异步电动机的动态数学模型和坐标变换

合集下载

异步电动机的动态数学模型完整版

异步电动机的动态数学模型完整版

四、运动方程
Te
TL
J np
d2r
dt2
TL
J np
dr
dt
(6-17)
其中:TL —负载阻力矩; J —旋转机组的转动惯量。
r 电动机转子的电角速度
由运动方程可知,当负载转矩不变时,通过控制电 磁转矩就可以控制电动机的速度变化。
小结:异步电动机的动态数学模型
电压 u R i p 方 ( 6 2 ) 程
由于磁链矩阵方程是时变矩阵的,因此异步电动机 在静止坐标系中,数学模型是时变微分方程组,因而 导致异步电动机控制复杂。
三、转矩方程
TenpL'm[i(AiaiBibiCic)sinr (iAibiBiciCia)sinr(12)0 (iAiciBiaiCib)sinr(12)0]
(61)6
转矩方程式表示电量与机械量的关系,即电动机内部 通过气隙的机电能量的转换关系。
小结:异步电动机的数学模型
Ø异步电动机动态数学模型的基本性质 上述动态数学模型方程式表明异步电动机的动态数学模
型是一组非常复杂的非线性方程,其复杂性表现在以下四 个方面:
⑴ 多变量——多输入、多输出(MIMO系统) u异步电动机变频调速需要进行电压和频率的协调控制, 所以有电压和频率两个独立的输入变量; u异步电动机通过定子供电,磁通和转速的变化是同时进 行的,为了获得良好的动态性能,需要对磁通进行控制, 所以输出变量除了转速外,还包括磁通。因此异步电动 机的数学模型是一个多输入多输出系统。
完整的磁链方程以矩阵形式可以表示为:
Ψs
Ψr
LLsrss
Lsris Lrrir
式中: ΨsA B C T Ψra b cT
isiA iB iCT

异步电机矢量控制.

异步电机矢量控制.

下步工作
学习在矢量控制中加入电流闭环控制的相 关原理 制作IRMCF341电源供电部分,保证电源部 分输出正确的电压。 在IRMCF341微控制器8051中增加故障处理 程序,保证故障类型的完整。
将电压方程
改写为
笼型转子 内部短路
σ=1-L2M/LS/LR σ电机漏磁系数
整理可得状态方程
其中Tr—转子电磁时间常数,Tr=Lr/Rr。
二、异步电机的矢量控制
αβ坐标系下转子磁链旋转矢量 ψr空间角度φ, d轴改成m轴,q轴改成t轴 m轴与转子磁链旋转矢量重合
代入上式
状态方程
可得mt坐标系的旋转角速度
转子绕组2r/2s变换
2r/2s
电压方程
பைடு நூலகம்
磁链方程
转矩方程 4、旋转正交坐标系下的动态数学模型
定子旋转变换阵为
转子旋转变换阵为
旋转坐标系下的电压方程
转矩方程
(3)正交坐标系下的状态方程 异步电机有四阶电压方程和一阶运动方程,需选取 五个状态变量1.转速ω;2.定子电流isd和isq;3.转子电流 ird和irq;4.定子磁链ψsd和ψsq;5.转子磁链ψrd和ψrq 以ω-is-ψr为状态变量 dq下的磁链方程
异步电机的矢量控制
2014年10月9日
一、异步电动机的数学模型 二、异步电动机的矢量控制 三、总结
一、异步电动机的数学模型
(1)三相动态模型
1、磁链方程
Lms - 定子交链的最大互感值; Lls - 漏磁通
定子三相各绕组之间与转子三相各绕组之间位置是固定的,互感 为常值
定、转子之间位置是变化的,与θ有关
电磁转矩表达式
按转子磁链定向,将定子电流分解为励磁分量ism和转矩 分量ist,转子磁链ψr仅由励磁分量ism产生,而电磁转矩 Te正比于转子磁链和定子电流转矩分量的乘积istψr ,实现 了定子电流两个分量的解耦。

