第七届“学用杯”全国知识应用竞赛九年级数学初赛试题(A) 人教新课标版
第七届“学用杯”全国知识应用竞赛七年级数学初赛试题(B) 新人教版

第七届“学用杯”全国数学知识应用竞赛七年级初赛B.卷试题一、填空题(每小题6分,共30分)1.数学谜语,既能激发好奇心,增强想象力,又能拓宽视野,丰富知识.下面的两则数学谜语,你能写出谜底吗?(1)七六五四三二一(打一数学名词):;(2)只识0和1,能算万和亿,软硬我都有,猜我很容易(打一计算工具):.2.在七年级的一次数学活动课中,为了让同学们感受身边的数据,X老师要求大家借助学校的篮球场,每一活动小组自己发现数据,并测量记录数据.某活动小组测得学校的篮球场长为A米,宽为B米,且长比宽多C米,周长是D米,面积是E平方米,篮球架高F 米.测量到的数据有:86,13,420,15,28,3.由于记录疏忽把数据弄乱了.你能帮他们整理一下吗?A=,B=,C=,D=,E=,F=.3.你玩过“数字黑洞”的游戏吗?“数字黑洞”,即满足某种条件的所有数,通过一种运算,都能被它“吸”进去,无一能逃脱它的魔掌.下面我们就来玩一种数字游戏,它可以产生“黑洞数”,操作步骤如下:第一步,任意写出一个自然数(以下称为原数);第二步,再写出一个新的三位数,它的百位数字是原数中偶数数字的个数,十位数字是原数中奇数数字的个数,个位数字是原数的位数;以下每一步,都对上一步得到的数按照第二步的规则继续操作,直至这个数不再变化为止.不管你开始写的是一个什么数,几步之后变成的自然数总是相同的,最后这个总相同的数就称为“黑洞数”.请你以2008为例尝试一下:第一步写出2008,第二步之后变为,再变为,再变为,再变为,再变为,……所以这个数字游戏的“黑洞数”是.4.将3个相同的长为2厘米、宽为1厘米、高为3厘米的小长方体拼成一个大长方体,共有种拼法;如果用包装纸把拼成的长方体包起来,最少需要平方厘米的包装纸.5.公园里准备修六条直的走廊,并且在走廊的交叉路口处设一个报亭,这样的报亭最多可设_______个.二、选择题(每小题6分,共30分)6.同学们,你经常上网浏览新闻吗?据新华网消息:2007年7月19日,国务院新闻办公室举行新闻发布会,国家统计局发言人介绍了2007年上半年国民经济运行情况,其中在谈到农业方面时提到,2007年上半年我国农业生产再获丰收,夏粮单产创历史新高.初步统计,全国夏粮产量达到11534万吨,增产146万吨,增长1.3%,连续四年获得丰收.用科学记数法表示2007年上半年的夏粮产量为(保留4个有效数字)( )A.81.153410⨯吨B.71.153410⨯吨 C.71.15010⨯吨D.81.15310⨯吨7.某城市新建了一座游乐场,即日将完工.当施工者准备给游乐场用砖头砌上围墙时,发现在设计图纸中的某些数据已经模糊不清了(如图1),从而无法计算出外围围墙的周长,因此无法备砖料.根据图中的标示,可计算出外围围墙的周长是 ( )A.320米B.260米 C.160米 D.100米8.2007年8月8日是2008奥运会一周年倒计时的日子.小刚制作了一个侧面边长为1的等边三角形样式的纸盒(如图2),把它的侧面三角形的顶点分别标出A B C ,,三个点,让这个纸盒按照同一个方向每天在平面上滚动一次(无滑动),那么到2008年奥运会开幕那天,点A 转动的路程是( )A.488π3 B.122π3 C.244π3 D.122π9.QQ 是一种流行的中文网络即时通讯软件.注册用户通过累积“活跃天数”就可获得相应的等级,如果用户当天(0∶00~24∶00)使用QQ 在2小时以上(包括2小时),其“活跃天数”累积为1天.一个新用户等级升到1级需要5天的“活跃天数”,这样可以得到1个星星,此后每升1级需要的“活跃天数”都比前一次多2天,每升1级可以得到1个星星,每4个星星可以换成一个月亮,每4个月亮可以换成1个太阳.网名是“未来”的某用户今天刚升到2个月亮1个星星的等级,那么他可以升到1个太阳最少还需经过的天数是( )A.205天 B.204天 C.203天 D.202天10.图3所示的九宫图中,汉字“欢迎你登录数学中国”分别表示1~9中的9个不同数字,且满足下列3个条件:(1)每个“田”字形内的4个数字之和都相等;(2)欢2=中2+国22;(3)录>数.那么“数”“学”“中”“国”这4个字所表示的数字之和是( )A.16 B.18 C.20 D.22三、解答题(每小题15分,共60分)11.李慧家有一个小型的家用烤面包器,一次只能放两片面包,每片面包烤一面需要1分钟,要烤另一面,就得取出面包片,把它翻过来,然后再放回烤面包器中.一天早晨,李慧妈妈烤了三片面包,两面都要烤,共用了4分钟(忽略取出面包片的时间).假设三片面包分别称为A B C ,,,每片面包的两面分别用1,2代表,李慧妈妈烤面包的程序是:第一分钟:烤1A 面和1B 面;第二分钟:烤2A 和2B 面;第三分钟:烤1C 面;第四分钟:烤2C 面.借助这个家用烤面包器,每片面包都烤两面,你能用更短的时间将三片面包烤完吗?如果能,请写出你烤面包的程序及所用的时间;如果不能,请说明理由.12.有两个盗宝贼,偶然获得一X 藏宝图,他们研究了大半天,破解了其中的秘密:在一片原始森林里,有A B C ,,三棵位于同一直线上的十分显眼的参天大树,A 树距B 树100米,B 树距C 树150米,宝藏就藏在C 树下面.盗宝贼跋山涉水找到那里一看,傻眼了:三棵树外形十分相似,根本不易辨认.请问:你有什么方法一次就能确定宝藏埋在哪棵树下吗?写出你的方法.13.请你阅读“龟兔赛跑新传”比赛规程,解答问题.赛程:全程5.2千米;限速:兔子每小时跑20千米,乌龟每小时跑3千米;跑法:乌龟不停的跑;但兔子却边跑边玩,它先跑了1分钟然后玩15分钟,又跑了2分钟然后玩15分钟,又跑了2分钟然后玩15分钟,再跑3分然后玩15分钟……通过计算说明:(1)它俩谁先到达终点?(2)先到达终点的比后到终点的要快多少分钟?14.翻牌游戏:在一次数学课上,老师把54X扑克牌按照1、2、3、…、54的顺序进行编号后,背面朝上摆成一排.班里正好有54名同学,同样把这54名同学按照1、2、3、…、54的顺序进行编号.游戏规则是:编号为1的同学把扑克牌中编号为1的倍数的所有牌翻一次;编号为2的同学把扑克牌中编号为2的倍数的所有牌再翻一次;编号为3的同学把扑克牌中编号为3的倍数的所有牌也翻一次……直到最后一名54号同学把54号牌翻过来游戏结束.问:游戏结束后有几X扑克牌最后被翻成正面朝上?写出它们的编号并说明理由.四、开放题(本题共30分)15.“减去一个数,等于加上这个数的相反数”.这是有理数的减法法则,在生活中应用这个法则还有一定的教育意义呢!请你编一个与此有关的富有教育意义的情景对话.第七届“学用杯”全国数学知识应用竞赛七年级初赛(B)卷试参考答案一、1.(1)倒数(2)电子计算机(电脑)2.28,15,13,86,420,33.404,303,123,123,123,1234.4,425.15(提示:六条直线,最多有15个交点,利用公式(1)2n n可以计算出).