的应用b.给出一个实际问题,使用曲线积分进行求解c.分析曲线积分结果的实际意义和应用价值3.曲面积分的计算方法与应用a.介绍曲面积分的定义和计算方法b.给出一个具体的曲面积分问题,详细阐述计算过程c.分析曲面积分结果的几何意义五、空间解析几何实验1.空间曲线的参数方程表示与性质a.介绍空间曲线的参数方程表示和性质b.给出一个具体的空间曲线,转化为参数方程表示c.分析参数方程对应的几何意义和性质2.平面与空间直线的位置关系a.讨论平面与空间直线的位置关系的判定方法b.给出一个具体的平面与空间直线的问题,判定其位置关系c.分析位置关系对应的几何意义和应用实例3.空间直线与平面的夹角和距离计算a.介绍空间直线与平面的夹角和距离的计算方法b.给出一个具体的空间直线和平面,计算其夹角和距离c.分析夹角和距离计算结果的几何意义总结:通过本次高等数学数学实验报告(二),我们深入了解了微分方程、级数、多元函数极值与最值、曲线积分、曲面积分以及空间解析几何的相关概念和应用。

大学数学实验报告答案

大学数学实验报告答案

实验题目:线性方程组的求解实验目的:1. 理解线性方程组的概念和求解方法。

2. 掌握高斯消元法和矩阵求逆法求解线性方程组。

3. 熟悉MATLAB软件在数学实验中的应用。

实验时间:2021年X月X日实验地点:计算机实验室实验器材:1. 计算机2. MATLAB软件实验内容:一、实验原理线性方程组是数学中一类常见的方程组,其形式如下:\[ Ax = b \]其中,\( A \) 是一个 \( m \times n \) 的系数矩阵,\( x \) 是一个 \( n \) 维的未知向量,\( b \) 是一个 \( m \) 维的常数向量。

线性方程组的求解方法有多种,如高斯消元法、矩阵求逆法等。

本实验主要介绍高斯消元法和矩阵求逆法。

二、实验步骤1. 设计一个线性方程组,并记录系数矩阵 \( A \) 和常数向量 \( b \)。

\[ \begin{cases}2x + 3y - z = 8 \\-x + 2y + 3z = 1 \\4x - y + 2z = 3\end{cases} \]系数矩阵 \( A \) 和常数向量 \( b \) 如下:\[ A = \begin{bmatrix}2 &3 & -1 \\-1 & 2 & 3 \\4 & -1 & 2\end{bmatrix}, \quad b = \begin{bmatrix}8 \\1 \\3\end{bmatrix} \]2. 使用MATLAB软件进行高斯消元法求解线性方程组。

```matlabA = [2 3 -1; -1 2 3; 4 -1 2];b = [8; 1; 3];x = A\b;```3. 使用MATLAB软件进行矩阵求逆法求解线性方程组。

```matlabA_inv = inv(A);x_inv = A_invb;```4. 比较两种方法得到的解,并验证其正确性。

三、实验结果与分析1. 使用高斯消元法求解得到的解为:\[ x = \begin{bmatrix}2 \\1 \\1\end{bmatrix} \]2. 使用矩阵求逆法求解得到的解为:\[ x = \begin{bmatrix}2 \\1 \\1\end{bmatrix} \]两种方法得到的解相同,验证了实验的正确性。

大学四年数学实验课教案

大学四年数学实验课教案

课程目标:1. 培养学生运用数学知识和方法解决实际问题的能力。

2. 提高学生的计算机应用能力和实验操作技能。

3. 增强学生的团队协作意识和创新能力。

4. 深化学生对数学理论知识的理解和掌握。

教学对象:大学四年级学生教学时长:16周,每周2学时教学内容:1. 数学实验基本概念及方法2. 数值计算方法与软件应用3. 数据分析与可视化4. 线性代数、概率论与数理统计实验5. 微积分实验6. 最优化理论与实验7. 期末综合实验教学过程:第一周:数学实验基本概念及方法1. 介绍数学实验的定义、意义和目的。

2. 讲解数学实验的基本方法和步骤。

3. 引导学生熟悉常用的数学实验软件,如MATLAB、Mathematica等。

第二周至第八周:数值计算方法与软件应用1. 介绍数值计算的基本概念和方法,如数值微分、数值积分、数值解法等。

2. 利用MATLAB等软件进行数值计算实验,如求解微分方程、计算定积分等。

3. 分析数值计算结果的准确性和稳定性。

第九周至第十四周:数据分析与可视化1. 介绍数据分析的基本方法,如数据清洗、数据挖掘、统计分析等。

2. 利用Excel、SPSS等软件进行数据分析实验,如描述性统计、相关性分析等。

3. 学习数据可视化方法,如散点图、柱状图、折线图等,并展示实验结果。

第十五周至第十六周:线性代数、概率论与数理统计实验1. 实验一:线性方程组的求解2. 实验二:矩阵的特征值与特征向量3. 实验三:随机变量的分布律与期望4. 实验四:假设检验期末综合实验1. 选择一个与实际应用相关的数学问题,如经济管理、工程技术等。

2. 设计实验方案,包括实验目的、实验方法、实验步骤等。

3. 利用数学软件进行实验,分析实验结果,撰写实验报告。

教学评价:1. 平时成绩:课堂参与、实验报告等(30%)2. 期末成绩:综合实验报告(40%)3. 课堂表现:出勤、提问、讨论等(30%)教学资源:1. 教材:《数学实验教程》2. 教学课件3. 实验指导书4. 数学实验软件(MATLAB、Mathematica等)5. 网络资源教学注意事项:1. 注重培养学生的实验操作技能和计算机应用能力。

