八年级数学四边形培优辅导题(难度较大)

合集下载

四边形专项训练题(培优)

四边形专项训练题(培优)

四边形专项训练题(培优)一.选择题(共10小题)1.四边形具有不稳定性,对于四条边长确定的四边形.当内角度数发生变化时,其形状也会随之改变.如图,改变正方形ABCD的内角,正方形ABCD变为菱形ABC′D′.若∠D′AB=30°,则菱形ABC′D′的面积与正方形ABCD的面积之比是()A.1B.C.D.2.如图,在▱ABCD中,一定正确的是()A.AD=CD B.AC=BD C.AB=CD D.CD=BC3.用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠地铺成一片,这就是平面图形的镶嵌.工人师傅不能用下列哪种形状、大小完全相同的一种地砖在平整的地面上镶嵌()A.等边三角形B.正方形C.正五边形D.正六边形4.如图,在▱ABCD中,AB=8,点E是AB上一点,AE=3,连接DE,过点C作CF∥DE,交AB的延长线于点F,则BF的长为()A.5B.4C.3D.25.如图1,在菱形ABCD中,∠C=120°,M是AB的中点,N是对角线BD上一动点,设DN长为x,线段MN与AN长度的和为y,图2是y关于x的函数图象,图象右端点F 的坐标为(2,3),则图象最低点E的坐标为()A.(,2)B.(,)C.(,)D.(,2)6.如图,在△ABC中,AB=AC,△DBC和△ABC关于直线BC对称,连接AD,与BC相交于点O,过点C作CE⊥CD,垂足为C,与AD相交于点E,若AD=8,BC=6,则的值为()A.B.C.D.7.大自然中有许多小动物都是“小数学家”,如图1,蜜蜂的蜂巢结构非常精巧、实用而且节省材料,多名学者通过观测研究发现:蜂巢巢房的横截面大都是正六边形.如图2,一个巢房的横截面为正六边形ABCDEF,若对角线AD的长约为8mm,则正六边形ABCDEF 的边长为()A.2mm B.2mm C.2mm D.4mm8.如图,在正五边形ABCDE中,以AB为边向内作正△ABF,则下列结论错误的是()A.AE=AF B.∠EAF=∠CBF C.∠F=∠EAF D.∠C=∠E9.依据所标数据,下列一定为平行四边形的是()A.B.C.D.10.如图,▱ABCD的对角线AC和BD相交于点O,下列说法正确的是()A.若OB=OD,则▱ABCD是菱形B.若AC=BD,则▱ABCD是菱形C.若OA=OD,则▱ABCD是菱形D.若AC⊥BD,则▱ABCD是菱形二.填空题(共10小题)11.四边形具有不稳定性.如图,矩形ABCD按箭头方向变形成平行四边形A'B'C'D',当变形后图形面积是原图形面积的一半时,则∠A'=.12.正十二边形的一个内角的度数为.13.如图,在Rt△ABC中,∠BAC=90°,AB=3,BC=5,点P为BC边上任意一点,连接P A,以P A,PC为邻边作平行四边形P AQC,连接PQ,则PQ长度的最小值为.14.如图,在正六边形ABCDEF中,M,N是对角线BE上的两点.添加下列条件中的一个:①BM=EN;②∠F AN=∠CDM;③AM=DN;④∠AMB=∠DNE.能使四边形AMDN是平行四边形的是(填上所有符合要求的条件的序号).15.如图,菱形ABCD的边长为2,∠ABC=60°,对角线AC与BD交于点O,E为OB 中点,F为AD中点,连接EF,则EF的长为.16.如图,CD是△ABC的角平分线,过点D分别作AC,BC的平行线,交BC于点E,交AC于点F.若∠ACB=60°,CD=4,则四边形CEDF的周长是.17.七边形一共有条对角线.18.小张同学家要装修,准备购买两种边长相同的正多边形瓷砖用于铺满地面.现已选定正三角形瓷砖,则选的另一种正多边形瓷砖的边数可以是.(填一种即可)19.如图,在四边形ABCD中,连接AC,∠ACB=∠CAD.请你添加一个条件,使AB=CD.(填一种情况即可)20.如图,将△ABC沿着BC方向平移得到△DEF,只需添加一个条件即可证明四边形ABED 是菱形,这个条件可以是.(写出一个即可)三.解答题(共8小题)21.同学们在探索“多边形的内角和”时,利用了“三角形的内角和”.请你在不直接运用结论“n边形的内角和为(n﹣2)•180°”计算的条件下,利用“一个三角形的内角和等于180°”,结合图形说明:五边形ABCDE的内角和为540°.22.如图,在▱ABCD中,点E、F分别是边AB、CD的中点.求证:AF=CE.23.小惠自编一题:“如图,在四边形ABCD 中,对角线AC ,BD 交于点O ,AC ⊥BD ,OB =OD .求证:四边形ABCD 是菱形”,并将自己的证明过程与同学小洁交流.小惠:证明:∵AC ⊥BD ,OB =OD ,∴AC 垂直平分BD .∴AB =AD ,CB =CD ,∴四边形ABCD 是菱形.小洁: 这个题目还缺少条件,需要补充一个条件才能证明.若赞同小惠的证法,请在第一个方框内打“√”;若赞成小洁的说法,请你补充一个条件,并证明.24.如图,已知五边形ABCDE 是正五边形,连接AC 、AD .证明:∠ACD =∠ADC .25.如图,四边形ABCD 为菱形,E 为对角线AC 上的一个动点(不与点A ,C 重合),连接DE 并延长交射线AB 于点F ,连接BE .(1)求证:△DCE ≌△BCE ;(2)求证:∠AFD =∠EBC .26.如图,在四边形ABCD中,AB∥CD,AC平分∠DAB,AB=2CD,E为AB中点,连结CE.(1)求证:四边形AECD为菱形;(2)若∠D=120°,DC=2,求△ABC的面积.27.如图,在四边形ABCD中,AC与BD交于点O,BE⊥AC,DF⊥AC,垂足分别为点E,F,且BE=DF,∠ABD=∠BDC.求证:四边形ABCD是平行四边形.28.如图,在△ABC中,AD⊥BC于点D,E,F分别是AC,AB的中点,O是DF的中点,EO的延长线交线段BD于点G,连结DE,EF,FG.(1)求证:四边形DEFG是平行四边形.(2)当AD=5,tan∠EDC=时,求FG的长.。

初二数学四边形难题(含答案)

初二数学四边形难题(含答案)

初⼆数学四边形难题(含答案)初⼆数学四边形难题(含答案)1.已知:在矩形ABCD 中,AE ⊥BD 于E ,∠DAE=3∠BAE ,求:∠EAC 的度数。

2.已知:直⾓梯形ABCD 中,BC=CD=a 且∠BCD=60?,E 、F 分别为梯形的腰AB 、 DC 的中点,求:EF 的长。

3、已知:在等腰梯形ABCD 中,AB ∥DC , AD=BC ,E 、F 分别为AD 、BC 的中点,BD 平分∠ABC 交EF 于G,EG=18,GF=10 求:等腰梯形ABCD 的周长。