二、6.D7.B(提示:(1)图示提供的数据推知:A+B+C=50米,从而竖向的围墙总长度为100米;(2)从横的部分提供的数据推知,横向的围墙总长度为:50+A+30+50+30-A=160米,从而外围围墙的总长度为260米.故选B.)8.A(提示:一共有366天,每滚动3次为一个循环,每个循环中点A移动2次,每次移动的路程是12π3.)9.C(提示:升到2个月亮1个星星需要117天;而升到1个太阳需要320天,所以还需要203天.提示:若级数为N,天数为M,则M=N(N+4),升到1个太阳即到16级,则天数M=16(16+4)=320(天);升到2个月亮1个星星即到第9级,所用天数为:9(9+4)=117(天),所以320-117=203(天).故选C.)10.A(提示:因为欢2=中2+国2,所以52=32+42.即欢=5,中、国一个可能是3、一个可能是4.又根据已知“每个‘田’字形内的4个数字之和都相等”,所以迎+你+录+数=录+数+中+国.所以迎+你=中+国=7.则迎、你一个可能是1,一个可能是6.假设你=1,欢+登=你+数,即5+登=1+数,则数-登=4.但在余下的2、7、8、9中没有两数之差是4的,所以假设不成立.所以迎=1,你=6.又欢+迎=学+中=5+1=6,即学+中=6.而学只能是2、7、8、9中的一个数,所以学=2.则中=4,则国=3.又录>数,可见数是第二行中最小的一个数,所以数=7.又欢+登=你+数,即5+登=6+数,所以登-数=1.所以登=8.则录=9.即九宫图为:所以数+学+中+国=7+2+4+3=16.故选A.)三、11.解:3分钟.程序是:第一分钟:烤A1面和B1面,取出面包片A,把B翻个面放回烤面包器,把A放在一边而把C放入烤面包器.第二分钟:烤B2面和C1面,取出面包片B,把C翻个面放回烤面包器,把B放在一边(现在它的两面已经都烤好了),再把A放入烤面包器.第三分钟:烤A2面和C2面.12.解:可以用测量法来确定,且只需测量一次即可.方法是:测量第一棵树与第二棵树之间的距离,这个距离如果是100米,则宝藏埋在第三棵树下;这个距离如果是50米或150米,则宝藏就埋在第一棵树下(两端的两棵树均可作为第一棵树).(提示:如下图,A、B、C的位置共有四种不同的情况.无论哪种情况,只需任意测量相邻两棵树的距离,如果这个距离是100米,则宝藏埋在除这两棵树以外的第三棵树下;如果这个距离是50米或150米,则宝藏埋在这两棵树中第一棵(外端的一棵)树下.)÷3×60≈104(分钟);÷20×60=15.6(分钟),我们注意到兔子休息的规律是跑1、2、3……分钟后,休息15分钟.于是试着将15.6表示成:15.6=1+2+3+4+5+0.6,因有5个间隔,所以休息5×15=75(分钟),于是,兔子跑到终点所需时间为15.6+75=90.6分钟;显然,兔子先到达,先乌龟104-90.6=13.4(分钟).14.解:一共有7X扑克牌最后被翻成正面朝上,编号为1、4、9、16、25、36、49.理由:扑克牌最后是否被翻成正面朝上,主要看它被翻了几次,如果被翻了偶数次则它仍然和原来一样,如果它被翻了奇数次则它最后被翻成了正面朝上.第n号牌是否被翻了过来,关键是看数字n的因数的个数是奇数还是偶数(包括1和它本身),如1只有一个因数1,2有两个因数1、2,3有两个因数1、3,4有三个因数1、2、4,……不难判断,凡是平方数的因数的个数都是奇数个,因此编号为1、4、9、16、25、36、49的扑克牌最后被翻成正面朝上.四、15.说明:答案不惟一(只要情景对话积极、健康,能将法则嵌入得比较自然,又有教育意义即可)提供一个情景对话,如:小明从老师办公室回到座位上,自言自语的说:“不就是犯了个小错吗?有什么大惊小怪的”.他的同桌小聪问:“怎么了,小明”.“作业上出现了一个小错误,被老师批一顿.咳!”小聪看了看小明的作业,发现他在计算时忽略了换算.说:“这可不是一个小错误,再说,老师对你进行批评教育是为了帮助改掉这个不良习惯呀,你知道‘减去一个数,等于加上这个数的相反数’.改掉这个不良习惯,也就相当于增加了一个好的习惯呀”.“哦!明白了,还真是这样”.看看,这个运算法则对促使小明醒悟的作用还真大呢!。
九年级数学竞赛初赛试卷【含答案】

九年级数学竞赛初赛试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()。
A. a/2B. a√2C. 2aD. a²2. 下列哪个数是无理数?()A. √9B. √16C. √3D. √13. 一个等差数列的首项为2,公差为3,则第10项为()。
A. 29B. 30C. 31D. 324. 若函数f(x) = 2x + 3,则f(3)的值为()。
A. 6B. 9C. 12D. 155. 在直角坐标系中,点(3, 4)关于y轴的对称点为()。
A. (-3, 4)B. (3, -4)C. (-3, -4)D. (4, 3)二、判断题(每题1分,共5分)1. 两个等腰三角形一定是相似的。
()2. 任何数乘以0都等于0。
()3. 二次函数的图像一定是一个抛物线。
()4. 平行四边形的对角线互相平分。
()5. 一元一次方程的解一定是整数。
()三、填空题(每题1分,共5分)1. 若一个圆的半径为r,则它的周长为______。
2. 若等差数列的首项为a,公差为d,则第n项为______。
3. 若函数f(x) = ax² + bx + c,则它的顶点坐标为______。
4. 在直角坐标系中,点(2, -3)关于原点的对称点为______。
5. 若一个平行四边形的面积为S,底为b,高为h,则S =______。
四、简答题(每题2分,共10分)1. 简述等差数列的定义。
2. 简述二次函数的图像特点。
3. 简述勾股定理。
4. 简述平行线的性质。
5. 简述一元二次方程的解法。
五、应用题(每题2分,共10分)1. 已知一个正方形的边长为10cm,求它的对角线长。
2. 已知等差数列的首项为3,公差为2,求第10项。
3. 已知函数f(x) = 3x² 12x + 9,求它的顶点坐标。
4. 在直角坐标系中,已知点A(2, 3)和点B(4, 7),求线段AB的长度。
九年级数学竞赛初赛试卷【含答案】

九年级数学竞赛初赛试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()。
A. a/2B. a√2C. 2aD. a²2. 下列哪个数是无理数?()A. √9B. √16C. √3D. √13. 若函数f(x) = 2x + 3,则f(-1)的值为()。
A. 1B. 2C. 3D. 54. 下列哪个图形不是正多边形?()A. 等边三角形B. 等腰梯形C. 正方形D. 正五边形5. 若一个圆的半径为r,则它的周长为()。
A. 2rB. 2πrC. πr²D. r²/2二、判断题(每题1分,共5分)1. 两个负数相乘的结果一定是正数。
()2. 任何数乘以0都等于0。
()3. 对角线相等的四边形一定是矩形。
()4. 一元二次方程ax² + bx + c = 0(a≠0)的解可以用公式x = [-b ± √(b² 4ac)] / 2a求得。