大学数学实验报告

大学数学实验报告大学数学实验报告引言:数学作为一门基础学科,在大学教育中占据着重要的地位。

为了更好地培养学生的数学思维能力和解决实际问题的能力,许多大学开设了数学实验课程。

本文将以大学数学实验为主题,探讨数学实验的意义、实验内容以及实验对学生的影响。

一、数学实验的意义数学实验是以实验为手段,通过观察、实践和实验数据的处理,来加深学生对数学概念和方法的理解。

与传统的数学教学相比,数学实验更加注重培养学生的实际应用能力和创新精神。

通过实验,学生可以感受到数学的魅力,激发他们对数学的兴趣,提高他们解决实际问题的能力。

二、数学实验的内容数学实验的内容非常广泛,包括数学建模、数据分析、计算机仿真等多个方面。

在数学建模实验中,学生需要根据实际问题,选择适当的数学模型,并运用数学方法进行求解。

在数据分析实验中,学生需要收集和处理实验数据,利用统计学方法进行分析和预测。

在计算机仿真实验中,学生需要运用计算机软件进行数学模型的建立和求解。

通过这些实验,学生可以更好地理解和掌握数学知识,提高数学思维能力和创新能力。

三、数学实验对学生的影响数学实验对学生的影响是多方面的。

首先,数学实验可以激发学生对数学的兴趣。

通过实际操作和实验数据的处理,学生能够亲身体验到数学的应用和实用性,从而对数学产生浓厚的兴趣。

其次,数学实验可以提高学生的实际应用能力。

在实验中,学生需要将抽象的数学概念和方法应用到实际问题中,培养了他们解决实际问题的能力。

再次,数学实验可以培养学生的创新精神。

在实验中,学生需要运用自己的思维和创造力,解决实际问题,培养了他们的创新意识和创新能力。

最后,数学实验可以提高学生的团队合作能力。

在实验中,学生通常需要组成小组,共同完成实验任务,培养了他们的团队合作精神和沟通能力。

结论:数学实验作为一种创新的教学方式,对于培养学生的实际应用能力、创新精神和团队合作能力具有重要意义。

通过数学实验,学生能够更好地理解和掌握数学知识,提高数学思维能力,为将来的学习和工作打下坚实的基础。

大学新生数学实验报告

大学新生数学实验报告一、实验目的1. 加强大学新生对数学实验的了解;2. 培养大学新生在数学实验中的动手能力;3. 提高大学新生的团队合作能力;4. 掌握数学实验中实际问题的解决方法。

二、实验背景作为大学数学课程的重要组成部分,数学实验能够帮助学生巩固数学知识,培养创新思维和解决实际问题的能力。

本次实验旨在通过团队合作的方式,解决一个具体的数学实际问题。

三、实验内容1. 根据指导教师提供的题目,组成小组进行讨论并制定解决方案;2. 利用数学模型或数学方法进行问题求解;3. 实验成果呈现。

四、实验过程1. 小组组建和问题理解根据老师的要求,我们组成了一个由五名成员组成的小组。

经过讨论,我们决定选择题目“如何在餐厅设置合理的座位布局,使得最多的顾客同时非常方便地进餐”。

2. 讨论和方案制定在问题理解阶段,我们首先对题目进行概念分析,明确餐厅座位布局需要解决的具体问题,并进行了大量的市场调研。

我们通过访问多家餐厅,观察和分析它们的座位布局,并收集了一些顾客的意见和建议。

在讨论阶段,我们根据市场调研的结果,结合我们的数学知识,制定了一个以最大化就座容量和便利性为目标的数学模型。

3. 数学模型的建立和求解我们依次进行了以下步骤:1. 餐厅空间的测量和建模:我们对餐厅进行了详细的测量,并将测量结果用平面图表达出来;2. 客流量和服务时间的统计:我们通过观察和收集数据,统计了到访餐厅的顾客人数和平均用餐时间,得到了客流量和服务时间的参数;3. 座位布局设计:为了最大化座位容量和便利性,我们采用了柔性座位布局方法,不同日期、时间段甚至个别顾客的用餐需求都被充分考虑;4. 模拟实验:根据建立的数学模型,我们进行了多次模拟实验,验证了模型的合理性和可行性;5. 最优方案的确定:通过比较模拟实验结果,我们找到了最佳的座位布局方案。

4. 实验成果呈现在最后阶段,我们撰写了实验报告,并以PPT的形式进行了展示,向老师和同学们展示了我们的实验成果。

大学数学实验心得体会3篇

大学数学实验心得体会3篇刚开始时学大学数学实验的时候我都有一种恐惧感,因为对于它都是陌生的,虽然在学数值分析时接触过MATLAB,但那只是皮毛。

大学数学实验才让我真正了解到了这门学科,真正学到了MATLAB的使用方法,并且对数学建模有了一定的了解。

MATLAB在各个领域均有应用,作为数学系的学生对于MATLAB解决数学问题的能力相当震惊,真是太强大了。

数学实验这门课让我学到了很多东西,收获丰硕。

第一节课我了解到了数学实验的一些基本发展史和一些基本知识。

通过这学期的学习,学完这门课,让我知道了原来数学与实际生活连接的是这么紧密,许多问题都可以借助数学的方法去解决。

对于一些实际问题,我们可以建立数学模型,把问题简化,然后运用一些数学工具和方法去解决。

大学数学实验我们学习了MATLAB的编程方法,虽然仅仅只有一种软件,可是整本书可用分的数学知识一点都不少,比如插值、拟合、微积分、线性代数、概率论与数理统计等等,现在终于知道课本上的知识如何用于实际问题了,真可谓应用十分广泛。