4、已知:梯形ABCD 中,AB ∥CD ,以AD , AC 为邻边作平⾏四边形ACED ,DC 延长线交BE 于F ,求证:F 是BE 的中点。

5、已知:梯形ABCD 中,AB ∥CD ,AC ⊥CB , AC 平分∠A ,⼜∠B=60?,梯形的周长是 20cm, 求:AB 的长。

6、从平⾏四边形四边形ABCD 的各顶点作对⾓线的垂线AE 、BF 、CG 、DH ,垂⾜分别是E 、F 、G 、H ,求证:EF ∥GH 。

_ D_ C_B _ C_ A _ B_ A _ B_ E _A_ B7、已知:梯形ABCD 的对⾓线的交点为E 若在平⾏边的⼀边BC 的延长线上取⼀点F ,使S ABC ?=S EBF ?,求证:DF∥AC 。

8、在正⽅形ABCD 中,直线EF 平⾏于对⾓线AC ,与边AB 、BC 的交点为E 、F ,在DA 的延长线上取⼀点G ,使AG=AD ,若EG 与DF 的交点为H ,求证:AH 与正⽅形的边长相等。

9、若以直⾓三⾓形ABC 的边AB 为边,在三⾓形ABC 的外部作正⽅形ABDE , AF 是BC 边的⾼,延长FA 使AG=BC ,求证:BG=CD 。

10、正⽅形ABCD ,E 、F 分别是AB 、AD 延长线上的⼀点,且AE=AF=AC ,EF 交BC 于G ,交AC 于K ,交CD 于H ,求证:EG=GC=CH=HF 。