()5. 任何数都有倒数。
()三、填空题(每题1分,共5分)1. 若一个三角形的两个内角分别为30°和60°,则第三个内角的度数为______°。
2. 若2x 5 = 0,则x的值为______。
3. 若一个圆的直径为10cm,则它的面积为______cm²。
4. 若一个等差数列的首项为3,公差为2,则第5项的值为______。
5. 若sinθ = 1/2,且θ是锐角,则θ的度数为______°。
四、简答题(每题2分,共10分)1. 请简述勾股定理的内容。
2. 请简述一元一次方程的求解方法。
3. 请简述等差数列的定义及通项公式。
4. 请简述平行四边形的性质。
5. 请简述圆的周长和面积的计算公式。
五、应用题(每题2分,共10分)1. 已知一个长方形的长是宽的2倍,且长方形的周长是24cm,求长方形的长和宽。
“数学 ”全国数学知识应用竞赛 九年级初赛试题

第二届“学用杯”全国数学知识应用竞赛九年级初赛试题一、填空题(每小题5分,共40分)1.初三(2)班生物兴趣小组培养了一种微生物,该微生物每天增加一倍,经过10天后,整个实验瓶充满微生物,则经过天微生物所占的体积是实验瓶体积的一半.2.小明从十字路口开始以4米/秒的速度向北前进,此时小峰在十字路口东方50米A处以3米/秒的速度向西前进,则经过秒后,此二人的距离为85米.3.小刚在一次投镖游戏中投了多于11支镖,共得100环,且每发都命中8、9或10环,则他打中8环的次数为次.4.在一次航空模型的设计制作中,需将两个半径为12cm和4cm的圆木棍用铁丝紧紧扎在一起,则最少需铁丝cm(接头忽略不计).5.一城市出租车的收费标准如下表,四位同学到郊外写生,到达目的地后,出租车打出的电子收费单为“里程11公里,应收29.1元,请付29元,谢谢!”则基本价N= 元(N<12).61米/秒的速度向东匀速走开,某时他的影子长1.3米,再过2秒,他的影子长为1.8米,则路灯高度为米. 7.某书店对同学们购书实行优惠,规定:(1)如一次购书不超过30元,则不予以折扣;(2)如一次购书超过30元,但不超过50元,按标价给予九折优惠;(3)如一次购书超过50元,其中50元给予九折优惠,超过50元的部分给予八折优惠,李华同学两次去购书,分别付款23元与36元,如果他只去一次购买同样的书籍,则应付款元. 8.如图1,张敏同学的狼狗“赛赛”的狗窝是8×8的正方形,用长为12的皮带将狗拴在A 点,在狗窝外面狗所能活动的面积为.二、选择题(每小题5分,共50分)9α,则它们公共部分(图2中阴影部分)的面积为().(A)1sinα(B)1cosα(C)sinα(D)110.小青步行从家出发,匀速向学校走去,同时她哥哥小强骑摩托车从学校出发,匀速向家驶去,二人在途中相遇,小强立即把小青送到学校,再向家里驶去,这样他在途中所用的时间是原来从学校直接驶回家所用时间的2.5倍,那么小强骑摩托车的速度是小青步行速度的(). (A)2倍(B)3倍(C)4倍(D)5倍11.学校大门如图3所示是一抛物线形水泥建筑物,大门的地面宽度为8米,两侧距地4米高处各有一挂校名横匾用的铁环,两铁环的水平距离为6米,则该校门的高度(精确到0.1米)为().(A )9.2米(B )9.1米 (C )9米(D )5.1米12.某校参加数学竞赛的选手平均分数是75分,其中参赛男选手比女选手人数多80%,而女选手的平均分比男选手的平均分高20%,那么女选手的平均分是 ( ).(A ) 81(B )82 (C )83 (D )8413.初三某班在庆祝申奥成功的活动中,制作某种喜庆用品需将一张半径为2的半圆形纸板沿它的一条弦折叠,使得弧与直径相切,如图4所示,如果切点分直径为3:1两部分,则折痕长为 ( ).(A (B (C )D 14.在居委会提出的“全民健身”倡导下,甲、乙两人早上晨练,同时从A 地赶往B 地,甲先骑自行车到中点,改为跑步,而乙则是先跑步到中点,改为骑自行车,最后两人同时到达B 地,又知甲骑自行车比乙骑自行车速度快,若某人离开A 地的距离s 与所用时间t 的函数图象表示,则下图给出的四个函数图象中,甲、乙两人的图象情况只能是 ( ).(A )甲是图(1),乙是图(2)(B )甲是图(1),乙是图(4)(C )甲是图(3),乙是图(2)(D )甲是图(3),乙是图(4)15.如图5,某海关缉私艇巡逻到达A 处时,接到 情报,在A 处北偏西60°方向的B 处发现一艘可疑的船只,正以24海里/小时的速度向正东方向前进,上级命令要对可疑船只进行检查,该艇立即沿北偏 西45°的方向快速前进,经过一小时的航行,正好在C 处截住可疑船只,则该艇的速度约为)1.414≈≈≈( ). (A )44(B )45(C )46(D )4716.本市一房地产公司在西部大开发活动中,成功中标一块锐角三角形地皮,现要在此地皮上建一个供市民休闲娱乐的正方形广场,若三角形地皮的三边长分别为a 、b 、c ,且a >b >c ,则正方形广场的两个顶点放在哪条边上可使广场面积最大 ( ).(A )最小边c 上(B )中间边b 上 (C )最大边a 上 (D )哪条边上都一样17.两名初三学生被允许参加高中学生举行的象棋比赛,每个选手都同其他每个选手比赛一A B C 图5 图4图3 (2) (3) (1) (4)次,胜得一分,和得半分,输得零分,两名初三学生共得8分,每个高中学生都和高中其他同学得到同样分数,则参赛的高中学生人数为(). (A)7 (B)9 (C)14 (D)7或1418.编号为1到101的101个小球分放在两个盒子A和B中,40号小球在盒子A中,把这个小球从盒子A中移至盒子B中,这时盒子A中小球号码数的平均数增加了14,B中小球号码数的平均数也增加了14,则原来在盒子A中的小球个数为().(A)70 (B)71 (C)72 (D)73三、解答题(每小题20分,共40分)19.某下岗职工开办的一小型服装厂里有大量形状为等腰直角三角形的边角布料(如图6),现找出其中一种,测得∠C=90°,AC=BC=4,今要从这种三角中剪出一种扇形(做成不同形状的玩具用),使扇形的边缘半径恰好都在△ABC的其他边上,且扇形的弧与△ABC的其他边相切.请你设计出所有可能符合题意的方案示意图,并求出扇形的半径(只要求画出示意图,并标上半径即可).20.某地引进外资兴办的一家公司生产的A种产品,它的成本是2元,售价是3元,年销售量为100万件,为了获得更好的效益,公司准备拿出一定的资金做广告.根据经验,每年投入的广告费是x(十万元)时,产品的年销量将是原销售量的y倍,且y是x的二次函数,(2)如果把利润看作是销售额减去成本费和广告费,试写出年利润S(十万元)与广告费x (十万元)的函数关系式;(3)如果投入的年广告费为10~30万元,问广告费在什么范围内,公司所获年利润随广告费的增大而增大?四、开放题(本大题20分)21.请用一个长方形纸片折出一个30°的角(不借助任何工具),写出你的作法,并说明理由.图6。
第七届全国中小学数学创新应用大赛初赛 九年级

动 6 个单位,且移动后的二次函数 g(x) 3x2 cx d ,则 c d ( ).