刚开始我对MATLAB很陌生,感觉这个软件很难,以为它就像C语言一样难学,而且这个软件都是英文原版,对于我这种英语很烂的人来说真是种噩梦。

但是经过一段时间的学习后感觉其实并没有想象中的那么可怕,感觉很好玩。

我觉得学好这门课需要做到以下几点:1、多运用matlab编写、调试程序2、对于不懂得程序要尽量搞清楚问题出在哪3、与同学课下多多交流,课上多请教老师。

篇2:大学数学实验心得体会数学,在整个人类生命进程中至关重要,从小学到中学,再到大学,乃至更高层次的科学研究都离不开数学,随着时代的发展,人们越来越重视数学知识的应用,对数学课程提出了更高层次的要求,于是便诞生了数学实验。

学期最初,大学数学实验对于我们来说既熟悉又陌生,在我们的记忆中,我们做过物理实验、化学实验、生物实验,故然我们以为数学实验与它们一样,当我们在网上搜索有关数学实验的信息时,我们才知道,大学数学实验作为一门新兴的数学课程在近十年来取得了迅速的发展。

大学数学实验报告模板(3篇)

一、实验名称[实验名称]二、实验目的1. [目的一]2. [目的二]3. [目的三]三、实验原理[简要介绍实验的理论依据,包括相关数学公式、定理等]四、实验仪器与设备1. [仪器名称]2. [设备名称]3. [其他所需材料]五、实验步骤1. [步骤一]- [具体操作描述]- [预期结果]2. [步骤二]- [具体操作描述]- [预期结果]3. [步骤三]- [具体操作描述]- [预期结果][后续步骤]六、实验数据记录与分析1. [数据记录表格]- [数据项一]- [数据项二]- [数据项三]...[数据项N]2. [数据分析]- [对数据记录进行初步分析,包括计算、比较、趋势分析等] - [结合实验原理,解释数据分析结果]七、实验结果与讨论1. [实验结果展示]- [图表、图形等形式展示实验结果]- [文字描述实验结果]2. [讨论]- [对实验结果进行分析,解释实验现象,与理论预期进行对比] - [讨论实验中可能存在的误差来源及解决方案]- [总结实验的优缺点,提出改进建议]八、实验结论1. [总结实验目的达成情况]2. [总结实验的主要发现和结论]3. [对实验结果的评价]九、参考文献[列出实验过程中参考的书籍、论文、网站等]十、附录[如有需要,可在此处附上实验过程中的图片、计算过程、源代码等]---注意:1. 实验报告应根据具体实验内容进行调整,以下模板仅供参考。