中点四边形综合问题重难点培优八年级数学下册尖子生同步培优题典(解析版)【人教版】

中点四边形综合问题重难点培优八年级数学下册尖子生同步培优题典(解析版)【人教版】

八年级数学下册尖子生同步培优题典【人教版】专题18.13中点四边形综合问题(重难点培优)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•龙岗区期末)如图,四边形ABCD 中,AC BD =,顺次连接四边形各边中点得到的图形是( )A .菱形B .矩形C .正方形D .以上都不对【分析】根据中位线定理证明中点四边形的四边相等,则顺次连接四边形各边中点得到的四边形是菱形. 【解析】E ,F 分别是DC ,AD 的中点, 12EF AC ∴=,//EF AC , 同理,12GH AC =,//GH AC ,12GF BD =, EF GH ∴=,//EF GH ,∴四边形EFGH 是平行四边形,AC BD =,EF GF ∴=,∴平行四边形EFGH 为菱形,故选:A .2.(2021春•宣城期末)下列说法:①一组对边平行,另一组对边相等的四边形是平行四边形;②对角线互相垂直的四边形是菱形;③四条边相等的四边形是正方形;④顺次连接菱形各边中点形成的四边形一定是矩形.其中正确的个数是( )A .4B .3C .2D .1【分析】根据平行四边形的判定和等腰梯形的判定即可判断①;画出图形,根据菱形的判定即可判断②;根据菱形和正方形的判定即可判断③;根据三角形的中位线性质得出//EF AC '',12EH B D ='',//EH B D '',12FG B D ='',//FG B D '',求出EH FG =,//EH FG ,根据平行四边形的判定得出四边形EFGH 是平行四边形,根据菱形的性质得出AC B D ''⊥'',求出90HEF ∠=︒,根据矩形的判定得出四边形EFGH 是矩形,即可判断④.【解析】①一组对边平行,另一组对边相等的四边形是等腰梯形,不一定是平行四边形,故①错误; ②如图,AC BD ⊥,但是四边形ABCD 不是菱形,即对角线互相垂直的四边形不一定是菱形,故②错误; ③四条边相等的四边形是菱形,不一定是正方形,故③错误;④如图,E 、F 、G 、H 分别是菱形A B C D ''''的边A B ''、B C ''、C D ''、A D ''的中点,//EF AC ∴'',12EH B D ='',//EH B D '',12FG B D ='',//FG B D '', EH FG ∴=,//EH FG ,∴四边形EFGH 是平行四边形,四边形A B C D''''是菱形,∴''⊥'',AC B DEH B D'',//EH AC∴⊥'',EF AC'',//∴⊥,EF EH即90∠=︒,HEF∴四边形EFGH是矩形,故④正确;所以正确的个数是1,故选:D.3.(2020秋•岐山县期中)如图,任意四边形ABCD中,点E,F,G,H分别是边AB,BC,CD,DA 的中点,连接AC,BD,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是()A.若AC BD=,则四边形EFGH为菱形B.若AC BD⊥,则四边形EFGH为矩形C.若AC BD⊥,则四边形EFGH为正方形=,且AC BDD.若AC与BD互相平分,且AC BD=,则四边形EFGH是正方形【分析】连接四边形各边中点所得的四边形必为平行四边形,根据中点四边形的性质进行判断即可.【解析】A.当E,F,G,H是四边形ABCD各边中点,且AC BD===,=时,存在EF FG GH HE故四边形EFGH为菱形,故本选项不符合题意;B、当E,F,G,H是四边形ABCD各边中点,且AC BDEFG FGH GHE∠=∠=∠=︒,⊥时,存在90故四边形EFGH为矩形,故本选项不符合题意;===,⊥,存在EF FG GH HE C、当E,F,G,H是四边形ABCD各边中点,且AC BD=,且AC BD∠=∠=∠=︒,故四边形EFGH为正方形,故本选项不符合题意;90EFG FGH GHED、当E,F,G,H是四边形ABCD各边中点,且AC与BD互相平分,且AC BD=,故四边形EFGH 为菱形,故本选项符合题意;故选:D.4.(2021春•樊城区期末)如果一个四边形的对角线相等,顺次连接该四边形四条边的中点,可以得到( )A.平行四边形B.矩形C.菱形D.正方形【分析】根据三角形中位线定理得到//EF BD,//GH BD,12EF BD=,12GH BD=,12EH AC=,根据菱形的判定定理证明即可.【解析】E、F、G、H分别是边AD、AB、BC、CD的中点,//EF BD∴,//GH BD,12EF BD=,12GH BD=,12EH AC=,//EF GH∴,EF GH=,∴四边形EFGH是平行四边形.如图,连接AC、BD,AC BD=,12EF BD=,12EH AC=,EF EH∴=,∴平行四边形EFGH是菱形,故选:C.5.(2021春•武昌区校级期中)如图,顺次连接四边形ABCD各边中点得到中点四边形EFGH,下列说法中正确的是()A .当AC BD ⊥时,四边形EFGH 为菱形B .当AC BD =时,四边形EFGH 为矩形C .当AC BD ⊥,AC BD =时,四边形EFGH 为正方形D .以上说法都不对【分析】根据三角形中位线定理、平行四边形的判定定理得到四边形EFGH 为平行四边形,根据矩形、菱形、正方形的判定定理判断即可.【解析】点E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,//EF AC ∴,12EF AC =,//GH AC ,12GH AC =,//EH BD ,12EH BD =, //EF GH ∴,EF GH =,∴四边形EFGH 为平行四边形,当AC BD ⊥时,EF EH ⊥,∴四边形EFGH 为矩形,A 选项说法错误;当AC BD =时,EH EF =,∴四边形EFGH 为菱形,B 选项说法错误;当AC BD ⊥,AC BD =时,EF EH ⊥,EF EH =,∴四边形EFGH 为正方形,C 选项说法正确;D 选项说法错误;故选:C .6.(2019•青神县一模)如图,正方形ABCD 四边的中点分别是E 、F 、G 、H ,若四边形EFGH 的面积是2,则正方形ABCD 的周长是( )A .4B .42C .8D .82【分析】根据正方形的性质得到AB BC CD AD ===,求得AE BE BF CF CG DG DH AH =======,根据全等三角形的性质得到EF FG HG EH ===,45AHE DHG ∠=∠=︒,求得90GHE ∠=︒,求得1AE AH ==,得到正方形ABCD 的边长为2,于是得到答案.【解析】正方形ABCD 四边的中点分别是E 、F 、G 、H ,AB BC CD AD∴===,∴=======,AE BE BF CF CG DG DH AH∠=∠=∠=∠=︒,A B C D90∴∆≅∆≅∆≅∆,AEH BFE CGF HDE SAS()∠=∠=︒,AHE DHGEF FG HG EH∴===,45GHE∴∠=︒,90∴四边形EFGH是正方形,四边形EFGH的面积是2,∴四边形EFGH2,∴==,AE AH1∴正方形ABCD的边长为2,∴正方形ABCD的周长是8,故选:C.7.(2019•江油市二模)我们把顺次连接任意一个四边形各边中点所得的四边形叫做中点四边形,下列说法正确的是()A.任意一个四边形的中点四边形是菱形B.任意一个平行四边形的中点四边形是平行四边形C.对角线相等的四边形的中点四边形是矩形D.对角线垂直的四边形的中点四边形是正方形【分析】利用三角形中位线定理可得新四边形的对边平行且等于原四边形一条对角线的一半,那么根据一组对边平行且相等的四边形是平行四边形可判定所得的四边形一定是平行四边形.【解析】A、任意一个四边形的中点四边形是平行四边形,故此选项错误;B、任意一个平行四边形的中点四边形是平行四边形,正确;C、对角线相等的四边形的中点四边形是菱形,故此选项错误;D、对角线垂直的四边形的中点四边形是矩形,故此选项错误.故选:B.8.(2019•临沂)如图,点E、F、G、H分别是四边形ABCD边AB、BC、CD、DA的中点.则下列说法:①若AC BD=,则四边形EFGH为矩形;②若AC BD⊥,则四边形EFGH为菱形;③若四边形EFGH是平行四边形,则AC与BD互相平分;④若四边形EFGH是正方形,则AC与BD互相垂直且相等.其中正确的个数是()A.1B.2C.3D.4【分析】因为一般四边形的中点四边形是平行四边形,当对角线BD AC=时,中点四边形是菱形,当对角线AC BD⊥时,中点四边形是正方形,=,且AC BD⊥时,中点四边形是矩形,当对角线AC BD【解析】因为一般四边形的中点四边形是平行四边形,当对角线BD AC⊥时,中点四边形是矩形,当对角线AC BD=,=时,中点四边形是菱形,当对角线AC BD且AC BD⊥时,中点四边形是正方形,故④选项正确,故选:A.9.(2021秋•金水区校级月考)如图,点E、F、G、H分别是四边形ABCD边AB、BC、CD、DA的中点,则下列说法:①若AC BD=,则四边形EFGH为矩形;②若AC BD⊥,则四边形EFGH为菱形;③若四边形EFGH是平行四边形,则AC与BD互相平分;其中正确的个数是()A.0B.1C.2D.3【分析】根据“一般四边形的中点四边形是平行四边形,当对角线BD AC=时,中点四边形是菱形,当对角线AC BD⊥时,中点四边形是矩形”进行判断即可.