A.20
B.23
C.27
D.30
E.33
第 III 卷(附加卷 本题为选做题,可任选试题作答) (本题共 4 小题,每小题 5 分,共 20 分,答对得分答错不扣分.21 题、22 题为不定项选择题,有一 个或多个选项符合题意;23 题、24 题为填空题.请.把.答.案.填.到.答.题.卡.处.) 21.已知 f (x) 为多项式,若分别用 x 1, x 2 , x 3除 f (x) ,余式分别为 3、7、13,则 f (x) 除
24.
x、y
均为大于
1,小于
9
的整数,则 x 10 y
x
y 10x
y
的最大值为_______.
第七届全国中小学数学创新应用大赛 九年级初赛试题
第 3页,共 4页
第七届全国中小学数学创新应用大赛 九年级初赛试题
第 4页,共 4页
Danica 在理发时看到的镜子显示的时间,理发师告诉她这个数字表的电路出了故障,四个数字的同
三、逻辑判断推理(本题共 4 小题,每小题 4 分,共 16 分,在每小题给出的选项中,只有一个选项符
合题意.请.把.选.项.填.到.答.题.卡.处.)
有 6 件文物藏品:古书、银饰、木雕、瓷器、古画、古琴.每件的制作年代各不相同,从左至右,按
目要求的.请.把.选.项.填.到.答.题.卡.处.) 1.从结构和组合的角度观察下列文字,选择最合适的填入问号处,能使之呈现一定规律性的是( ).
音月日
有占贝
白立?
二、类比推理(本题共 2 小题,每小题 4 分,共 8 分,在每小题给出的选项中,找出一组与之逻辑关
7届数理化学科竞赛初赛数学A9年级

第七届全国中学生数理化学科能力展示活动九年级数学解题技能展示试题(A 卷)总分考生须知:1.本试卷共15小题,满分120分.2.考试时间为120分钟.3.请在密封线内填写所在地区㊁学校㊁姓名和准考证号.4.成绩查询:2015年1月9日起,考生可通过活动官方网站 理科学科能力评价网 (w w w.x k s l h .c o m )查询自己的分数及获奖情况.本题得分评卷人一㊁选择题(每题6分,共36分,每题只有1个选项是正确的)1.已知方程(2014x )2-2013ˑ2015x -1=0的两根中较大的根为a ,方程x 2+2014x -2015=0的两根中较小的根为b ,则a -b =( ).A 2014;B 2015;C 2016;D 20172.把若干个全等正五边形排成环状,右图所示的是前3个五边形,要完成这一圆环还需要( )个五边形.A 6; B 7; C 8; D 93.如右图,直线AM 与圆相切于点M ,A B C 与A D E 是圆的两条割线,且B D ʅA D ,连接MD ㊁E C .则下列结论中错误的是( ).A øE C A =90ʎ;B A D ㊃D E =A B ㊃BC ;C AM 2=AD ㊃AE ;D øC E M =øDMA +øD B A4.小明对一张圆形纸片(图甲)进行了如下连续操作:(1)将圆形纸片左右对折,折痕为A B ,如图乙.(2)将圆形纸片上下折叠,使A ㊁B 两点重合,折痕C D 与A B 相交于M ,如图丙.(3)将圆形纸片沿E F折叠,使B㊁M两点重合,折痕E F与A B相交于N,如图丁.(4)连接A E㊁A F㊁B E㊁B F,如图戊.经过以上操作,小明得到了以下结论:①C DʊE F;②四边形M E B F是菱形;③әA E F 为等边三角形;④S四边形A E B FʒS扇形B E M F=33ʒπ.以上结论正确的有().A 1个; B2个; C3个; D 4个5.W h i c ho f t h e f o l l o w i n g d e s c r i b e s t h e g r a p ho f t h e e q u a t i o n(x+y)2=x2+y2?()A T h e e m p t y s e t;B o n e p o i n t;C t w o l i n e s;D a6.右图为某城市中心广场绿地,该绿地为直角梯形,现要在绿地上开辟一个矩形区域供市民健身使用(右图中阴影部分),当截取的矩形面积最大时,矩形两边长x㊁y应为().(单位:m)A x=15,y=12;B x=12,y=15;C x=14,y=10;D x=10,y=14本题得分评卷人二、填空题(每题8分,共48分)7.如下图,将一条长为60c m的卷尺铺平后折叠,使得卷尺自身的一部分重合,然后在重合部分(阴影处)沿与卷尺边垂直的方向剪一刀,此时卷尺分为了三段,若这三段长度由短到长的比为1ʒ2ʒ3,则折痕对应的刻度有种可能.8.若b1=1-1n b2=1-1b1b3=1-1b2b2015的值为.n的代数式表示)9.观察下列各式:55=3125,56=15625,57=782015的末四位数字为10.4个小动物换座位,开始是猴㊁兔㊁猫㊁鼠分别坐在1㊁2㊁3㊁4号位置上(如右图),第一次前后排动物互换位置,第二次左右列互换座位 ,这样交替进行下去,那么第2014次互换座位后,小兔的位置对应的编号是.11.有两个不同型号的手机和与之匹配的保护盖(如右图所示)散乱地放在桌子上.若从中随机取两个,则恰好为一个手机和与之匹配的保护盖的概率为.12.如右图,抛物线y=12x2-52x与x轴交于O㊁A两点.半径为1的动圆(☉P),圆心从O点出发沿抛物线向靠近点A的方向移动;半径为2的动圆(☉Q),圆心从A点出发沿抛物线向靠近点O的方向移动.两圆同时出发,且移动速度相等,当运动到P㊁Q两点重合时同时停止运动.设点P的横坐标为t.若与相离,则t的取值范围是.本题得分评卷人三、解答题(每题12分,共36分)13.2014年双十一网上大促销又准时开幕.某网店店主计划从厂家采购高级羽绒服和时尚皮衣两种产品共20件,高级羽绒服的采购单价y 1(元/件)与采购数量x 1(件)满足y 1=-20x 1+1500(0<x 1ɤ20,x 1为整数);时尚皮衣的采购单价y 2(元/件)与采购数量x 2(件)满足y 2=-10x 2+1300(0<x 2ɤ20,x 2为整数).(1)经网店店主与厂家协商,采购高级羽绒服的数量不少于时尚皮衣数量的119,且高级羽绒服采购单价不低于1200元,问该店主共有几种进货方案?