2. 实验步骤、数据记录与分析、实验结果与讨论等部分应根据实验实际情况进行详细描述。

3. 实验报告应保持简洁、清晰、条理分明,避免冗余信息。

4. 注意实验报告的格式规范,包括字体、字号、行距等。

第2篇一、实验名称[实验名称]二、实验目的1. 理解并掌握[实验内容]的基本概念和原理。

2. 培养动手操作能力和实验技能。

3. 提高分析问题和解决问题的能力。

4. 增强团队协作意识。

三、实验原理[简要介绍实验的理论依据,包括公式、定理等]四、实验仪器与材料1. 仪器:[列出实验所需仪器]2. 材料:[列出实验所需材料]五、实验步骤1. [步骤一]- 操作说明:[详细描述第一步的具体操作]- 数据记录:[记录相关数据]2. [步骤二]- 操作说明:[详细描述第二步的具体操作]- 数据记录:[记录相关数据]3. [步骤三]- 操作说明:[详细描述第三步的具体操作]- 数据记录:[记录相关数据]...(依实验内容添加更多步骤)六、实验数据与分析1. [数据整理]- 将实验过程中收集到的数据整理成表格或图表。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学数学实验项目一矩阵运算与方程组求解实验1 行列式与矩阵实验目的掌握矩阵的输入方法. 掌握利用Mathematica (4.0以上版本) 对矩阵进行转置、加、减、数乘、相乘、乘方等运算, 并能求矩阵的逆矩阵和计算方阵的行列式.基本命令在Mathematica 中, 向量和矩阵是以表的形式给出的.1. 表在形式上是用花括号括起来的若干表达式, 表达式之间用逗号隔开.如输入{2,4,8,16}{x,x+1,y,Sqrt[2]}则输入了两个向量.2. 表的生成函数(1) 最简单的数值表生成函数Range, 其命令格式如下:Range[正整数n]—生成表{1,2,3,4,…,n };Range[m, n]—生成表{m ,…,n };Range[m, n, dx]—生成表{m ,…,n }, 步长为d x .(2) 通用表的生成函数Table. 例如,输入命令Table[n^3,{n,1,20,2}]则输出 {1,27,125,343,729,1331,2197,3375,4913,6859}输入Table[x*y,{x,3},{y,3}]则输出 {{1,2,3},{2,4,6},{3,6,9}}3. 表作为向量和矩阵一层表在线性代数中表示向量, 二层表表示矩阵. 例如,矩阵⎪⎪⎭⎫ ⎝⎛5432 可以用数表{{2,3},{4,5}}表示.输入A={{2,3},{4,5}}则输出 {{2,3},{4,5}}命令MatrixForm[A]把矩阵A 显示成通常的矩阵形式. 例如, 输入命令:MatrixForm[A]则输出 ⎪⎪⎭⎫ ⎝⎛5432 但要注意, 一般地, MatrixForm[A]代表的矩阵A 不能参与运算.输入B={1,3,5,7}输出为{1,3,5,7}输入MatrixForm[B]输出为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛7531虽然从这个形式看向量的矩阵形式是列向量, 但实质上Mathematica 不区分行向量与列向量. 或者说在运算时按照需要, Mathematica 自动地把向量当作行向量或列向量.下面是一个生成抽象矩阵的例子.输入Table[a[i,j],{i,4},{j,3}]MatrixForm[%]则输出⎪⎪⎪⎪⎪⎭⎫ ⎝⎛]3,4[]2,4[]1,4[]3,3[]2,3[]1,3[]3,2[]2,2[]1,2[]3,1[]2,1[]1,1[a a a a a a a a a a a a 注:这个矩阵也可以用命令Array 生成,如输入Array[a,{4,3}]//MatrixForm则输出与上一命令相同.4. 命令IdentityMatrix[n]生成n 阶单位矩阵.例如,输入IdentityMatrix[5]则输出一个5阶单位矩阵(输出略).5. 命令DiagonalMatrix[…]生成n 阶对角矩阵.例如,输入DiagonalMatrix[{b[1],b[2],b[3]}]则输出 {{b[1],0,0},{0,b[2],0},{0,0,b[3]}}它是一个以b[1], b[2], b[3]为主对角线元素的3阶对角矩阵.6. 矩阵的线性运算:A+B 表示矩阵A 与B 的加法;k*A 表示数k 与矩阵A 的乘法; A.B 或Dot[A,B]表示矩阵A 与矩阵B 的乘法.7. 求矩阵A 的转置的命令:Transpose[A].8. 求方阵A 的n 次幂的命令:MatrixPower[A,n].9. 求方阵A 的逆的命令:Inverse[A].10.求向量a 与b 的内积的命令:Dot[a,b].实验举例矩阵A 的转置函数Transpose[A]例1.1 求矩阵的转置.输入ma={{1,3,5,1},{7,4,6,1},{2,2,3,4}};Transpose[ma]//MatrixForm输出为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛411365243271 如果输入Transpose[{1,2,3}]输出中提示命令有错误. 由此可见, 向量不区分行向量或列向量.矩阵线性运算例1.2 设,291724,624543⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛=B A 求.24,A B B A -+ 输入A={{3,4,5},{4,2,6}};B={{4,2,7},{1,9,2}};A+B//MatrixForm4B-2A//MatrixForm输出为⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛43241801081151267 如果矩阵A 的行数等于矩阵B 的列数, 则可进行求AB 的运算. 系统中乘法运算符为“.”, 即用A.B 求A 与B 的乘积, 也可以用命令Dot[A,B]实现. 对方阵A , 可用MatrixPower[A,n]求其n 次幂.例1.3 设,148530291724,36242543⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=mb ma 求矩阵ma 与mb 的乘积. 输入Clear[ma,mb];ma={{3,4,5,2},{4,2,6,3}};mb={{4,2,7},{1,9,2},{0,3,5},{8,4,1}};ma.mb//MatrixForm输出为⎪⎪⎭⎫ ⎝⎛655642566532矩阵的乘法运算例1.4 设,101,530291724⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=B A 求AB 与,A B T 并求.3A 输入Clear[A,B];A={{4,2,7},{1,9,2},{0,3,5}};B={1,0,1};A.B输出为{11,3,5}这是列向量B 右乘矩阵A 的结果. 如果输入B.A输出为{4,5,12}这是行向量B 左乘矩阵A 的结果,A B T 这里不需要先求B 的转置. 