【解析】因为一般四边形的中点四边形是平行四边形,故③错误;当对角线BD AC=时,中点四边形是菱形,当对角线AC BD⊥时,中点四边形是矩形,故①②错误,所以正确的有0个,故选:A.10.(2021春•德阳期末)如图,点E,F,G,H分别是四边形ABCD的边AB,BC,CD,DA的中点,则下列说法:①若AC BD=,则四边形EFGH为矩形;②若AC BD⊥,则四边形EFGH为菱形;③若四边形EFGH是菱形,则AC与BD互相垂直;④若四边形EFGH是正方形,则AC与BD互相垂直且相等.其中正确的个数是()A.1B.2C.3D.4【分析】先证四边形EFGH是平行四边形,再由菱形、矩形以及正方形的判定分别对各个说法进行判断即可.【解析】E、F、G、H分别是AB、BC、CD、AD的中点,EH∴是ABD∆的中位线,FG是CBD∆的中位线,EF是ABC∆的中位线,//EH BD ∴,12EH BD=,//FG BD,12FG BD=,//EF AC,12EF AC=,//EH FG∴,EH FG=,∴四边形EFGH是平行四边形,①AC BD=,EH EF∴=,∴平行四边形EFGH是菱形,故①错误;②AC BD⊥,EF EH∴⊥,90FEH∴∠=︒,∴平行四边形EFGH 是矩形,故②错误;③若四边形EFGH 是菱形,则AC BD =,故③错误;④对角线AC BD =,且AC BD ⊥时,中点四边形EFGH 是正方形,故④正确,故选:A .二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上 11.(2021春•阿拉尔期末)顺次连结对角线相等且垂直的四边形各边中点所得的四边形是 正方形 .【分析】由三角形中位线定理得//EH BD ,12EH BD =,//FG BD ,12FG BD =,//EF AC ,12EF AC =,则//EH FG ,EH FG =,得四边形EFGH 是平行四边形,再怎EH EF =,则平行四边形EFGH 是菱形,然后证90FEH ∠=︒,即可得出结论.【解析】如图,四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、AD 的中点,EH ∴是ABD ∆的中位线,FG 是CBD ∆的中位线,EF 是ABC ∆的中位线,//EH BD ∴,12EH BD =,//FG BD ,12FG BD =,//EF AC ,12EF AC =, //EH FG ∴,EH FG =,∴四边形EFGH 是平行四边形,AC BD =,EH EF ∴=,∴平行四边形EFGH 是菱形,又AC BD ⊥,EF EH ∴⊥,90FEH ∴∠=︒,∴四边形EFGH 是正方形,故答案为:正方形.12.(2021秋•寿光市期末)下列说法正确的是 A 、C .A .对角线相等的菱形是正方形B .顺次连接对角线互相垂直的四边形的四边中点,所得到的四边形是菱形C .成轴对称的两个图形全等D .有三个角相等的四边形是矩形【分析】利用正方形的判定方法、菱形的判定方法、矩形的判定方法及全等图形的定义分别判断后即可确定正确的答案.【解析】A 、对角线相等的菱形是正方形,正确,符合题意;B 、顺次连接对角线互相垂直的四边形的四边中点,所得到的四边形是矩形,故原命题错误,不符合题意;C 、成轴对称的两个图形全等,正确,符合题意;D 、有四个角相等的四边形是矩形,故原命题错误,不符合题意.故答案为:A 、C .13.(2020春•西华县期末)如图所示,AC 、BD 是四边形ABCD 的两条对角线,且AC BD ⊥,已知10AC =,8BD =,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,则EG 41 .【分析】易证四边形HEFG 是平行四边形,因为AC BD ⊥,所以HG EH ⊥,所以四边形HEFG 为矩形,进而由勾股定理得到22EG HE HG +.【解析】E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,152HG EF AC ∴===,142EH FG BD ===, E ,H ,是AB ,AD 中点,//HE BD ∴,12HE BD =, 同理//FG BD ,12FG BD =, ∴四边形HEFG 是平行四边形, AC BD ⊥,HG EH ∴⊥,∴四边形HEFG 为矩形,22224541EG HE HG ∴=+=+4114.(2020春•孝义市期末)如图,菱形ABCD 的对角线AC ,BD 相交于点O ,依次连接AO ,BO ,CO ,DO 的中点E ,F ,G ,H ,得到四边形EFGH ,点M 是EF 的中点,连接OM ,若10AB =,则OM 的长为 2.5 .【分析】根据菱形的性质得到AC BD ⊥,根据三角形中位线定理得到152EF AB ==,根据直角三角形的性质计算,得到答案.【解析】四边形ABCD 为菱形,AC BD ∴⊥, E 、F 分别为OA 、OB 的中点,152EF AB ∴==, 在Rt EOF ∆中,M 是EF 的中点,1 2.52OM EF ∴==, 故答案为:2.5.15.(2021秋•南海区月考)已知:在四边形ABCD 中,AD BC =,点E ,F ,G ,H 分别是AB ,CD ,AC ,BD 的中点,四边形EHFG 是 菱形 .【分析】由已知条件得出GF是ADC∆的中位线,GE是ABC∆的中位线,EH是ABD∆的中位线,由三角形中位线定理得出//GF EH,GF EH=,得出四边形EGFH是平行四边形,再证出GE EH=,即可得出四边形EHFG是菱形.【解析】证明:点E、F、G、H分别是AB、CD、AC、BD的中点,GF∴是ADC∆的中位线,GE是ABC∆的中位线,EH是ABD∆的中位线,//GF AD ∴,12GF AD=,12GE BC=,//EH AD,12EH AD=,//GF EH∴,GF EH=,∴四边形EGFH是平行四边形,又AD BC=,GE EH∴=,∴四边形EGFH是菱形.故答案是:菱形.16.(2021秋•榆阳区校级月考)点E、F、G、H分别是任意四边形ABCD中AD、AB、BC、CD各边的中点,对角线AC,BD交于点O,当四边形ABCD满足对角线垂直且相等条件时,四边形EFGH是正方形.【分析】根据三角形中位线定理得到//EF BD,12EF BD=,//GH BD,12GH BD=,12EH AC=,进而证明四边形EFGH为平行四边形,再根据正方形的判定定理解答即可.【解析】点E、F、G、H分别是任意四边形ABCD中AD、AB、BC、CD各边的中点,//EF BD ∴,12EF BD=,//GH BD,12GH BD=,12EH AC=,//EF GH∴,EF GH=,∴四边形EFGH为平行四边形,当AC BD=时,EF EH=,∴平行四边形EFGH为菱形,当AC BD⊥时,EF EH⊥,∴菱形EFGH为正方形,∴当四边形ABCD的对角线垂直且相等时,四边形EFGH是正方形,故答案为:对角线垂直且相等.17.(2021•西城区校级开学)如图,点A,B,C为平面内不在同一直线上的三点,点D为平面内一个动点,线段AB,BC,CD,DA的中点分别为M,N,P,Q.在点D的运动过程中,有下列结论:①存在无数个中点四边形MNPQ是平行四边形;②存在无数个中点四边形MNPQ是菱形;③存在无数个中点四边形MNPQ是矩形;④中点四边形MNPQ不可能是正方形;所有结论正确的序号是①②③.【分析】根据中点四边形的性质:一般中点四边形是平行四边形,对角线相等的四边形的中点四边形是菱形,对角线垂线的中点四边形是矩形,对角线相等且垂直的四边形的中点四边形是正方形解答.【解析】中点四边形都是平行四边形,对角线相等的四边形的中点四边形是菱形,对角线垂线的中点四边形是矩形,对角线相等且垂直的四边形的中点四边形是正方形,∴存在无数个中点四边形MNPQ是平行四边形,存在无数个中点四边形MNPQ是菱形,存在无数个中点四边形MNPQ是矩形.故答案为:①②③.18.(2020春•新乐市期末)对于任意矩形ABCD ,若M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 上的中点,下面四个结论中,①四边形MNPQ 是平行四边形;②四边形MNPQ 是矩形;③四边形MNPQ 是菱形; ④四边形MNPQ 是正方形.所有正确结论的序号是 ①③ .【分析】连接AC 、BD ,由三角形中位线定理得出//MN AC ,12MN AC =,//PQ AC ,12PQ AC =,//MQ BD ,12MQ BD =,则//MN PQ ,MN PQ =,MN MQ =,证出四边形MNPQ 是平行四边形,四边形MNPQ 是菱形;①③正确;当AC BD ⊥时,MN MQ ⊥,四边形MNPQ 是矩形,四边形MNPQ 是正方形,②④不正确,即可得出结论.【解析】连接AC 、BD ,如图:四边形ABCD 是矩形,AC BD ∴=,M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 上的中点,MN ∴是ABC ∆的中位线,PQ 是ACD ∆的中位线,MQ 是ABD ∆的中位线,//MN AC ∴,12MN AC =,//PQ AC ,12PQ AC =,//MQ BD ,12MQ BD =, //MN PQ ∴,MN PQ =,MN MQ =,∴四边形MNPQ 是平行四边形,∴四边形MNPQ 是菱形;故①③正确;当AC BD ⊥时,MN MQ ⊥,四边形MNPQ 是矩形,四边形MNPQ 是正方形.故②④不正确; 故答案为:①③.