(2)该店主分别以1760元/件和1700元/件的销售单价售出高级羽绒服和时尚皮衣,且全部售完.则在(1)问的条件下,采购高级羽绒服多少件时总利润最大?并求最大利润.14.在平面直角坐标系中,一组有规律的点:A 1(0,1)㊁A 2(1,0)㊁A 3(2,1)㊁A 4(3,0)㊁A 5(4,1)㊁A 6(5,0), ,即当n 为奇数时,A n (n -1,1),n 为偶数时A n (n -1,0).抛物线C 1经过A 1㊁A 2㊁A 3三点,抛物线C 2经过A 2㊁A 3㊁A 4三点,抛物线C 3经过A 3㊁A 4㊁A 5三点,抛物线C 4经过A 4㊁A 5㊁A 6三点 抛物线C n 经过A n ㊁A n +1㊁A n +2三点.(1)直接写出抛物线C 1㊁C 4的解析式;(2)若点E (e ,f 1)㊁F (e ,f 2)分别在抛物线C 27㊁C 28上,当e =29时,求证:әA 28E F 是直角三角形;(3)若直线x =m 分别交x 轴㊁抛物线C 2013㊁C 2014于点P ㊁M ㊁N ,作直线A 2014M ㊁A 2014N ,当øP A 2014M =45ʎ时,求s i n øP A 2014N 的值.15.在某小区标准篮球场(长方形)的四个角分别有四盏足够高的灯,且灯的高度相等.当夜晚来临,四盏灯都打开时,某人在此篮球场内任一位置都有由四盏灯照射而形成的四个影子.(1)试求这4个影子长度之间的关系;(2)如果此人跳起来,这四个影子之间的关系有变化吗?请说明理由.。
人教版初三数学竞赛及答案

初中数学竞赛一、 填空题(1~5题每小题6分,6~10题每小题8分,共70分)1. 在2002当中嵌入一个数码组成五位数2002,若这五位数能被7整除,则嵌入的数码“”是________________。
【解析】 2或9 设“”中数字为a ,那么五位数2002的数值为210000100220002100a a ⨯+⨯+=+⨯,因为2002除以7的余数为3,所以,要使得五位数2002能被7整除,那么100a ⨯除以7的余数必须为4,而0,100,200,300,,900中,被7除余数为4的只有200和900,即2a =或者9,所以,嵌入的数码“”是2或92. 若实数a 满足32a a a <<,则不等式1x a ax +>-解为_____________。
【解析】 11ax a-<+ 已知32a a a <<,即232(1)0(1)0a a a a a a a a ⎧-=-<⎪⎨-=-<⎪⎩ (1) 如果0a >,上不等式组等价于201010a a a ⎧>⎪-<⎨⎪-<⎩即,0111a a a >⎧⎪>⎨⎪-<<⎩,这是一个矛盾不等式组,所以这种情况应舍去。
(2) 如果0a <,上不等式组等价于201010a a a ⎧<⎪->⎨⎪->⎩,即0111a a a a <⎧⎪<⎨⎪<->⎩或者,解得1a <-,此时,不等式1x a ax +>-等价于(1)1a x a +>-,因为1a <-,即10a +<,那么(1)1a x a +>-等价于11a x a -<+,所以,原不等式的解为11ax a-<+。
3. 如图,一张矩形纸片沿BC 折叠,顶点A 落在点'A 处,第二次过'A 再折叠,使折痕DE BC 若2AB =.3AC =,则梯形BDEC 的面积为______________。
两期平均数增长率公式推导_整理第七届学用杯全国数学知识应用竞赛

第七届学用杯全国数学知识应用竞赛整理表姓名:职业工种:申请级别:受理机构:填报日期:第七届“学用杯”全国数学知识应用竞赛九年级初赛(B)卷试题一、选择题(每小题6分,共30分)1.北京奥运会金牌创造性地将白玉圆环嵌在其中(如图1),这一设计不仅是对获胜者的礼赞,也形象地诠释了中华民族自古以来以“玉”比“德”的价值观.若白玉圆环面积与整个金牌面积的比值为k,则下列各数与k最接近的是()A.B.C.D.2.图2是由线和小棒吊挂4个小球,其中3个小球质量相同,1个是特殊的;图中的数字表示小棒的端点到支点的长度(即物理学中的力臂);假若小棒和线的重量均忽略不计;现在整个装置处于平衡,那么此特殊球应是()3.用同样大小的正方形瓷砖铺一块正方形地面,两条对角线铺黑色的,其它地方铺白色的(如图3).铺满这块地面一共用了白色瓷砖484块,那么黑色瓷砖共用()A.45块B.48块C.22块D.23块4.在“仓库世家”游戏中,游戏规则为“只要将所有木箱归位,便可过关,♀可以左右上下转身,♀推动木箱只可前进,无法后拉,按8、2、4、6可上、下、左、右移动.(△代表木箱,☆代表木箱应到的目的地,□代表空地,■代表墙壁,移动一次只动一个格)其中某一关是如图4(1),设计移动方案可以为:♀→4→8→2→6→6→6.图4(2)为又一关,则移动方案可以为:♀→()A.482666886884222B.482884666884222C.482884884666222D.2226668848844825.同学们都见过并玩过呼拉圈吧!我们把呼拉圈看作一个圆,现在某人在正常运动中,呼拉圈总是在一个水平面内沿人的腰部滚动(人的腰部近似看成一个圆,如图5).现设某人的腰围是70cm(转呼拉圈处),呼拉圈的直径为140cm.那么,当呼拉圈沿此人的腰部滚动100周时,呼拉圈自转的圈数约为()A.48B.72C.84D.98二、填空题(每小题6分,共30分)6.如图6,四边形ABCD为某一住宅区的平面示意图,其周长为800m,为了美化环境,计划在住宅区周围5m内(虚线以内,四边形ABCD之外)作为绿化带,则绿化带的面积为.7.芳芳和明明要玩一个游戏:两人轮流在一个正方形硬纸上放同样大小的硬币,规则是:每人每次只能放一枚,让硬币平躺在桌面上,任何两枚硬币不能重合.谁放完最后一枚,使得对方再也找不到空地放下一枚硬币的时候,谁就赢了.如果芳芳走第一步,她应该放在哪里才可能稳操胜券?请说明你的理由..8.在计算机屏幕上,相继出现了类似无锡“大阿福”式样(一种玩具,古时候就很有名气)的6副面孔.图7是它们依次出现的先后顺序.这些面孔的出现是按照一种简单而确定的逻辑得来的.那么,根据这6副面孔可以推测第7副面孔应是.(画出草图)9.