《电力拖动自动控制系统》课程综述

《电力拖动自动控制系统》课程综述

电力拖动自动控制系统电力拖动自动控制系统简介电力拖动自动控制系统包括:直流调速系统和交流调速系统。

直流调速系统包括:直流调速方法、直流调速电源和直流调速控制。

交流调速系统包括:交流调速系统的主要类型、交流变压调速系统、交流变频调速系统、绕线转子异步电机双馈调速系统——转差功率馈送型调速系统和同步电动机变压变频调速系统。

电力拖动自动控制系统课程内容介绍第一篇直流调速系统闭环反馈直流调速系统1.1 直流调速系统用的可控直流电源根据前面分析,调压调速是直流调速系统的主要方法,而调节电枢电压需要有专门向电动机供电的可控直流电源。

常用的可控直流电源有以下三种:旋转变流机组——用交流电动机和直流发电机组成机组,以获得可调的直流电压。

静止式可控整流器——用静止式的可控整流器,以获得可调的直流电压。

直流斩波器或脉宽调制变换器——用恒定直流电源或不控整流电源供电,利用电力电子开关器件斩波或进行脉宽调制,以产生可变的平均电压。

1.2 晶闸管-电动机系统(V-M系统)的主要问题本节讨论V-M系统的几个主要问题:(1)触发脉冲相位控制;(2)电流脉动及其波形的连续与断续;(3)抑制电流脉动的措施;(4)晶闸管-电动机系统的机械特性;(5)晶闸管触发和整流装置的放大系数和传递函数。

1.3 直流脉宽调速系统的主要问题自从全控型电力电子器件问世以后,就出现了采用脉冲宽度调制(PWM)的高频开关控制方式形成的脉宽调制变换器-直流电动机调速系统,简称直流脉宽调速系统,即直流PWM 调速系统。

(1)PWM变换器的工作状态和波形;(2)直流PWM调速系统的机械特性;(3)PWM 控制与变换器的数学模型;(4)电能回馈与泵升电压的限制。

1.4反馈控制闭环直流调速系统的稳态分析和设计本节提要:转速控制的要求和调速指标;开环调速系统及其存在的问题;闭环调速系统的组成及其静特性;开环系统特性和闭环系统特性的关系;反馈控制规律;限流保护——电流截止负反馈1.5 反馈控制闭环直流调速系统的动态分析和设计反馈控制闭环直流调速系统的动态数学模型;反馈控制闭环直流调速系统的稳定条件; 动态校正——PI调节器的设计;系统设计举例与参数计算转速、电流双闭环直流调速系统和调节器的工程设计方法内容提要:转速、电流双闭环控制的直流调速系统是应用最广性能很好的直流调速系统。

异步电动机数学模型与坐标变换

异步电动机数学模型与坐标变换
把这种等效的静止绕组称作“伪静止绕组”。
4.1 坐标变换的基本思路
电枢磁动势的作用可以用补偿绕组磁动势抵 消,或者由于其作用方向与d轴垂直而对主 磁通影响甚微。
所以直流电动机的主磁通基本上由励磁绕组 的励磁电流决定,这是直流电动机的数学模 型及其控制系统比较简单的根本原因。
4.1 坐标变换的基本思路
3
Lrs = LTsr = Lms cos(θ + 23π ) cosθ
cos(θ


)
cos(θ + 2π )
3
3
cos(θ cos(θ
+ −

3

3
) )
cosθ
变参数、非线性、时变
电压方程
三相绕组电压平衡方程
= uA
iA Rs
+
dψ A
dt
= uB
iB
Rs
+
dψ B
dt
= uC
L=Ab
L=bA
L=Bc
L=cB
L= Ca
L= aC
Lms
cos(θ
+