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2020春•工业园区期末)已知:如图,在四边形ABCD 中,AB 与CD 不平行,E ,F ,G ,H 分别是AD ,BC ,BD ,AC 的中点.(1)求证:四边形EGFH 是平行四边形;(2)①当AB 与CD 满足条件 AB CD = 时,四边形EGFH 是菱形;②当AB 与CD 满足条件 时,四边形EGFH 是矩形.【分析】(1)根据三角形中位线定理得到12EG AB =,//EG AB ,12FH AB =,//FH AB ,根据平行四边形的判定定理证明结论;(2)①根据邻边相等的平行四边形是菱形解答;②根据矩形的判定定理解答.【解析】(1)证明:E ,G 分别是AD ,BD 的中点,EG ∴是DAB ∆的中位线,12EG AB ∴=,//EG AB , 同理,12FH AB =,//FH AB , EG FH ∴=,//EG FH ,∴四边形EGFH 是平行四边形;(2)①F ,G 分别是BC ,BD 的中点,FG ∴是DCB ∆的中位线,12FG CD ∴=,//FG CD , 当AB CD =时,EG FG =,∴四边形EGFH 是菱形;②//HF AB , HFC ABC ∴∠=∠,//FG CD ,GFB DCB ∴∠=∠,90ABC DCB∴∠+∠=︒,90HFC GFB∴∠+∠=︒,90GFH∴∠=︒,∴平行四边形EGFH是矩形,故答案为:①AB CD=;②AB CD⊥.20.(2020春•海陵区校级期中)如图,O为BAC∠内一点,E、F、G、H分别为AB,AC,OC,OB 的中点.(1)求证:四边形EFGH为平行四边形;(2)当AB AC=,AO平分BAC∠时,求证:四边形EFGH为矩形.【分析】(1)根据三角形中位线定理推知////EH AO FG,12EH FG AO==,则四边形EFGH是平行四边形.(2)根据平行线的性质和等腰AEF∆的性质推知:90HEF ADE∠=∠=︒,则四边形EFGH为矩形.【解析】证明:(1)EH是ABO∆的中位线,//EH AO ∴,12EH AO=.同理,FG是ACO∆的中位线,//FG OA ∴,12FG AO=.//EH FG∴,EH FG=,∴四边形EFGH是平行四边形.(2)设OA与EF的交点为D,AB AC=,E、F分别为AB,AC的中点,AE AF∴=.AO平分BAC∠,//EH AD,∴∠=∠=︒,HEF ADE90∴四边形EFGH为矩形.21.已知:如图,分别以BM、CM为边,向BMC∆形外作等边三角形ABM、CDM,E、F、G、H分别为AB、BC、CD、DA中点.(1)猜测四边形EFGH的形状;(2)证明你的猜想;(3)三角形BMC形状的改变是否对上述结论有影响?【分析】(1)由题意可猜测四边形EFGH是菱形;(2)首先连接AC,BD,易证得()∆≅∆,即可得AC BDAMC BMD SAS=,又由E、F、G、H分别为AB、===,即可得四边形EFGH是菱形;BC、CD、DA中点,则可证得EF FG GH EH(3)由(2)得:BMC∆形状的改变对上述结论没有影响.【解析】(1)解:四边形EFGH是菱形;(2)证明:连接AC,BD,∆和CDMABM∆是等边三角形,∴=,CM DMAM BM∠=∠=︒,=,60AMB CMD∴∠=∠,AMC BMD在AMC ∆和BMD ∆中,AM BM AMC BMD CM DM =⎧⎪∠=∠⎨⎪=⎩,()AMC BMD SAS ∴∆≅∆,AC BD ∴=,E 、F 、G 、H 分别为AB 、BC 、CD 、DA 中点,12EF GH AC ∴==,12EH FG BD ==, EF FG GH EH ∴===,∴四边形EFGH 是菱形;(3)解:BMC ∆形状的改变对上述结论没有影响.22.(2021春•东莞市期末)如图,在四边形ABCD 中,AC 、BD 是对角线,点E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点,依次连接E 、F 、G 、H .(1)证明:四边形EFGH 是平行四边形;(2)在四边形ABCD 中,若再补充一个条件: AC BD ⊥ ,则四边形EFGH 是矩形;(3)连接EG 、FH ,求证:222222EG FH EF FG GH HE +=+++.【分析】(1)由中位线定理证明://HG AC ,12HG AC =,//EF AC ,12EF AC =,从而//HG EF ,HG EF =,即可证明四边形EFGH 是平行四边形;(2)若AC BD ⊥,则90DOC ∠=︒,由//EF AC ,//FG BD ,即可得90GFE ∠=︒,故四边形EFGH 是矩形;(3)过H 作HP EG ⊥于P ,过F 作FQ EG ⊥于Q ,Rt HPE ∆中,22222EH HP OE OP OE OP =++-⋅,Rt HPG ∆中,22222HG HP OG OP OG OP =++-⋅,由四边形EFGH 是平行四边形,可得12OE OG EG ==,12OH OF HF ==,故2222222222112222EH HG HP OE OP OE OP HP OG OP OG OP HF EG +=++-⋅+++-⋅=+,同理可得:22221122EF FG HF EG +=+,从而可证明222222EG FH EF FG GH HE +=+++.【解析】(1)H 、G 是AD 、CD 的中点,HG ∴是ACD ∆的中位线,//HG AC ∴,12HG AC =,同理://EF AC ,12EF AC =,//HG EF ∴,HG EF =,∴四边形EFGH 是平行四边形;(2)解:补充的条件是:AC BD ⊥,证明如下:如图:若AC BD ⊥,则90DOC ∠=︒,//EF AC , 90OMF DOC ∴∠=∠=︒,FG 是BCD ∆的中位线,//FG BD ∴,18090GFE OMF ∴∠=︒-∠=︒,由(1)知:四边形EFGH 是平行四边形,∴四边形EFGH 是矩形;故答案为:AC BD ⊥;(3)过H 作HP EG ⊥于P ,过F 作FQ EG ⊥于Q ,如图:Rt HPE ∆中,22222222()2EH HP EP HP OE OP HP OE OP OE OP =+=+-=++-⋅, Rt HPG ∆中,22222222()2HG HP PG HP OG OP HP OG OP OG OP =+=++=++-⋅, 由(1)知:四边形EFGH 是平行四边形,12OE OG EG ∴==,12OH OF HF ==, 2222222222EH HG HP OE OP OE OP HP OG OP OG OP ∴+=++-⋅+++-⋅ 22222()HP OP OE OG =+++222112()()22OH EG EG =++ 22112()22HF EG =⨯+ 221122HF EG =+, 同理可得:22221122EF FG HF EG +=+, 222222EG FH EF FG GH HE ∴+=+++.23.(2021春•集贤县期末)在四边形ABCD 中,AB 、BC 、CD 、DA 的中点分别为P 、Q 、M 、N .(1)如图1,试判断四边形PQMN 怎样的四边形,并证明你的结论;(2)若在AB 上取一点E ,连结DE ,CE ,恰好ADE ∆和BCE ∆都是等边三角形(如图2),判断此时四边形PQMN 的形状,并证明你的结论.【分析】(1)连接AC 、BD .利用三角形中位线定理判定四边形PQMN 的对边平行且相等,易证该四边形是平行四边形;(2)①设ADE ∆的边长是x ,BCE ∆的边长是y ,由于2222213()()2DB x y x x xy y =++=++,2222213()()2AC x y y x xy y =++=++,可得平行四边形PQMN 的对角线相等,从而得出平行四边形PQMN 是菱形;【解析】四边形PQMN 为平行四边形;(1)连接AC 、BD .PQ 为ABC ∆的中位线,//PQ AC ∴,12PQ AC =, 同理//MN AC .12MN AC =. MN PQ ∴=,//MN PQ ,∴四边形PQMN 为平行四边形;(2)四边形PQMN 是菱形;理由如下:设ADE ∆的边长是x ,BCE ∆的边长是y ,2222213()()2DB x y x xy y ∴=++=++,2222213()()2AC x y y x xy y =++=++, 平行四边形PQMN 的对角线相等,∴平行四边形PQMN 是菱形;24.(2021春•泗阳县期末)已知:如图,在四边形ABCD 中,AB 与CD 不平行,E ,F ,G ,H 分别是AD ,BC ,BD ,AC 的中点.(1)求证:四边形EGFH 是平行四边形;(2)当AB CD =,四边形EGFH 是怎样的四边形?证明你的结论.【分析】(1)根据三角形中位线定理得到12EG AB =,//EG AB ,12FH AB =,//FH AB ,根据平行四边形的判定定理证明结论; (2)依据四边形ABCD 是平行四边形,再运用三角形中位线定理证明邻边相等,从而证明它是菱形.【解析】(1)证明:E ,G 分别是AD ,BD 的中点, EG ∴是DAB ∆的中位线,12EG AB ∴=,//EG AB , 同理,12FH AB =,//FH AB , EG FH ∴=,//EG FH ,∴四边形EGFH 是平行四边形;(2)菱形.理由:F ,G 分别是BC ,BD 的中点,FG ∴是DCB ∆的中位线,12FG CD ∴=,//FG CD ,又12EG AB =, ∴当AB CD =时,EG FG =,∴平行四边形EGFH 是z。