李大伯第一次种植大棚菜,在塑料大棚内密植了100棵黄瓜秧,收获时,每棵黄瓜秧平均只收获2千克黄瓜,听说邻居每棵黄瓜秧可收获近5千克黄瓜,他便向县农业技术员请教,农业技术员查看了情况后说:种植太密,不通风,并告诉他如何改进.已知每少栽一棵秧苗,一棵黄瓜秧平均可多收0.1千克黄瓜,那么请你帮李伯伯计算减少棵黄瓜收获最多,最多收获千克.10.西清公园的喷水池边上有半圆形的石头(半径为1.68m)作为装饰(如图8),其中一块石头正对前方6m处的彩灯,某一时刻,该灯柱落在此半圆形石头上的影长为56πcm.如果同一时刻,一直立70cm的杆子的影长为1.8m,则灯柱的高为(精确到0.01m).三、解答题(第11、12、13题各15分,第14题20分,第15题25分,共90分)11.实践应用:台风“圣帕”所带来的强降水造成了许多地方洪水泛滥成灾,田地被冲毁十分严重,几户承包者的田地都被冲成了一片,灾后他们必须按原来的面积进行重新勘测划分,其中有张老汉家的一块,他已不知道原来那一块的面积是多少,几经回忆才想起原来那块地的形状是一个直角梯形,直角腰的两端恰好又各有一块大石头,另一腰的中点处有一棵大树.大家一看,两块大石头A、B及大树P还在(如图9所示),请问,如何知道张老汉原来那块地的面积?写出你的测量方案,并用字母表示相关的数据后计算出面积.12.实验探究:同学们,你注意过烟盒里的香烟是如何摆放的吗?已知,一个烟盒的长为56mm,宽为22mm,高为87mm,一根烟的直径是8mm,若把20根香烟摆放在烟盒中,请你探究合理的摆放方法.13.信息处理:某市在全面建设小康社会的25项指标中,有16项完成了序时进度,其中10项已达到小康指标值.根据所给的数据和图表,完成下列各题:(1)该市居民家庭年收入以及人均住房建筑面积的一项调查情况如图10(1)和图10(2),从图10(1)中可以得出:家庭收入的众数为美元;家庭收入的平均数为美元.小康指标规定:城镇、农村居民人均住房建筑面积应分别在35m2和40m2以上.观察图10(2),从2002年到2004年城镇、农村人均住房建筑面积的年平均增长率分别为.(2)若人均住房建筑面积的年平均增长率不变,那么到2007年城镇居民人均住房建筑面积能否达到小康指标值?请说明理由.14.猜想归纳:为了建设经济型节约型社会,“先锋”材料厂把一批三角形废料重新利用,因此工人师傅需要把它们截成不同大小的正方形铁片.(1)如图11①,若截取△ABC的内接正方形DEFG,请你求出此正方形的边长;(2)如图11②,若在△ABC内并排截取两个相同的正方形(它们组成的矩形内接于△ABC),请你求此正方形的边长;(3)如图11③,若在△ABC内并排截取三个相同的正方形(它们组成的矩形内接于△ABC),请你求此正方形的边长;(4)猜想:如图11④,假设在△ABC内并排截取n个相同的正方形,使它们组成的矩形内接于△ABC,则此正方形的边长是多少?(已知:AC=40,BC=30,∠C=90°)15.方案设计:“春江花月”生活区有一块长36米、宽26米的矩形场地,欲建成一个供居民休闲的小花园.计划在正中央建一个半径为3米的喷水池,其余部分面积的一半进行绿化,现生活区向居民征集设计方案,如果你是小区的居民,请你至少给出两种设计方案(要求美观大方,标出有关数据,并解释其可行性).第七届“学用杯”全国数学知识应用竞赛九年级初赛(B)卷试参考答案一、1.B2.D3.A4.A5.C二、6.25π+4 000(m)7.芳芳的第一步应放正方形硬纸板的中心位置.这时,明明放一枚硬币,芳芳总可以在硬纸板上放一枚硬币,使它与明明的硬币关于中心对称,直到明明无处可放,芳芳就赢了.8.如图1.9.40,36010.4.11m三、11.解:量出AB的长,记为a米,过点P作AB的垂线PQ,并量出它的长,记为b米,则张老汉原来那块地的面积为ab平方米.理由是:设原来那块地为直角梯形ABCD(如图2),其中AD∥BC,P是DC的中点,因为PQ ⊥AB,AD、BC也都垂直于AB,所以AD∥PQ∥BC,作DE⊥PQ于E,PF⊥BC于F.则四边形AQED、BFPQ都是矩形,所以AQ=DE,BQ=PF.又PD=PC,所以易知△DEP≌△PFC,所以DE=PF,从而AQ=BQ,所以PQ是梯形ABCD的中位线,所以梯形ABCD的面积为ab.12.解:(1)若并列摆放,如图3①,因为烟的直径为8mm,所以AD方向上能并排放(根)烟,而在AB方向上,因为8×3=24>22,所以只能放两根,即烟盒只能放2×7=14(根)烟,此法不行.(2)若错位摆放,如图3②,连接、、,则=8mm,△为等腰三角形,过作,则E是的中点.7(mm).所以在Rt△中,(mm).故排列后中排所需空间长度(mm),三排所需宽度为AB=22mm,故此摆放符合要求.13.解:(1)2 400;2 080;0.2和0.4;(2)能达到小康指标.理由如下:因为城镇人均住房建筑面积的年增长率为0.2,所以有,故到2007年城镇人均住房建筑面积能达到小康指标.14.解:(1)在图4①中作△ABC的高CN交GF于M,在Rt△ABC中,∵AC=40,BC=30,∴AB=50,CN=24.由GF∥AB,得△CGF∽△CAB,∴.设正方形的边长为x,则,解得.即正方形的边长为.(2)方法同(1),如图4②.△CGF∽△CAB,则.设小正方形的边长为x,则,解得.即小正方形的边长为.(3)同(1)、(2)可得小正方形的边长为.(4)每个小正方形的边长为.15.本题答案不惟一,现给出两种方案.方案一:如图5①,设计一个矩形绿化带,使绿化带四周的小路宽度都相等.设小路宽度为x米,则矩形的长为(36-2x)米,宽为(26-2x)米,从而有:(36-2x)(26-2x)-9=(36×26-9),整理得,4x-124x+468-4.5=0,解得,x≈26.7>26米(不合题意,舍去),x≈4.2米.所以图中小路宽4.2米.方案二:如图5②,在矩形场地的四个角分别设计四个相同的四分之一圆形绿化区.设四分之一圆形绿化区的半径为r米,则πr=(36×26-9π),r≈12(米).12+12<26,所以符合题意.注:本题为开放题,答案不惟一,只要合理、正确即可得分,给出一种方案得一半分,每多一种方案可加5分.全国2010年1月高等教育自学考试财务报表分析(一)试题课程代码:00161一、单项选择题(本大题共20小题,每小题1分,共20分)在每小题列出的四个备选项中只有一个选项是符合题目要求的,请将其代码填写在题后的括号内。