3
)
L=Ac
L=cA
L=Ba
L=aB
L= Cb
L= bC
Lms
cos(θ


3
)
当定、转子两相绕组轴线重合时,两者之
间的互感值最大 Lms
磁链方程
磁链方程,用分块矩阵表示
ψs ψ r
=
Lss Lrs
Lsr is
1、异步电动机动态数学模型的性质
电磁耦合是机电能量转换的必要条件, 电流与磁通的乘积产生转矩,转速与磁 通的乘积得到感应电动势。

dq坐标变换数学原理解析

dq坐标变换数学原理解析
只规定了d,q两轴的相互垂直关系和与
dq坐标变换数学原理解析
3.2 坐标变换和动态数学模型的简化
上节中虽已推导出异步电机的动态数 学模型,但是,要分析和求解这组非线性 方程显然是十分困难的。在实际应用中必 须设法予以简化,简化的基本方法是坐标 变换。
一、 坐标变换的基本思路
直流电机的数学模型比较简单: • 虽然电枢本身是旋转的,但其绕组通过换向器电 刷接到端接板上,因此,电枢磁动势的轴线始终被电 刷限定在 q 轴位置上,其效果好象一个在 q 轴上静止 的绕组一样。
由于进行坐标变换的是电流(代表磁动势) 的空间矢量,所以这样通过坐标变换实现的控 制系统就叫作矢量控制系统(Vector Control System)。
3.3.2 异步电动机在按转子磁场定向的 MT同步旋转坐标系中的数学模型
❖ 上述是矢量控制的基本思路,其中的矢 量变换包括三相/两相变换和同步旋转 变换。在进行两相同步旋转坐标变换时,
此方法也同样适用于电压和磁链的变换。
• 变换过程
3/2变换
C2s/2r
ABC坐标系
坐标系
dq坐标系
三、异步电动机在、静止坐标系上的
数学模型
把异步电机在三相
β
静 止 ABC 坐 标 系 上 的
Rs
数学模型变换到两相
Ls
Lm
坐标系上,由于两相
坐标轴互相垂直,两 相绕组之间没有磁的 耦合,仅此一点,就 会使数学模型简单了 许多。
在这里,不同电机模型彼此等效的原则 是:在不同坐标下所产生的磁动势完全一致。
(2)等效的两相交流电机绕组
两相静止绕组 和 ,它
们在空间互差90°,通以时间 上互差90°的两相平衡交流电 流,也产生旋转磁动势 F 。

异步电动机的数学模型

异步电动机的数学模型

异步电动机的数学模型和电压空间矢量异步电动机的数学模型异步电动机的数学模型是一个高阶、非线性、强耦合的多变量系统。

在建立其数学模型时作如下假定。

(1)电动机定、转子三相绕组完全对称,所产生的磁势在气隙空间中呈正弦分布。

(2)忽略铁芯涡流、饱和及磁滞损耗的影响,各绕组的自感和互感都是线性的。

(3)暂不考虑频率和温度变化对电机参数的影响。

异步电机的数学模型一般包括电压方程、磁链方程、电磁转矩方程和机电运动方程。

对异步电机进行分析和控制时,均需对三相进行分析和控制,若引入Park 矢量变换,会带来很多方便。

Park 矢量变换将三个标量(三维)变换为一个矢量(二维)。

如图2.1所示,选三相定子坐标系中的a 轴与Park 矢量复平面的实轴α轴重合可得α、β坐标系。

图2.1 a 、b 、c 坐标系与α、β坐标系的关系三相静止坐标系(a 、b 、c)到两相静止坐标系(α、β)的3/2变换矩阵为:1112223022C ⎡⎤--⎢⎥⎢=⎢-⎢⎣⎦ (2.1) 可得到异步电机在两相静止坐标系(α、β)中的电压方程:0000s s s s m s s s s m r r m r mr r r r r r r mm r rr r U i R L p L p U i R L pL p U i L p L R L p L U i L L pL R L p ααββααββωωωω+⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥--+⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ (2.2) 式中:s R 、r R ――分别为定子电阻和转子电阻;s L 、r L 、m L ――分别为定子自感、转子自感和定、转子互感;r ω――电机转子角速度(电角速度);s U α、s U β――分别为定子电压的α、β分量;r U α、r U β――分别为转子电压的α、β分量,在鼠笼机中r U α=r U β=0; s i α、s i β――分别为定子电流的α、β分量; r i α、r i β――分别为转子电流的α、β分量;p ――微分算子,dp dt=。