初二数学平行四边形和特殊四边形提高练习与常考题和培优题(含解析)

初二数学平行四边形和特殊四边形提高练习与常考题和培优题(含解析)

初二数学平行四边形和特殊四边形提高练习常考题和培优题一.选择题(共5小题)1.如图,把大小相同的两个矩形拼成如下形状,则△FBD是()A.等边三角形B.等腰直角三角形C.一般三角形D.等腰三角形2.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=,CE=3,H 是AF的中点,那么CH的长是()A.3.5 B.C. D.23.如图,在矩形ABCD中,AB=4,BC=8,对角线AC、BD相交于点O,过点O 作OE垂直AC交AD于点E,则AE的长是()A.3 B.5 C.2.4 D.2.54.如图,在△ABC中,CF⊥AB于F,BE⊥AC于E,M为BC的中点,EF=7,BC=10,则△EFM的周长是()A.17 B.21 C.24 D.275.如图,在矩形ABCD中,AB=6,AD=8,P是AD上不与A和D重合的一个动点,过点P分别作AC和BD的垂线,垂足为E、F,则PE+PF的值为()A.10 B.4.8 C.6 D.5二.填空题(共4小题)6.如图,在矩形ABCD中,对角线AC与BD相交于点O,AE平分∠BAD交BC 于点E,若∠CAE=15°,则∠BOE的度数等于.7.如图,将平行四边形ABCD的边DC延长到E,使CE=CD,连接AE交BC于F,∠AFC=n∠D,当n=时,四边形ABEC是矩形.8.如图,在正五边形ABCDE中,连接AC、AD、CE,CE交AD于点F,连接BF,则线段AC、BF、CD之间的关系式是.9.如图,在平面直角坐标系中,O为原点,四边形OABC是矩形,A(﹣10,0),C(0,3),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标是.三.解答题(共31小题)10.如图,正方形ABCD中,AE=AB,直线DE交BC于点F,求∠BEF的度数.11.如图,梯形ABCD中,AD∥BC,AB=CD,对角线AC、BD交于点O,AC⊥BD,E、F、G、H分别为AB、BC、CD、DA的中点.(1)求证:四边形EFGH为正方形;(2)若AD=1,BC=3,求正方形EFGH的边长.12.如图,点E、F分别是正方形ABCD的边CD和AD的中点,BE和CF交于点P.求证:AP=AB.13.如图,点P为正方形ABCD对角线BD上一点,PE⊥BC于E,PF⊥DC于F.(1)求证:PA=EF;(2)若正方形ABCD的边长为a,求四边形PFCE的周长.14.如图1,在正方形ABCD中,点E为BC上一点,连接DE,把△DEC沿DE折叠得到△DEF,延长EF交AB于G,连接DG.(1)求∠EDG的度数.(2)如图2,E为BC的中点,连接BF.①求证:BF∥DE;②若正方形边长为6,求线段AG的长.15.如图①,在正方形ABCD中,F是对角线AC上的一点,点E在BC的延长线上,且BF=EF.(1)求证:BF=DF;(2)求证:∠DFE=90°;(3)如果把正方形ABCD改为菱形,其他条件不变(如图②),当∠ABC=50°时,∠DFE=度.16.已知正方形ABCD中,对角线AC、BD相交于O.①如图1,若E是AC上的点,过A 作AG⊥BE于G,AG、BD交于F,求证:OE=OF②如图2,若点E在AC的延长线上,AG⊥EB交EB的延长线于G,AG延长DB 延长线于点F,其它条件不变,OE=OF还成立吗?17.如图,点P是菱形ABCD中对角线AC上的一点,且PE=PB.(1)求证:PE=PD;(2)求证:∠PDC=∠PEB;(3)若∠BAD=80°,连接DE,试求∠PDE的度数,并说明理由.18.如图,正方形ABCD中,AB=1,点P是BC边上的任意一点(异于端点B、C),连接AP,过B、D两点作BE⊥AP于点E,DF⊥AP于点F.(1)求证:EF=DF﹣BE;(2)若△ADF的周长为,求EF的长.19.如图,正方形ABCD的对角线AC、BD的交点为O,以O为端点引两条互相垂直的射线OM、ON,分别交边AB、BC于点E、F.(1)求证:0E=OF;(2)若正方形的边长为4,求EF的最小值.20.如图,在正方形ABCD中,点E是边AD上任意一点,BE的垂直平分线FG 交对角AC于点F.求证:(1)BF=DF;(2)BF⊥FE.21.已知:如图所示,四边形ABCD中,∠ABC=∠ADC=90°,M是AC上任一点,O是BD的中点,连接MO,并延长MO到N,使NO=MO,连接BN与ND.(1)判断四边形BNDM的形状,并证明;(2)若M是AC的中点,则四边形BNDM的形状又如何?说明理由.22.如图,在△ABC中,O是边AC上的一动点,过点O作直线MN∥BC,设MN 交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)求证:OE=OF;(2)当点O运动到何处时,四边形AECF是矩形?23.(1)如图矩形ABCD的对角线AC、BD交于点O,过点D作DP∥OC,且DP=OC,连接CP,判断四边形CODP的形状并说明理由.(2)如果题目中的矩形变为菱形,结论应变为什么?说明理由.(3)如果题目中的矩形变为正方形,结论又应变为什么?说明理由.24.如图1,已知AB∥CD,AB=CD,∠A=∠D.(1)求证:四边形ABCD为矩形;(2)E是AB边的中点,F为AD边上一点,∠DFC=2∠BCE.①如图2,若F为AD中点,DF=1.6,求CF的长度:②如图2,若CE=4,CF=5,则AF+BC=,AF=.25.如图,直线a、b相交于点A,C、E分别是直线b、a上两点且BC⊥a,DE ⊥b,点M、N是EC、DB的中点.求证:MN⊥BD.26.如图所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P从点A出发沿AD方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s的速度运动.点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动.(1)经过多长时间,四边形PQCD是平行四边形?(2)经过多长时间,四边形PQBA是矩形?(3)经过多长时间,当PQ不平行于CD时,有PQ=CD.27.如图,E、F是正方形ABCD的边AD上的两个动点,满足AE=DF.连接CF 交BD于G,连接BE交AG于H.已知正方形ABCD的边长为4cm,解决下列问题:(1)求证:BE⊥AG;(2)求线段DH的长度的最小值.28.如图,点M是矩形ABCD的边AD的中点,点P是BC边上一动点,PE⊥MC,PF⊥BM,垂足为E、F.(1)当矩形ABCD的长与宽满足什么条件时,四边形PEMF为矩形?猜想并证明你的结论.(2)在(1)中,当点P运动到什么位置时,矩形PEMF变为正方形,为什么?29.某校数学兴趣小组开展了一次课外活动,过程如下:如图①,正方形ABCD 中,AB=4,将三角板放在正方形ABCD上,使三角板的直角顶点与D点重合.三角板的一边交AB于点P,另一边交BC的延长线于点Q.(1)求证:AP=CQ;(2)如图②,小明在图1的基础上作∠PDQ的平分线DE交BC于点E,连接PE,他发现PE和QE存在一定的数量关系,请猜测他的结论并予以证明;(3)在(2)的条件下,若AP=1,求PE的长.30.如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,求t的值.31.如图,在Rt△ABC中,∠ABC=90°,点D是AC的中点,作∠ADB的角平分线DE交AB于点E,(1)求证:DE∥BC;(2)若AE=3,AD=5,点P为BC上的一动点,当BP为何值时,△DEP为等腰三角形.请直接写出所有BP的值.32.已知:如图,BF、BE分别是∠ABC及其邻补角的角平分线,AE⊥BE,垂足为点E,AF⊥BF,垂足为点F.EF分别交边AB、AC于点M、N.