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七届“学用杯”全国数学知识应用竞赛九年级初赛试题(A)卷(本卷满分150分,考试时间120分钟)温馨提示:亲爱的同学们,这份试卷将记录你的自信、沉着与智慧.愿你能够放松心情,认真审题,缜密思考,细心演算,交一份满意的答卷.一、选择题(每小题6分,共30分)1.校园内一个半径为10米的圆形草坪,如图1,一部分学生为走“捷径”,走出了一条小路AB.通过计算可知,这些学生踩坏了花草,其实仅仅少走了(假设2步为1米,结果保留整数)()A.4步B.5步C.6步D.7步2.小红的妈妈做了一个矩形枕套(长、宽不等),又在枕套四周镶上了相同宽度的花边,如图2所示,关于两个矩形,下列说法正确的是()A.两个矩形相似B.两个矩形不一定相似C.两个矩形一定不相似D.无法判断两个矩形是否相似3.如图3,方台村为了抽取水库的水来浇灌山上的果木树,准备在山坡上建一个抽水泵站.已知山坡上有A、P、Q三处可供选择,且测得A到水库C的距离为50m,P到C的距离为40m,Q到C的距离为35m,山坡的坡角∠ACB=15°.由于大气压的影响,此种水泵的实际吸水扬程AB不能超过10m,否则无法抽取水库的水,则水泵站应建在(sin15°=0.258 8,cos15°=0.965 9,tan15°=0.267 9)()A.A处B.P处C.Q处D.A、P、Q均可4.宏光学校有一面积为100米2的正方形展厅,计划铺满统一大小的正方形地板砖,现市场上有大、小两种规格产品:大地板砖对角线长为50cm,每块0.8元;小地板砖对角线长为40cm,每块0.6元,甲公司的优惠办法是:凡购买大地板砖700块以上者给予9折优惠,凡购买小地板砖1 000块以上者给予7折优惠;乙公司的优惠办法是:凡购买700元以上者,不管购买大块还是小块均按8折优惠.在质量、服务条件相同的情况下,为使学校支付的费用最少,请你为该校选择最佳购买方案()A.到甲公司购买大块地板砖B.到乙公司购买大块地板砖C.到甲公司购买小块地板砖D.到乙公司购买小块地板砖5.如图4,在某条公路上,从里程数8m开始到4 000m止,每隔8m将树与灯按图中的规则设立:在里程数8m处种一棵树,在16m处立一盏灯,在24m处种一棵树(相邻的树与树、树与灯之间的距离都是8米)……,且每两盏灯之间的距离相等.依此规则,下列里程数800m~824m之间树与灯的排列顺序中正确的是()二、填空题(每小题6分,共30分)6.王强毕业于农业技术职业学校,毕业后采用大棚栽培技术种植了一亩地的良种西瓜,第一年这亩地产西瓜625个,为了估计这亩地的收成,王强在西瓜大批上市前随机摘下10个成熟的西瓜,称重如下:西瓜质量(单位:千克)西瓜个数(单位:个) 1 2 3 2 1 1根据以上信息可以估计这亩地的西瓜质量约是千克.7.你是否用电脑进行过图案设计?图5(1)是小明在电脑上设计的小房子,然后他又进行变化,得到图5(2);小亮也在电脑上设计了一个图案,如图5(3),如果小亮也按小明变化图形时的规律对图5(3)进行变化,得到的图案是(画出简图).8.某希望小学刚刚建起,田径场还没建好,秋季运动会时,临时设置简易跑道如图6所示,两端由两个半圆组成,一周约250米,在一次400米跑比赛中,第一道从起点A要跑一圈半到终点C.第二道终点不变,且中途不准抢道(每道宽1米).为公平起见,第二跑道起点B应比第一跑道向前移动.9.自行车轮胎安装在前轮上行驶6 000千米后报废,若安装在后轮上只能行驶4 000千米.为了行驶尽可能远的路程,如果采用当自行车行驶一定路程后将前、后轮胎调换使用的方法,那么安装在自行车上的一对新轮胎最多可行驶千米.10.已知,如图7,斜坡PQ坡度为41:3i ,坡脚Q旁的点N处有一棵大树MN.近中午的某个时刻,太阳光线正好与斜坡PQ垂直,光线将树顶M的影子照射在斜坡PQ上的点A处.如果AQ=4米,NQ=1米,则大树MN的高度为.三、解答题(本大题共60分)11.(本题10分)判断决策:三个无线电厂家在广告中都声称,它们的半导体收音机产品在正常情况下,产品的平均寿命是8年,商品检验部门为了检查他们宣传的真实性,对三个厂家出售的半导体收音机寿命进行了抽样统计,结果如下(单位:年):甲厂:3、4、5、5、5、7、9、10、12、13、15;乙厂:3、3、4、5、5、6、8、8、8、10、11;丙厂:3、3、4、4、4、8、9、10、11、12、13;请你利用所学统计知识,对上述数据进行分析并回答以下问题:(1)这三个厂家的广告,分别利用了哪一种反映数据集中趋势的特征数?(2)如果你是顾客,应选购哪个厂家的产品?为什么?12.(本题15分)方案设计:东风汽车租赁公司共有30辆出租汽车,其中甲型汽车20辆,乙型汽车10辆.现将这30辆汽车租赁给A、B两地的旅游公司,其中20辆派往A地,10辆派往B地,两地旅游公司与汽车租赁公司商定每天价格如下表:(1)设派往A地的乙型汽车x辆,租赁公司这30辆汽车一天共获得的租金为y(元),求y与x之间的函数解析式,并写出自变量x的取值X围;(2)若要使租赁公司这30辆汽车一天所获得的租金总额不低于26 800元,请你说明有多少种分派方案,并将各种方案设计出来;(3)如果要使这30辆汽车每天获得的租金最多,请你为租赁公司提出合理的分派方案.13.(本题15分)实践应用:下承式混凝土连续拱圈梁组合桥,其桥面上有三对抛物线形拱圈.图8(1)是其中一个拱圈的实物照片,据有关资料记载此拱圈高AB为(含拱圈厚度和拉杆长度),横向分跨CD为.(1)试在示意图(图8(2))中建立适当的直角坐标系,求出拱圈外沿抛物线的解析式;(2)在桥面M(BC的中点)处装有一盏路灯(P点),为了保障安全,规定路灯距拱圈的距离PN不得少于1.1m,试求路灯支柱PM的最低高度.(结果精确到0.1m)14.(本题20分)归纳猜想:同学们,让我们一起进行一次研究性学习:(1)如图9,已知正三角形ABC的中心为O,半径为R,将其沿直线l向右翻滚,当正三角形翻滚一周时,其中心O经过的路程是多少?