异步电动机的动态数学模型及矢量控制

异步电动机的动态数学模型及矢量控制

iiCa
Lbc
ib
L2l Lccic
Ψ ΨR SL LR SSS
LSRiS LRRiR
L11L1l
其中,Lss
1 2
L11
1 2
L11
1 2
L11
L11L1l
1 2
L11
1
2 1
2
L11 L11
L11L1l
L22 L2l
LR
R
1 2
L22
1 2
L22
1 2
L2
2
L22 L2l
其中 p 为, 电机的 L 12 磁 N 1N 极 2 m对数。
2、转矩方程
Te
TL
J p
d
dt
J p
d 2
dt 2
J
d 2 m
dt 2
其中 m p 转子转动的机械角度
机数学模型的性质:
在A、B、C三相坐标系异步电动中异步电动机的基本方程 是由七个微分方程和一个电磁转矩公式组成。由于在微分 方程式中出现了两个变量的乘积项,所以数学模型是非线 性的 。
Ca
LCA LaA
b
LbA
c LcA
LAB L1l LBB
LCB LaB LbB LcB
LAC LBC L1l LCC LaC LbC LcC
LAa LBa LCa L2l Laa Lba Lca
LAb LBb LCb Lab L2l Lbb Lcb
LAc iA LBc iB
LCc Lac
Xm
θ
xA
表示x为 AX: mej
参考轴A
三相坐标系下的物理量如何用空间矢量表示?
设三相坐标系下三相物理量分别为:x(A t)、x(B t)、x( C t) 取a e j1200 1 j 3