求证:(1)四边形AFBE是矩形;(2)BC=2MN.33.如图,在边长为5的菱形ABCD中,对角线BD=8,点O是直线BD上的动点,OE⊥AB于E,OF⊥AD于F.(1)对角线AC的长是,菱形ABCD的面积是;(2)如图1,当点O在对角线BD上运动时,OE+OF的值是否发生变化?请说明理由;(3)如图2,当点O在对角线BD的延长线上时,OE+OF的值是否发生变化?若不变请说明理由,若变化,请直接写出OE、OF之间的数量关系,不用明理由.34.如图,已知Rt△ABD≌Rt△FEC,且B、D、C、E在同一直线上,连接BF、AE.(1)求证:四边形ABFE是平行四边形.(2)若∠ABD=60°,AB=2cm,DC=4cm,将△ABD沿着BE方向以1cm/s的速度运动,设△ABD运动的时间为t,在△ABD运动过程中,试解决以下问题:(1)当四边形ABEF是菱形时,求t的值;(2)是否存在四边形ABFE是矩形的情形?如果存在,求出t的值,如果不存在,请说明理由.35.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图1,连接AF、CE.求证:四边形AFCE为菱形.(2)如图1,求AF的长.(3)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,点P的速度为每秒1cm,设运动时间为t秒.①问在运动的过程中,以A、P、C、Q四点为顶点的四边形有可能是矩形吗?若有可能,请求出运动时间t和点Q的速度;若不可能,请说明理由.②若点Q的速度为每秒0.8cm,当A、P、C、Q四点为顶点的四边形是平行四边形时,求t的值.36.如图1,E,F是正方形ABCD的边上两个动点,满足AE=DF,连接CF交BD 于G,连接BE交AG于点H(1)求证:AG⊥BE;(2)如图2,连DH,若正方形的边长为4,则线段DH长度的最小值是.37.如图,在菱形ABCD中,AB=2,∠DAB=60°,点E时AD边的中点,点M时AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形.(2)填空:①当AM的值为时,四边形AMDN是矩形;②当AM的值为时,四边形AMDN是菱形.38.如图,已知正方形OABC的边长为4,顶点A、C分别在x、y轴的正半轴上,M是BC的中点,点P(0,m)是线段oc上的一动点9点P不与点O、C重合0,直线PM交AB的延长线于点D.(1)求点D的坐标;(用含m的代数式表示)(2)若△APD是以AP边为一腰的等腰三角形,求m的值.39.如图,在△ABC中,∠ABC=90°,点D为AC的中点,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)证明:四边形BDFG是菱形;(2)若AC=10,CF=6,求线段AG的长度.40.如图,在正方形ABCD中,点E在边AD上,点F在边BC的延长线上,连接EF与边CD相交于点G,连接BE与对角线AC相交于点H,AE=CF,BE=EG.(1)求证:EF∥AC;(2)求∠BEF大小;(3)若EB=4,则△BAE的面积为.初二数学平行四边形和特殊四边形提高练习常考题和培优题参考答案与试题解析一.选择题(共5小题)1.(2012春•炎陵县校级期中)如图,把大小相同的两个矩形拼成如下形状,则△FBD是()A.等边三角形B.等腰直角三角形C.一般三角形D.等腰三角形【分析】根据正方形性质得出FG=BC,∠G=∠C=90°,GB=CD,根据SAS证△FGB ≌△BCD,推出∠FBG=∠BDC,BF=BD,求出∠DBC+∠FBG=90°,求出∠FBD的度数即可.【解答】解:∵大小相同的两个矩形GFEB、ABCD,∴FG=BE=AD=BC,GB=EF=AB=CD,∠G=∠C=∠ABG=∠ABC=90°,∵在△FGB和△BCD中,∴△FGB≌△BCD,∴∠FBG=∠BDC,BF=BD,∵∠BDC+∠DBC=90°,∴∠DBC+∠FBG=90°,∴∠FBD=180°﹣90°=90°,即△FBD是等腰直角三角形,故选B.【点评】本题考查了等腰直角三角形,全等三角形的性质和判定,正方形性质的应用,关键是证出△FGB≌△BCD,主要考查学生运用性质进行推理的能力.2.(2015春•江阴市期中)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=,CE=3,H是AF的中点,那么CH的长是()A.3.5 B.C. D.2【分析】根据正方形的性质求出AB=BC=,CE=EF=3,∠E=90°,延长AD交EF于M,连接AC、CF,求出AM=4,FM=2,∠AMF=90°,根据正方形性质求出∠ACF=90°,根据直角三角形斜边上的中线性质求出CH=AF,根据勾股定理求出AF即可.【解答】解:∵正方形ABCD和正方形CEFG中,点D在CG上,BC=,CE=3,∴AB=BC=,CE=EF=3,∠E=90°,延长AD交EF于M,连接AC、CF,则AM=BC+CE=4,FM=EF﹣AB=2,∠AMF=90°,∵四边形ABCD和四边形GCEF是正方形,∴∠ACD=∠GCF=45°,∴∠ACF=90°,∵H为AF的中点,∴CH=AF,在Rt△AMF中,由勾股定理得:AF==2,∴CH=,故选:C.【点评】本题考查了勾股定理,正方形的性质,直角三角形斜边上的中线的应用,解此题的关键是能正确作出辅助线,并求出AF的长和得出CH=AF,有一定的难度.3.(2015春•泗洪县校级期中)如图,在矩形ABCD中,AB=4,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则AE的长是()A.3 B.5 C.2.4 D.2.5【分析】根据矩形的性质得出∠CDE=90°,AD=BC=8,AB=DC=4,AO=OC,根据线段垂直平分线性质得出AE=CE,在Rt△CDE中,由勾股定理得出CE2=CD2+DE2,代入求出即可.【解答】解:∵在矩形ABCD中,AB=4,BC=8,∴∠CDE=90°,AD=BC=8,AB=DC=4,AO=OC,∵OE⊥AC,∴AE=CE,在Rt△CDE中,由勾股定理得:CE2=CD2+DE2,即AE2=42+(8﹣AE)2,解得:AE=5,故选B.【点评】本题考查了矩形的性质,勾股定理,线段垂直平分线性质的应用,解此题的关键是得出关于AE的方程.4.(2015秋•无锡期中)如图,在△ABC中,CF⊥AB于F,BE⊥AC于E,M为BC的中点,EF=7,BC=10,则△EFM的周长是()A.17 B.21 C.24 D.27【分析】根据CF⊥AB于F,BE⊥AC于E,M为BC的中点,利用直角三角形斜边上的中线等于斜边的一半,求出FM和ME的长,即可求解.【解答】解:∵CF⊥AB,M为BC的中点,∴MF是Rt△BFC斜边上的中线,∴FM=BC=×10=5,同理可得,ME=BC=×10=5,又∵EF=7,∴△EFM的周长=EF+ME+FM=7+5+5=17.故选A.【点评】此题主要考查学生对直角三角形斜边上的中线这个知识点的理解和掌握,解答此题的关键是利用直角三角形斜边上的中线等于斜边的一半,求出FM 和ME的长.5.(2015春•乌兰察布校级期中)如图,在矩形ABCD中,AB=6,AD=8,P是AD 上不与A和D重合的一个动点,过点P分别作AC和BD的垂线,垂足为E、F,则PE+PF的值为()A.10 B.4.8 C.6 D.5【分析】连接OP,利用勾股定理列式求出BD,再根据矩形的对角线相等且互相=S△AOP+S△DOP列方程求解即可.平分求出OA、OD,然后根据S△AOD【解答】解:如图,连接OP,∵AB=6,AD=8,∴BD===10,∵四边形ABCD是矩形,∴OA=OD=×10=5,∵S=S△AOP+S△DOP,△AOD∴××6×8=×5•P E+×5•PF,解得PE+PF=4.8.