(2)如图10,将半径为R的正方形沿直线l向右翻滚,当正方形翻滚一周时,其中心O经过的路程是多少?(3)猜想:把正多边形翻滚一周,其中心O所经过的路程是多少(R为正多边形的半径,可参看图11)?请说明理由.(4)进一步猜想:任何多边形都有一个外接圆,若将任意圆内接多边形翻滚一周时,其外心所经过的路程是否是一个定值(R为多边形外接圆的半径)?为什么?请以任意三角形为例说明(如图12).通过以上猜想你可得到什么样的结论?请写出来.四、开放题(本题30分)15.杨子晚报报道《你家用“峰谷电”合不合算?》:“峰谷电”的含义是这样的,每天8∶00到22∶00用电每千瓦时是0.56元(峰电);22∶00至次日8∶00每千瓦时是0.28元(谷电).注:平时居民用电每千瓦时是0.52元.(1)根据你家的平时用电情况,算一算,你家用这样的“峰谷电”合算吗?(2)请根据“峰谷电”的使用,编拟一道数学实际应用问题,并给出解题过程,注明用的什么数学知识.第七届“学用杯”全国数学知识应用竞赛九年级初赛试题(A)卷参考答案一、选择题(每小题5分,共30分)1.B 2.C 3.C 4.C 5.D二、填空题(每小题5分,共30分)6.3 1257.8.2π米9.4 80010.8米三、解答题(每小题15分,共60分)11.解:(1)因为甲厂的收音机寿命的平均数是8年,众数是5年,中位数是7年;乙厂的收音机寿命的平均数约是6.45年,众数是8年,中位数是6年;丙厂的收音机寿命的平均数约是7.36年,众数是4年,中位数是8年. ················ 6分 所以,甲厂选用平均数,乙厂选用众数,丙厂选用中位数; ··········· 8分(2)因为甲厂收音机的平均寿命比乙厂、丙厂的都高,因此,顾客应选购甲厂的产品.··········· 10分12.解:(1) 1 000(20)900800600(10)26 000100(010)y x x x x x x =-+++-=+≤≤;·········· 6分(2)依题意,得26 00010026 800x +≥,又因为010x ≤≤,∴810x ≤≤.因为x 是整数,∴x =8,9,10,方案有3种. ················ 9分 方案1:A 地派甲型车12辆,乙型车8辆;B 地派甲型车8辆,乙型车2辆;方案2:A 地派甲型车11辆,乙型车9辆;B 地派甲型车9辆,乙型车1辆;方案3:A 地派甲型车10辆,乙型车10辆;B 地派甲型车10辆. ········ 12分(3)∵26 000100y x =+是一次函数,且1000k =>,∴y 随x 的增大而增大. ∴当10x =时,这30辆车每天获得的租金最多.∴合理的分配方案是A 地派甲型车10辆,乙型车10辆;B 地派甲型车10辆. ··· 15分13.(1)如右图,以A 为坐标原点,BA 所在直线为y 轴建立直角坐标系xAy ,因拱圈外沿所在的抛物线过原点,且以y 轴为对称轴,故可设抛物线解析式为:2y ax =, ··············· 4分由题意抛物线过点(2010)D -,,代入得140a =-,故拱圈外沿抛物线的解析式为: 2140y x =-. ······························· 8分 (2)设(10)N k -,,则:21(10) 2.5(m)40k =-⨯-=-,∴107.5(m)MN k =+=, ························· 12分 ∴7.5 1.18.6PM MN PN =++=≥(m ),即路灯支柱PM 的最低高度为.(其余解法可类似给分). ············ 15分14.解:(1)当正三角形ABC 向右翻滚一周时,其中心O 经过的路线是三条等弧,所以其中心O 经过的路程为:120π32π180R R ⨯=. ·················· 3分 (2)中心O 经过的路程为90π42π180R R ⨯=. ················· 6分 (3)当n 边形向右翻滚一周时,其中心O 经过的路线是n 条等弧,这些弧的半径为R ,所对的圆心角为360n ,所以中心O 经过的路程为360π2π180R n n R ⨯=. ······· 10分 (4)是定值2πR ,理由如下:在△ABC 中,设A B C αβγ∠=∠=∠=,,,△ABC 的外接圆⊙O 的半径为R ,把△ABC 沿直线l 向右翻滚一周时,其外心O 经过的路线是三条弧,当AC 边与直线l 重合时,C 与C '重合,A 与A '重合,B 与B '重合,连接CO 、C O '',则ACO A C O '''∠=∠,所以180OCO ACA γ''∠=∠=-,所以(180)π180R l γ-=,同理,另两条弧长分别为:(180)π180R α-,(180)π180R β-,所以外心O 所经过的路程为2πR . ········ 16分 通过以上猜想可得结论为:把圆内接多边形翻滚一周时,多边形的外心所经过的路程是一个定值. ······························· 20分四、开放题(本题30分)15.(1)答案不惟一,可选择自己家每月(或平均每天)的用电情况,计算说明.只要合理即可得分.(本小问10分);(2)答案不惟一,本小问共20分,编写题目合理可得10分,再写出解题过程,并说明所用数学知识可得20分,以下题目可参考.题1:(用一元一次方程知识编拟)某户居民今年二月份起使用“峰谷电”,三月份经记录这两个月使用“谷电”150千瓦时,已知两月共付电费112元.问该居民使用“峰谷电”多少千瓦时?费用比原来节约了多少?(“峰谷电”中,“峰电”是8∶00到22∶00用电,“谷电”是22∶00到次日8∶00,下同)题2:(用二元一次方程知识编拟)某户居民今年三月份使用“峰谷电”,付电费112元,比原来节约了60.8元,问该户居民使用“峰电”,“谷电”各多少千瓦时?题3:(用不等式知识编拟)某户居民今年三月份使用电量300千瓦时,当“峰电”占总电量的多少时,使用“峰谷电”才合算?题4:(用函数知识编拟)某户居民今年三月份起使用“峰谷电”,平均每天使用“峰电”8千瓦时,写出三月份(31天)该户居民的电费(y元)与每天“谷电”的用电量x(千瓦时)之间的函数关系式.。