求方阵A 的三次方, 输入MatrixPower[A,3]//MatrixForm输出为⎪⎪⎪⎭⎫ ⎝⎛26047754444932141555660119 例1.5 设,421140123,321111111⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--=B A 求A AB 23-及.B A T 输入A={{-1,1,1},{1,-1,1},{1,2,3}}MatrixForm[A]B={{3,2,1},{0,4,1},{-1,2,-4}}MatrixForm[B]3A.B -2A//MatrixFormTranspose[A].B//MatrixForm则输出A AB 23-及B A T 的运算结果分别为⎪⎪⎪⎭⎫ ⎝⎛-----334421424141010 ⎪⎪⎪⎭⎫ ⎝⎛----10120821444求方阵的逆例1.6 设,5123641033252312⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=A 求.1-A 输入Clear[ma]ma={{2,1,3,2},{5,2,3,3},{0,1,4,6},{3,2,1,5}};Inverse[ma]//MatrixForm则输出⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------16521161145810812181********161121162147 注: 如果输入Inverse[ma//MatrixForm]则得不到所要的结果, 即求矩阵的逆时必须输入矩阵的数表形式例1.7 求矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--027926243043286345248127的逆矩阵. 解 A={{7,12,8,24},{5,34,6,-8},{32,4,30,24},{-26,9,27,0}}MatrixForm[A]Inverse[A]//MatrixForm例1.8 设,221331317230,5121435133124403⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=B A 求.1B A - 输入Clear[A,B];A={{3,0,4,4},{2,1,3,3},{1,5,3,4},{1,2,1,5}};B={{0,3,2},{7,1,3},{1,3,3},{1,2,2}};Inverse[ma].B//MatrixForm输出为⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----1671635583891898932516916619 对于线性方程组,b AX =如果A 是可逆矩阵, X ,b 是列向量, 则其解向量为.1b A -例1.9 解方程组⎪⎩⎪⎨⎧-=-+=+-=++.2442,63,723z y x z y x z y x 输入Clear[A,b];A={{3,2,1},{1,-1,3},{2,4,-4}};b={7,6,-2};Inverse[A].b输出为{1,1,2}求方阵的行列式例1.10 求行列式 .3351110243152113------=D 输入Clear[A];A={{3,1,-1,2},{-5,1,3,-4},{2,0,1,-1},{1,-5,3,-3}};Det[A]输出为40例1.11 求.11111111111122222222d d d d c cc c b bb b a a a a D ++++=输入Clear[A,a,b,c,d];A={{a^2+1/a^2,a,1/a,1},{b^2+1/b^2,b,1/b,1},{c^2+1/c^2,c,1/c,1},{d^2+1/d^2,d,1/d,1}};Det[A]//Simplify则输出 2222d c b a )abcd 1)(d c )(d b )(d a )(c b )(c a )(b a (+--------例1.12 计算范德蒙行列式.1111145444342413534333231252423222154321x x x x x x x x x x x x x x x x x x x x 输入Clear[x];Van=Table[x[j]^k,{k,0,4},{j,1,5}]//MatrixForm输出为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛444443333322222]5[]4[]3[]2[]1[]5[]4[]3[]2[]1[]5[]4[]3[]2[]1[]5[]4[]3[]2[]1[11111x x x x x x x x x x x x x x x x x x x x 再输入Det[van]则输出结果比较复杂(项很多)若改为输入Det[van]//Simplify或Factor[Det[van]]则有输出(x[1]-x[2])(x[1]-x[3])(x[2]-x[3])(x[1]-x[4])(x[2]-x[4])(x[3]-x[4])(x[1]-x[5])(x[2]-x[5])(x[3]-x[5])(x[4]-x[5])例1.13 设矩阵 ,60975738723965110249746273⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=A 求.),(|,|3A A tr A 输入A={{3,7,2,6,-4},{7,9,4,2,0},{11,5,-6,9,3},{2,7,-8,3,7},{5,7,9,0,-6}}MatrixForm[A]Det[A]Tr[A]MatrixPower[A,3]//MatrixForm则输出3),(|,|A A tr A 分别为115923⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---12574547726668013841222451984174340410063122181713228151626315018483582949442062726向量的内积向量内积的运算仍用“.”表示, 也可以用命令Dot 实现例1.14 求向量}3,2,1{=u 与}0,1,1{-=v 的内积.输入u={1,2,3};v={1,-1,0};u.v输出为-1或者输入Dot[u,v]所得结果相同.实验习题1.设,150421321,111111111⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--=B A 求A AB 23-及.B A ' 2.设,001001⎪⎪⎪⎭⎫ ⎝⎛=λλλA 求.10A 一般地?=k A (k 是正整数). 3.求⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+++++a a a aa 1111111111111111111111111的逆. 4.设,321011324⎪⎪⎪⎭⎫ ⎝⎛-=A 且,2B A AB +=求.B 5.利用逆矩阵解线性方程组⎪⎩⎪⎨⎧=++=++=++.353,2522,132321321321x x x x x x x x x实验2 矩阵的秩与向量组的极大无关组实验目的学习利用Mathematica 求矩阵的秩,作矩阵的初等行变换; 求向量组的秩与极大无关组.基本命令1. 求矩阵M 的所有可能的k 阶子式组成的矩阵的命令:Minors[M,k].2. 把矩阵A 化作行最简形的命令:RowReduce[A].3. 把数表1,数表2, …,合并成一个数表的命令:Join[list1,list2,…]. 例如输入Join[{{1,0,-1},{3,2,1}},{{1,5},{4,6}}]则输出 {{1,0,-1},{3,2,1},{1,5},{4,6}}实验举例求矩阵的秩例2.1 设,815073131223123⎪⎪⎪⎭⎫⎝⎛-------=M 求矩阵M 的秩.输入Clear[M];M={{3,2,-1,-3,-2},{2,-1,3,1,-3},{7,0,5,-1,-8}};Minors[M,2]则输出{{-7,11,9,-5,5,-1,-8,8,9,11},{-14,22,18,-10,10,-2,-16,16,18,22},{7,-11,-9,5,-5,1,8,-8,-9,-11}}可见矩阵M 有不为0的二阶子式. 再输入Minors[M,3]则输出{{0,0,0,0,0,0,0,0,0,0}}可见矩阵M 的三阶子式都为0. 