异步电动机的动态数学模型-完整版

异步电动机的动态数学模型-完整版

瞬态过程分析需要考虑电动 机内部的电磁场变化、转子 动态响应以及机械系统动态
响应等因素。
瞬态过程分析有助于深入了解 异步电动机的运行机理,为优 化控制策略和提高电机性能提
供理论支持。
04
CATALOGUE
异步电动机的控制策略
直接转矩控制
总结词
直接转矩控制是一种先进的电机控制策 略,通过直接控制电机的转矩和磁通量 来实现高动态性能。
VS
详细描述
直接转矩控制通过实时监测电机的转矩和 磁通量,并采用合适的控制算法来调整电 机的输入电压或电流,以达到快速响应和 精确控制的目的。这种控制策略具有快速 动态响应、高精度和鲁棒性强的优点,广 泛应用于高性能电机驱动系统中。
矢量控制
总结词
矢量控制是一种基于磁场定向的控制策略,通过将电机的电 流和电压解耦成转矩和磁通量分量,实现电机的精确控制。
效率与能效
提高异步电动机的效率和能效是当前 面临的重要挑战,也是推动技术发展 的主要动力。
未来趋势与展望
智能化
随着物联网和人工智能技术的发展,异步电动机将更加智能化, 能够实现自适应控制和预测性维护。
高效化
未来异步电动机将更加高效,能够降低能源消耗和维护成本。
定制化
随着生产工艺和需求的多样化,异步电动机将更加定制化,能够 满足各种特定应用的需求。
THANKS
感谢观看
压缩机等。
能源领域
02
风力发电和太阳能发电等可再生能源系统中,异步电动机作为
发电机和驱动电机被广泛应用。
交通运输
03
异步电动机在轨道交通、电动汽车和船舶推进等领域有广泛应
用。
技术发展与挑战
技术进步
可靠性
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.5 异步电动机的动态数学模型和坐标变换本节提要异步电动机动态数学模型的性质三相异步电动机的多变量非线性数学模型坐标变换和变换矩阵三相异步电动机在两相坐标系上的数学模型三相异步电动机在两相坐标系上的状态方程一、异步电动机动态数学模型的性质2. 交流电机数学模型的性质1异步电机变压变频调速时需要进行电压或电流和频率的协调控制,有电压电流和频率两种独立的输入变量;在输出变量中,除转速外,磁通也得算一个独立的输出变量;因为电机只有一个三相输入电源,磁通的建立和转速的变化是同时进行的,为了获得良好的动态性能,也希望对磁通施加某种控制,使它在动态过程中尽量保持恒定,才能产生较大的动态转矩;多变量、强耦合的模型结构由于这些原因,异步电机是一个多变量多输入多输出系统,而电压电流、频率、磁通、转速之间又互相都有影响,所以是强耦合的多变量系统,可以先用图来定性地表示;图6-43 异步电机的多变量、强耦合模型结构模型的非线性2在异步电机中,电流乘磁通产生转矩,转速乘磁通得到感应电动势,由于它们都是同时变化的,在数学模型中就含有两个变量的乘积项;这样一来,即使不考虑磁饱和等因素,数学模型也是非线性的;模型的高阶性3三相异步电机定子有三个绕组,转子也可等效为三个绕组,每个绕组产生磁通时都有自己的电磁惯性,再算上运动系统的机电惯性,和转速与转角的积分关系,即使不考虑变频装置的滞后因素,也是一个八阶系统;总起来说,异步电机的动态数学模型是一个高阶、非线性、强耦合的多变量系统;二、三相异步电动机的多变量非线性数学模型假设条件:1忽略空间谐波,设三相绕组对称,在空间互差120°电角度,所产生的磁动势沿气隙周围按正弦规律分布;2忽略磁路饱和,各绕组的自感和互感都是恒定的;3忽略铁心损耗;4不考虑频率变化和温度变化对绕组电阻的影响;1. 电压方程三相定子绕组的电压平衡方程为:电压方程续与此相应,三相转子绕组折算到定子侧后的电压方程为:电压方程的矩阵形式将电压方程写成矩阵形式,并以微分算子 p 代替微分符号 d /dt或写成6-67b2. 