所以.2)(=M r例2.2 已知矩阵⎪⎪⎪⎭⎫⎝⎛----=1t 0713123123M 的秩等于2, 求常数t 的值.左上角的二阶子式不等于0. 三阶子式应该都等于0. 输入Clear[M];M={{3,2,-1,-3},{2,-1,3,1},{7,0,t,-1}};Minors[M,3]输出为{{35-7t,45-9t,-5+t}}当5=t 时, 所有的三阶子式都等于0. 此时矩阵的秩等于2.例2.3 求矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----3224211631095114047116的行最简形及其秩.输入A={{6,1,1,7},{4,0,4,1},{1,2,-9,0},{-1,3,-16,-1},{2,-4,22,3}}MatrixForm[A]RowReduce[A]//MatrixForm则输出矩阵A 的行最简形⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-00000000100005100101 根据矩阵的行最简形,便得矩阵的秩为3.矩阵的初等行变换命令RowfReduce[A]把矩阵A 化作行最简形. 用初等行变换可以求矩阵的秩与矩阵的逆.例2.4 设,41311221222832A ⎪⎪⎪⎭⎫ ⎝⎛--=求矩阵A 的秩. 输入Clear[A];A={{2,-3,8,2},{2,12,-2,12},{1,3,1,4}};RowReduce[A]//MatrixForm输出为⎪⎪⎪⎪⎭⎫ ⎝⎛-00003232102301 因此A 的秩为2.例2.5 用初等变换法求矩阵⎪⎪⎪⎭⎫ ⎝⎛343122321的逆矩阵.输入 A={{1,2,3},{2,2,1},{3,4,3}}MatrixForm[A]Transpose[Join[Transpose[A],IdentityMatrix[3]]]//MatrixFormRowReduce[%]//MatrixFormInverse[A]//MatrixForm则输出矩阵A 的逆矩阵为⎪⎪⎪⎭⎫ ⎝⎛---1112/532/3231向量组的秩矩阵的秩与它的行向量组, 以及列向量组的秩相等, 因此可以用命令RowReduce 求向量组的秩.例2.6 求向量组)0,3,0,2(),2,5,4,0(),1,1,2,1(231=--=-=ααα的秩.将向量写作矩阵的行, 输入Clear[A];A={{1,2,-1,1},{0,-4,5,-2},{2,0,3,0}};RowReduce[A]//MatrixForm则输出⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-000021541002301 这里有两个非零行, 矩阵的秩等于2. 因此, 它的行向量组的秩也等于2.例2.7 向量组)7,5,1,3(),5,4,3,1(),1,1,1,1(),3,2,1,1(4321==-==αααα是否线性相关?输入Clear[A];A={{1,1,2,3},{1,-1,1,1},{1,3,4,5},{3,1,5,7}};RowReduce[A]//MatrixForm则输出⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0000010010102001 向量组包含四个向量, 而它的秩等于3, 因此, 这个向量组线性相关.例2.8 向量组)3,1,1(),2,1,3(),7,2,2(321=-==ααα是否线性相关?输入Clear[A];A={{2,2,7},{3,-1,2},{1,1,3}};RowReduce[A]//MatrixForm则输出⎪⎪⎪⎭⎫ ⎝⎛100010001 向量组包含三个向量, 而它的秩等于3, 因此, 这个向量组线性无关.向量组的极大无关组例2.9 求向量组)0,5,1,2(),0,2,1,1(),14,7,0,3(),2,1,3,0(),4,2,1,1(54321=-===-=ααααα的极大无关组, 并将其它向量用极大无关组线性表示.输入Clear[A,B];A={{1,-1,2,4},{0,3,1,2},{3,0,7,14},{1,-1,2,0},{2,1,5,0}};B=Transpose[A];RowReduce[B]//MatrixForm则输出⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-000002/51000101102/10301 在行最简形中有三个非零行, 因此向量组的秩等于3. 非零行的首元素位于第一、二、四列,因此421,,ααα是向量组的一个极大无关组. 第三列的前两个元素分别是3,1,于是.3213ααα+=第五列的前三个元素分别是,25,1,21-于是.25214215αααα++-= 向量组的等价可以证明:两个向量组等价的充分必要条件是: 以它们为行向量构成的矩阵的行最简形具有相同的非零行, 因此, 还可以用命令RowReduce 证明两个向量组等价.例2.10 设向量),7,3,5,4(),12,5,8,5(),2,1,2,3(),3,1,1,2(2121--=--=--=-=ββαα求证:向量组21,αα与21,ββ等价.将向量分别写作矩阵A , B 的行向量, 输入Clear[A,B];A={{2,1,-1,3},{3,-2,1,-2}};B={{-5,8,-5,12},{4,-5,3,-7}};RowReduce[A]//MatrixFormRowReduce[B]//MatrixForm则输出⎪⎪⎪⎪⎭⎫ ⎝⎛--7137510747101 与⎪⎪⎪⎪⎭⎫ ⎝⎛--7137510747101两个行最简形相同, 因此两个向量组等价.实验习题1.求矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=12412116030242201211A 的秩. 2.求t , 使得矩阵⎪⎪⎪⎭⎫ ⎝⎛-=t A 23312231的秩等于2.3.求向量组)0,0,1(),1,1,1(),1,1,0(),1,0,0(4321====αααα的秩.4.当t 取何值时, 向量组),3,1(),3,2,1(),1,1,1(321t ===ααα的秩最小?5.向量组)1,1,1,1(),1,1,1,1(),1,1,1,1(),1,1,1,1(4321-=--=--==αααα是否线性相关?6.求向量组)6,5,4,3(),5,4,3,2(),4,3,2,1(321===ααα的最大线性无关组. 并用极大无关组线性表示其它向量.7.设向量),6,3,3,2(),6,3,0,3(),18,3,3,8(),0,6,3,1(2121=-=-=-=ββαα求证:向量组21,αα与21,ββ等价.实验3 线性方程组实验目的熟悉求解线性方程组的常用命令,能利用Mathematica 命令各类求线性方程组的解. 理解计算机求解的实用意义.基本命令1.命令NullSpace []A ,给出齐次方程组0=AX 的解空间的一个基.2.命令LinearSolve []b A ,,给出非齐次线性方程组b AX =的一个特解.3.解一般方程或方程组的命令Solve 见Mathematica 入门.实验举例求齐次线性方程组的解空间设A 为n m ⨯矩阵,X 为n 维列向量,则齐次线性方程组0=AX 必定有解. 若矩阵A 的秩等于n ,则只有零解;若矩阵A 的秩小于n ,则有非零解,且所有解构成一向量空间. 命令NullSpace 给出齐次线性方程组0=AX 的解空间的一个基.例3.1 求解线性方程组⎪⎪⎩⎪⎪⎨⎧=---=++=+--=--+.0532,0375,023,02432143243214321x x x x x x x x x x x x x x x 输入Clear[A];A={{1,1,-2,-1},{3,-2,-1,2},{0,5,7,3},{2,-3,-5,-1}};NullSpace[A]则输出{{-2,1,-2,3}}说明该齐次线性方程组的解空间是一维向量空间,且向量(-2,1,-2,3)是解空间的基.注:如果输出为空集{ },则表明解空间的基是一个空集,该方程组只有零解.例3.2 求解线性方程组⎪⎪⎩⎪⎪⎨⎧=---=++=+--=-++053203750232302432143243214321x x x x x x x x x x x x x x x 输入Clear[A];A={{1,1,2,-1},{3,-2,-3,2},{0,5,7,3},{2,-3,-5,-1}};Nullspace[A]输出为{ }因此解空间的基是一个空集,说明该线性方程组只有零解.例3.3 向量组)7,5,1,3(),5,4,3,1(),1,1,1,1(),3,2,1,1(4321==-==αααα是否线性相关?根据定义, 如果向量组线性相关, 则齐次线性方程组044332211='+'+'+'ααααx x x x 有非零解.输入Clear[A,B];A={{1,1,2,3},{1,-1,1,1},{1,3,4,5},{3,1,5,7}};B=Transpose[A];NullSpace[B]输出为{{-2,-1,0,1}}说明向量组线性相关,且02421=+--ααα非齐次线性方程组的特解例3.4 求线性方程组⎪⎪⎩⎪⎪⎨⎧=----=++=+--=--+45322375222342432143243214321x x x x x x x x x x x x x x x 的特解.输入Clear[A,b];A={{1,1,-2,-1},{3,-2,-1,2},{0,5,7,3},{2,-3,-5,-1}};b={4,2,-2,4}LinearSolve[A,b]输出为{1,1,-1,0}注: 命令LinearSolve 只给出线性方程组的一个特解.例3.5 求线性方程组⎪⎪⎩⎪⎪⎨⎧=---=++=+--=--+45322375222342432143243214321x x x x x x x x x x x x x x x 的特解.输入Clear[A,b];A={{1,1,2,-1},{3,-2,-1,2},{0,5,7,3},{2,-3,-5,-1}};b={4,2,2,4}Linearsolve[A,b]输出为Linearsolve::nosol:Linear equation encountered which has no solution.说明该方程组无解.例3.6 向量)4,3,1,2(-=β是否可以由向量)1,3,2,1(1-=α,)11,12,5,5(2-=α,()3,6,3,13-=α线性表示?根据定义, 如果向量β可以由向量组32,1,ααα线性相关, 则非齐次线性方程组βααα'='+'+'332211x x x 有解.输入Clear[A,B,b];A={{1,2,-3,1},{5,-5,12,11},{0,5,7,3},{1,-3,6,3}};B=Transpose[A];b={2,-1,3,4};Linearsolve[B,b]输出为 {31,31,0} 说明β可以由32,1,ααα线性表示,且213131ααβ+=例3.7 求出通过平面上三点(0,7),(1,6)和(2,9)的二次多项式,2c bx ax ++并画出其图形.根据题设条件有 ,924611700⎪⎩⎪⎨⎧=+⋅+⋅=+⋅+⋅=+⋅+⋅c b a c b a c b a 输入Clear[x];A={{0,0,1},{1,1,1},{4,2,1}}y={7,6,9}p=LinearSolve[A,y]Clear[a,b,c,r,s,t];{a,b,c}.{r,s,t}f[x_]=p.{x^2,x,1};Plot[f[x],{x,0,2},GridLines ->Automatic,PlotRange ->All];则输出c b a ,,的值为{2,-3,7}并画出二次多项式7322+-x x 的图形(略).非齐次线性方程组的通解用命令Solve 求非齐次线性方程组的通解.例3.8 求出通过平面上三点(0,0),(1,1),(-1,3)以及满足9)1(,20)1(='=-'f f 的4次多项式).(x f解 设,)(234e dx cx bx ax x f ++++=则有⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++=+-+-=+-+-=++++=923420234310d c b a d c b a e d c b a e d c b a e 输入Clear[a,b,c,d,e];q[x_]=a*x^4+b*x^3+c*x^2+d*x+e;eqs=[q[0]= =0,q[1]= =1,q[-1]= =3,q ’[-1]= =20,q ’[1]= =9];{A,y}=LinearEquationsToMatrices[eqs,{a,b,c,d}];p=LinearSolve[A,y];f[x_]=p.{x^4,x^3,x^2,x,1};Plot[f[x],{x,-1,1},GridLines->Automatic,PlotRange->All];则输出所求多项式 ,435427431419)(234x x x x x f -++-=非齐次线性方程组的通解用命令solve 求非齐次线性方程组的通解.例3.9解方程组⎪⎪⎩⎪⎪⎨⎧=+-=+-=++-=++-53323221242143143214321x x x x x x x x x x x x x x输入solve[{x-y+2z+w==1,2x-y+z+2w==3,x-z+w==2,3x-y+3w==5},{x,y,z,w}]输出为{{x →2-w+z,y →1+3z}}即3412x x x +-=,3231x x +=.于是,非齐次线性方程组的特解为(2,1,0,0).对应的齐次线性方程组的基础解系为(1,3,1,0)与(-1,0,0,1).例3.10解方程组⎪⎪⎩⎪⎪⎨⎧-=++-=++-=+-=-+-33713344324324214324321x x x x x x x x x x x x x 解法1 用命令solve输入solve[{x-2y+3z-4w==4, y-z+w==-3,x+3y+w==1,-7y+3z+3w==-3},{x,y,z,w}]输出为{{x →-8,y →3, z →6, w →0}}即有唯一解81-=x ,32=x ,63=x ,04=x .解法 2 这个线性方程组中方程的个数等于未知数的个数,而且有唯一解 ,此解可以表示为b A x 1-=.其中A 是线性方程组的系数矩阵,而b 是右边常数向量. 于是, 可以用逆阵计算唯一解.输入Clear[A,b,x];A={{1,-2,3,-4},{0,1,-1,1},{1,3,0,1},{0,-7,3,1}};b={4,-3,1,-3};x=Inverse[A].b输出为{-8,3,6,0}解法3 还可以用克拉默法计算这个线性方程组的唯一解.为计算各行列式,输入未知数的系数向量,即系数矩阵的列向量.输入Clear[a,b,c,d,e];a={1,0,1,0};b={-2,1,3,-7};c={3,-1,0,3};d={-4,1,1,1};e={4,-3,1,-3};Det[{e,b,c,d}]/ Det[{a,b,c,d}]Det[{a,e,c,d}]/ Det[{a,b,c,d}]Det[{a,b,e,d}]/ Det[{a,b,c,d}]Det[{a,b,c,e}]/ Det[{a,b,c,d}]输出为-836例3.10当a 为何值时,方程组⎪⎩⎪⎨⎧=++=++=++111321321321ax x x x ax x x x ax 无解、有唯一解、有无穷多解?当方程组有解时,求通解.先计算系数行列式,并求a ,使行列式等于0.输入Clear[a];Det[{{a,1,1},{1,a,1},{1,1,a}}];Solve[%==0,a]则输出{{a →-2},{a →1},{a →1}}当a 2-≠,a 1≠时,方程组有唯一解.