磁链方程每个绕组的磁链是它本身的自感磁链和其它绕组对它的互感磁链之和,因此,六个绕组的磁链可表达为:或写成6-68b电感矩阵式中,L 是6×6电感矩阵,其中对角线元素 LAA, LBB, LCC,Laa,Lbb,Lcc 是各有关绕组的自感,其余各项则是绕组间的互感;实际上,与电机绕组交链的磁通主要只有两类:一类是穿过气隙的相间互感磁通,另一类是只与一相绕组交链而不穿过气隙的漏磁通,前者是主要的;电感的种类和计算定子漏感 Lls ——定子各相漏磁通所对应的电感,由于绕组的对称性,各相漏感值均相等;转子漏感 Lk ——转子各相漏磁通所对应的电感;定子互感 Lms——与定子一相绕组交链的最大互感磁通;转子互感 Lmr——与转子一相绕组交链的最大互感磁通;由于折算后定、转子绕组匝数相等,且各绕组间互感磁通都通过气隙,磁阻相同,故可认为:自感表达式对于每一相绕组来说,它所交链的磁通是互感磁通与漏感磁通之和,因此,定子各相自感为:转子各相自感为:互感表达式两相绕组之间只有互感;互感又分为两类:1 定子三相彼此之间和转子三相彼此之间位置都是固定的,故互感为常值;2 定子任一相与转子任一相之间的位置是变化的,互感是角位移的函数第一类固定位置绕组的互感三相绕组轴线彼此在空间的相位差是±120°,在假定气隙磁通为正弦分布的条件下,互感值应为,于是,第二类变化位置绕组的互感定、转子绕组间的互感,由于相互间位置的变化见图6-44,可分别表示为:当定、转子两相绕组轴线一致时,两者之间的互感值最大,就是每相最大互感 Lms ;磁链方程将式6-69~式6-75都代入式6-68a,即得完整的磁链方程,显然这个矩阵方程是比较复杂的,为了方便起见,可以将它写成分块矩阵的形式式中值得注意的是,和两个分块矩阵互为转置,且均与转子位置有关,它们的元素都是变参数,这是系统非线性的一个根源;为了把变参数转换成常参数须利用坐标变换,后面将详细讨论这个问题;电压方程的展开形式如果把磁链方程6-68b代入电压方程6-67b中,即得展开后的电压方程:式中,项属于电磁感应电动势中的脉变电动势或称变压器电动势,项属于电磁感应电动势中与转速成正比的旋转电动势;3. 转矩方程根据机电能量转换原理,在多绕组电机中,在线性电感的条件下,磁场的储能和磁共能为:而电磁转矩等于机械角位移变化时磁共能的变化率电流约束为常值,且机械角位移,于是转矩方程的矩阵形式将式6-81代入式6-82,并考虑到电感的分块矩阵关系式6-77~6-79,得:又由于代入式6-83得:该方程适用变压变频器供电含有电流谐波三相异步电动机转矩方程的三相坐标系形式以式6-79代入式6-84并展开后,舍去负号,意即电磁转矩的正方向为使 q 减小的方向,则4. 电力拖动系统运动方程在一般情况下,电力拖动系统的运动方程式是TL ——负载阻转矩;J ——机组的转动惯量;D ——与转速成正比的阻转矩阻尼系数;K ——扭转弹性转矩系数;运动方程的简化形式对于恒转矩负载,D = 0 , K = 0 ,则5. 三相异步电机的数学模型将式6-76,式6-80,式6-85和式6-87综合起来,再加上,便构成在恒转矩负载下三相异步电机的多变量非线性数学模型,用结构图表示出来如下图所示:异步电机的多变量非线性动态结构图三、坐标变换和变换矩阵上节中虽已推导出异步电机的动态数学模型,但是,要分析和求解这组非线性方程显然是十分困难的;在实际应用中必须设法予以简化,简化的基本方法是坐标变换;1. 交流电机的物理模型直流电机物理模型简单励磁绕组d轴上,电枢绕组在q轴上,如果能将交流电机的物理模型见下图等效地变换成类似直流电机的模式,分析和控制就可以大大简化;坐标变换正是按照这条思路进行的; 在这里,不同电机模型彼此等效的原则是:在不同坐标下所产生的磁动势完全一致;1交流电机绕组的等效物理模型2等效的两相交流电机绕组3旋转的直流绕组与等效直流电机模型再看图c中的两个匝数相等且互相垂直的绕组 M 和 T,其中分别通以直流电流和,产生合成磁动势 F ,其位置相对于绕组来说是固定的;如果让包含两个绕组在内的整个铁心以同步转速旋转,则磁动势 