输入Solve[{a*x +y +z ==1,x +a*y +z ==1,x +y +a*z ==1},{x,y,z}]则输出{{x →,21a + y →,21a+ z →a +21}} 当a =-2时,输入Solve[{-2x+y+z==1,x -2y+z==1,x+y -2z==1},{x,y,z}]则输出{ }说明方程组无解.当a =1时,输入Solve[{x+y+z==1,x+y+z==1,x+y+z==1},{x,y,z}]则输出{{x →1-y -z}}}说明有无穷多个解.非齐次线性方程组的特解为(1,0,0),对应的齐次线性方程组的基础解系为为(-1,1,0)与(-1,0,1).例3.11 求非齐次线性方程组 ⎪⎩⎪⎨⎧-=+-+=-+-=+-+2534422312432143214321x x x x x x x x x x x x 的通解.解法1 输入A={{2,1,-1,1},{3,-2,1,-3},{1,4,-3,5}};b={1,4,-2};particular=LinearSolve[A,b]nullspacebasis=NullSpace[A]generalsolution=t*nullspacebasis[[1]]+k*nullspacebasis[[2]]+Flatten[particular]generalsolution//MatrixForm解法2 输入B={{2,1,-1,1,1},{3,-2,1,-3,4},{1,4,-3,5,-2}}RowReduce[B]//MatrixForm根据增广矩阵的行最简形, 易知方程组有无穷多解. 其通解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛007/57/6107/97/1017/57/14321t k x x x x (k ,t 为任意常数)实验习题1.解方程组⎪⎩⎪⎨⎧=++=++=+-.024,02,032321321321x x x x x x x x x2.解方程组⎪⎩⎪⎨⎧=++-=++-=++-.0111784,02463,03542432143214321x x x x x x x x x x x x3. 解方程组⎪⎩⎪⎨⎧-=-+-=+-=-+-.22,3,44324314324321x x x x x x x x x x 4.解方程组⎪⎩⎪⎨⎧=++-=+++=-++.254,32,22432143214321x x x x x x x x x x x x5.用三种方法求方程组⎪⎪⎩⎪⎪⎨⎧=-+=-+=-+=-+127875329934,8852321321321321x x x x x x x x x x x x 的唯一解. 6.当b a ,为何值时,方程组⎪⎪⎩⎪⎪⎨⎧-=+++=--+-=++=+++1232)3(122043214324324321ax x x x b x x a x x x x x x x x 有唯一解、无解、有无穷多解?对后 者求通解.实验4 交通流模型(综合实验)实验目的利用线性代数中向量和矩阵的运算, 线性方程组的求解等知识,建立交通流模型. 掌握线性代数在交通规划方面的应用.应用举例假设某城市部分单行街道的交通流量(每小时通过的车辆数)如图4.1所示.300300300200500x x 8x 图4.1试建立数学模型确定该交通网络未知部分的具体流量.假定上述问题满足下列两个基本假设(1)全部流入网络的流量等于全部流出网络的流量;(2)全部流入一个节点的流量等于流出此节点的流量.于是, 根据图4.1及上述基本两个假设, 可建立该问题的线性方程组⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧=++==+-==+=+=+=+-=+=+-1000600200400100080018002005003008631010998751217654432x x x x x x x x x x x x x x x x x x x x 即⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---10006002004001000800800200500300001010010010000000001100000000010000000000110000000000010001000000001100011000000000011000000000111010987654321x x x x x x x x x x 若将上述矩阵方程记为b Ax =,则问题就转化为求b Ax =的全部解. 下面我们利用Mathmatica 软件来求解1、输入矩阵A ,并利用RowReduce[A ]命令求得A 的秩为8.输入RowReduce[A]//MatrixFormOut[2]//MatrixForm=则输出⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-0000000000000000000010000000000100000000001100000000101000000000011000000000010000000100100000010001 2、应用命令NullSpace[A]求出齐次线性方程组0=Ax 的基础解系.输入In[3]:=NullSpace[A]//MatrixFormOut[3]//MatrixForm=则输出⎪⎪⎭⎫ ⎝⎛----00000110110011100000 由此即得到所求齐次线性方程组的基础解系:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=+=00000110110011100000212211C C c c ξξη, (21,C C 为任意常数). 3、输入增广阵(A b ),求出其秩为8, 由,108)()(=<==n Ab r A r 知方程组有无穷多个解.输入RowReduce[Ab]//MatrixFormOut[5]//MatrixForm=则输出⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-00000000000000000000006001000000000400010000000010000011000000800001010000050000000110002000000000100000000100108000000010001 4、应用命令LinearSolve[A, b],求得非齐次线性方程组b Ax =的一个特解.输入LinearSolve[A,b]Out[9]={{800},{0},{200},{500},{0},{800},{1000},{0},{400},{600}}则得到所求非齐次线性方程组的一个特解:T )6004000100080005002000800(*=ξ综上所述,我们就得到了非齐次线性方程组b Ax =的全部解为,*2211*ξξξξη++++=C C x (21,C C 为任意常数).在解的表示式中, x 的每一个分量即为交通网络中未知部分的具体流量, 该问题有无穷多解(为什么? 并思考其实际意义).本模型具有实际应用价值, 求出该模型的解, 可以为交通规划设计部门提供解决交通堵塞、车流运行不畅等问题的方法, 知道在何处应建设立交桥, 那条路应设计多宽等, 为城镇交通规划提供科学的指导意见. 但是,在本模型中,我们只考虑了单行街道这样一种简单情形,更复杂的情形留待读者在更高一级的课程中去研究. 此外,本模型还可推广到电路分析中的网络节点流量等问题中.实验报告请读者应用本模型的思想方法, 为你所在或你熟悉的城镇建立一个区域的交通流量模型. 并提供一个具体的解决方案, 即从无穷多个解中根据具体限制确定出一个具体的解决方案.。

相关文档
最新文档