F 自然也随之旋转起来,成为旋转磁动势;把这个旋转磁动势的大小和转速也控制成与图 a 和图 b 中的磁动势一样,那么这套旋转的直流绕组也就和前面两套固定的交流绕组都等效了;当观察者也站到铁心上和绕组一起旋转时,在他看来,M 和 T 是两个通以直流而相互垂直的静止绕组;如果控制磁通的位置在 M 轴上,就和直流电机物理模型没有本质上的区别了;这时,绕组M相当于励磁绕组,T 相当于伪静止的电枢绕组;等效的概念由此可见,以产生同样的旋转磁动势为准则,图a的三相交流绕组、图b的两相交流绕组和图c中整体旋转的直流绕组彼此等效;或者说,在三相坐标系下的,在两相坐标系下的和在旋转两相坐标系下的直流是等效的,它们能产生相同的旋转磁动势;现在的问题是,如何求出与和之间准确的等效关系,这就是坐标变换的任务;2. 三相--两相变换3/2变换现在先考虑上述的第一种坐标变换——在三相静止绕组A、B、C和两相静止绕组之间的变换,或称三相静止坐标系和两相静止坐标系间的变换,简称 3/2 变换;三相和两相坐标系与绕组磁动势的空间矢量 :设磁动势波形是正弦分布的,当三相总磁动势与二相总磁动势相等时,两套绕组瞬时磁动势在轴上的投影都应相等,写成矩阵形式,得:考虑变换前后总功率不变,在此前提下,可以证明匝数比应为:为求两项到三项的变换阵将三项到两项的变换阵增广成可逆的方阵,物理意义在两项系统上人为加入零轴磁动势并定义满足功率不变的条件可以求得如下关系:这表明保持坐标变换前后的功率不变,又要维持磁链相同,变换前后两项绕组每相匝数应为原三项绕组匝数的倍于此同时利用上述关系得三项/两项变换方阵:如要从两相坐标系变换到三相坐标系2/3变换可求反变换:N3 /N2 值代入式6-89,得:3. 两相—两相旋转变换2s/2r变换从上图等效的交流电机绕组和直流电机绕组物理模型的图 b 和图 c 中从两相静止坐标系到两相旋转坐标系 M、T 变换称作两相—两相旋转变换,简称 2s/2r 变换,其中 s 表示静止,r 表示旋转;把两个坐标系画在一起,即得下图;两相静止和旋转坐标系与磁动势电流空间矢量2s/2r变换公式两相旋转—两相静止坐标系的变换矩阵写成矩阵形式,得:式中是两相旋转坐标系变换到两相静止坐标系的变换阵;对式6-96两边都左乘以变换阵的逆矩阵,即得:两相静止—两相旋转坐标系的变换矩阵则两相静止坐标系变换到两相旋转坐标系的变换阵是:电压和磁链的旋转变换阵也与电流磁动势旋转变换阵相同;四、三相异步电动机在两相坐标系上的数学模型前已指出,异步电机的数学模型比较复杂,坐标变换的目的就是要简化数学模型;第6.6.2节的异步电机数学模型是建立在三相静止的ABC坐标系上的,如果把它变换到两相坐标系上,由于两相坐标轴互相垂直,两相绕组之间没有磁的耦合,仅此一点,就会使数学模型简单了许多;1.异步电机在两相任意旋转坐标系dq坐标系上的数学模型两相坐标系可以是静止的,也可以是旋转的,其中以任意转速旋转的坐标系为最一般的情况,有了这种情况下的数学模型,要求出某一具体两相坐标系上的模型就比较容易了;变换关系设两相坐标轴与三相坐标轴的夹角为, 而为坐标系相对于定子的角转速,为坐标系相对于转子的角转速;变换过程具体的变换运算比较复杂,根据式6-98另0轴为假想轴d轴和A轴夹角为θ 可得:写成矩阵形式:合并以上两个方程式得三相静止ABC坐标系到两项旋转dq0坐标系的变换式1磁链方程利用变换将定子的三项磁链和转子的三项磁链变换到dqo坐标系中去,定子磁链的变换阵是其中d轴与A轴的夹角为,转子磁链的变换阵是是旋转三相坐标系变换到不同转速的旋转两相坐标系;其中 d 轴与α 轴的夹角为 ;则磁链的变换式为:把定子和转子的磁链表达成电感阵和电流向量乘积,在用和的反变换阵把电流变换到dq0坐标上:磁链的零轴分量为它们各自独立对dq轴磁链没有影响,可以不考虑则可以简化;控制有关;代入参数计算,并去掉零轴分量则dq坐标系磁链方程为或写成式中—— dq坐标系定子与转子同轴等效绕组间的互感;—— dq坐标系定子等效两相绕组的自感;——dq坐标系转子等效两相绕组的自感;异步电机在两相旋转坐标系dq上的物理模型图6-50 异步电动机在两相旋转坐标系dq上的物理模型 2电压方程利用上式A得定子电压变换的关系为先讨论A相的关系同理在ABC坐标系下A相的电压方程,代入得为dq0旋转坐标系对于定子的角速度由于为任意值因此下式三式成立同理转子电压方程为式中为dq0旋转坐标系相对于转子的角速度同理利用B相和C相的电压方程求出的结果与上面一致; 2电压方程上面的方程整理有定子和转子的电压方程令旋转电动势向量则式6-106a变成这就是异步电机非线性动态电压方程式;与第6.6.2节中ABC坐标系方程不同的是:此处电感矩阵 L 变成 4 4 常参数线性矩阵,而整个电压方程也降低为4维方程;3转矩和运动方程dq坐标系上的转矩方程为运动方程与坐标变换无关,仍为其中——电机转子角速度;阶数下降,但非线性、强耦合、多变量性质未变;异步电机在dq坐标系上的动态等效电路2. 异步电机在坐标系上的数学模型在静止坐标系上的数学模型是任意旋转坐标系数学模型当坐标转速等于零时的特例;当时,,即转子角转速的负值,并将下角标改成,则式6-105的电压矩阵方程变成而式6-103a的磁链方程改为利用两相旋转变换阵,可得代入式6-107并整理后,即得到坐标上的电磁转矩式6-108~式6-110再加上运动方程式便成为坐标系上的异步电机数学模型;这种在两相静止坐标系上的数学模型又称作Kron的异步电机方程式或双轴原型电机Two Axis Primitive Machine基本方程式;3. 异步电机在两相同步旋转坐标系上的数学模型另一种很有用的坐标系是两相同步旋转坐标系,其坐标轴仍用d,q表示,只是坐标轴的旋转速度等于定子频率的同步角转速;而转子的转速为,因此 dq 轴相对于转子的角转速,即转差;代入式6-105,即得同步旋转坐标系上的电压方程在二相同步旋转坐标系上的电压方程磁链方程、转矩方程和运动方程均不变;两相同步旋转坐标系的突出特点是,当三相ABC坐标系中的电压和电流是交流正弦波时,变换到dq坐标系上就成为直流;4、按转子磁场定向下的数学模型在dq坐标系放在同步旋转磁场下使d轴与转子磁场的方向重合此时转子的d轴的磁通分量为0,既有下式;带入式6-111三四行出现零元素,减少了耦合,简化了模型上式中解得,带入dq坐标系中的转矩方程有如下结果,这个关系和直流电机的转矩方程非常接近了,如果是鼠笼电机结果会更加简单;五、三相异步电动机在两相坐标系上的状态方程作为异步电机控制系统研究和分析基础的数学模型,过去经常使用矩阵方程,近来越来越多地采用状态方程的形式,因此有必要再介绍一下状态方程;为了简单起见,这里只讨论两相同步旋转dq 坐标系上的状态方程,如果需要其它类型的两相坐标,只须稍加变换,就可以得到;第6.6.4节的分析结果告诉我们,在两相坐标系上的电压源型变频器—异步电机具有4阶电压方程和1阶运动方程,因此其状态方程也应该是5阶的,须选取5个状态变量,而可选的变量共有9个,即转速、4个电流变量和4个磁链变量;状态变量的选择转子电流是不可测的,不宜用作状态变量,因此只能选定子电流和转子磁链;定子电流和定子磁链;也就是说,可以有下列两组状态方程;1.状态方程由前节式6-103b表示dq坐标系上的磁链方程式6-104为任意旋转坐标系上的电压方程对于同步旋转坐标系,,又考虑到笼型转子内部是短路的,则,于是,电压方程可写成由式6-103b中第3,4两式可解出代入式6-107的转矩公式,得状态方程标准形式将式6-103b代入式6-112,消去,同时将6-113代入运动方程式6-87,经整理后即得状态方程如下:——电机漏磁系数,——转子电磁时间常数;状态变量与输入变量在6-114~6-118的状态方程中,状态变量为输入变量为式中,状态变量为输入变量为。

相关文档
最新文档