故选B.【点评】本题考查了矩形的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键.二.填空题(共4小题)6.(2016春•东平县期中)如图,在矩形ABCD中,对角线AC与BD相交于点O,AE平分∠BAD交BC于点E,若∠CAE=15°,则∠BOE的度数等于75°.【分析】由矩形ABCD,得到OA=OB,根据AE平分∠BAD,得到等边三角形OAB,推出AB=OB,求出∠OAB、∠OBC的度数,根据平行线的性质和等角对等边得到OB=BE,根据三角形的内角和定理即可求出答案.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,AC=BD,OA=OC,OB=OD,∠BAD=90°,∴OA=OB,∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE=45°=∠AEB,∴AB=BE,∵∠CAE=15°,∴∠DAC=45°﹣15°=30°,∠BAC=60°,∴△BAO是等边三角形,∴AB=OB,∠ABO=60°,∴∠OBC=90°﹣60°=30°,∵AB=OB=BE,∴∠BOE=∠BEO=(180°﹣30°)=75°.故答案为75°.【点评】本题主要考查了三角形的内角和定理,矩形的性质,等边三角形的性质和判定,平行线的性质,角平分线的性质,等腰三角形的判定等知识点,解此题的关键是求出∠OBC的度数和求OB=BE.7.(2014春•武昌区期中)如图,将平行四边形ABCD的边DC延长到E,使CE=CD,连接AE交BC于F,∠AFC=n∠D,当n=2时,四边形ABEC是矩形.【分析】首先根据四边形ABCD是平行四边形,得到四边形ABEC是平行四边形,然后证得FC=FE,利用对角线互相相等的四边形是矩形判定四边形ABEC是矩形.【解答】解:当∠AFC=2∠D时,四边形ABEC是矩形.∵四边形ABCD是平行四边形,∴BC∥AD,∠BCE=∠D,由题意易得AB∥EC,AB∥EC,∴四边形ABEC是平行四边形.∵∠AFC=∠FEC+∠BCE,∴当∠AFC=2∠D时,则有∠FEC=∠FCE,∴FC=FE,∴四边形ABEC是矩形,故答案为:2.【点评】此题考查了平行四边形的性质以及矩形的判定.此题难度适中,注意掌握数形结合思想的应用,解题的关键是了解矩形的判定定理.8.(2015春•南长区期中)如图,在正五边形ABCDE中,连接AC、AD、CE,CE 交AD于点F,连接BF,则线段AC、BF、CD之间的关系式是AC2+BF2=4CD2.【分析】首先根据菱形的判定方法,判断出四边形ABCF是菱形,再根据菱形的性质,即可判断出AC⊥BF;然后根据勾股定理,可得OB2+OC2=BC2,据此推得AC2+BF2=4CD2即可.【解答】解:∵五边形ABCDE是正五边形,∴AB∥CE,AD∥BC,∴四边形ABCF是平行四边形,又∵AB=BC=CD=DE=EA,∴四边形ABCF是菱形,∴AC⊥BF,∴OB2+OC2=BC2,∵AC=2OC,BF=2OB,∴AC2+BF2=(2OC)2+(2OB)2=4OC2+4OB2=4BC2,又∵BC=CD,∴AC2+BF2=4CD2.故答案为:AC2+BF2=4CD2.【点评】(1)此题主要考查了菱形的判定和性质的应用,要熟练掌握,解答此题的关键是要明确:菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法.(2)此题还考查了勾股定理的应用:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方,要熟练掌握.9.(2015春•株洲校级期中)如图,在平面直角坐标系中,O为原点,四边形OABC 是矩形,A(﹣10,0),C(0,3),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标是(﹣4,3),或(﹣1,3),或(﹣9,3).【分析】先由矩形的性质求出OD=5,分情况讨论:(1)当OP=OD=5时;根据勾股定理求出PC,即可得出结果;(2)当PD=OD=5时;①作PE⊥OA于E,根据勾股定理求出DE,得出PC,即可得出结果;②作PF⊥OA于F,根据勾股定理求出DF,得出PC,即可得出结果.【解答】解:∵A(﹣10,0),C(0,3),∴OA=10,OC=3,∵四边形OABC是矩形,∴BC=OA=10,AB=OC=3,∵D是OA的中点,∴AD=OD=5,分情况讨论:(1)当OP=OD=5时,根据勾股定理得:PC==4,∴点P的坐标为:(﹣4,3);(2)当PD=OD=5时,分两种情况讨论:①如图1所示:作PE⊥OA于E,则∠PED=90°,DE==4,∴PC=OE=5﹣4=1,∴点P的坐标为:(﹣1,3);②如图2所示:作PF⊥OA于F,则DF==4,∴PC=OF=5+4=9,∴点P的坐标为:(﹣9,3);综上所述:点P的坐标为:(﹣4,3),或(﹣1,3),或(﹣9,3);故答案为:(﹣4,3),或(﹣1,3),或(﹣9,3).【点评】本题考查了矩形的性质、坐标与图形性质、等腰三角形的性质、勾股定理;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.三.解答题(共31小题)10.(2012春•西城区校级期中)如图,正方形ABCD中,AE=AB,直线DE交BC 于点F,求∠BEF的度数.【分析】设∠BAE=x°,根据正方形性质推出AB=AE=AD,根据等腰三角形性质和三角形的内角和定理求出∠AEB和∠AED的度数,根据平角定义求出即可.【解答】解:设∠BAE=x°,∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∵AE=AB,∴AB=AE=AD,∴∠ABE=∠AEB=(180°﹣∠BAE)=90°﹣x°,∠DAE=90°﹣x°,∠AED=∠ADE=(180°﹣∠DAE)=[180°﹣(90°﹣x°)]=45°+x°,∴∠BEF=180°﹣∠AEB﹣∠AED,=180°﹣(90°﹣x°)﹣(45°+x°),=45°,答:∠BEF的度数是45°.【点评】本题考查了三角形的内角和定理,等腰三角形性质,正方形性质的应用,解此题的关键是如何把已知角的未知角结合起来,题目比较典型,但是有一定的难度.11.(2012秋•高淳县期中)如图,梯形ABCD中,AD∥BC,AB=CD,对角线AC、BD交于点O,AC⊥BD,E、F、G、H分别为AB、BC、CD、DA的中点.(1)求证:四边形EFGH为正方形;(2)若AD=1,BC=3,求正方形EFGH的边长.【分析】(1)先由三角形的中位线定理求出四边相等,然后由AC⊥BD入手,进行正方形的判断.(2)连接EG,利用梯形的中位线定理求出EG的长,然后结合(1)的结论求出EH2=2,也即得出了正方形EHGF的边长.【解答】(1)证明:在△ABC中,∵E、F分别是AB、BC的中点,∴EF=同理FG=,GH=,HE=在梯形ABCD中,∵AB=DC,∴AC=BD,∴EF=FG=GH=HE∴四边形EFGH为菱形.设AC与EH交于点M在△ABD中,∵E、H分别是AB、AD的中点,∴EH∥BD,同理GH∥AC又∵AC⊥BD,∴∠BOC=90°.∴∠EHG=∠EMC=∠BOC=90°∴四边形EFGH为正方形.(2)解:连接EG,在梯形ABCD中,∵E、G分别是AB、DC的中点,∴EG=(AD+BC)=(1+3)=2,在Rt△HEG中,EG2=EH2+HG2,4=2EH2,EH2=2,则EH=.即四边形EFGH的边长为.【点评】此题考查了等腰梯形的性质及三角形、梯形的中位线定理,解答本题的关键是根据三角形的中位线定理得出EH=HG=GF=FE,这是本题的突破口.12.(2013秋•青岛期中)如图,点E、F分别是正方形ABCD的边CD和AD的中点,BE和CF交于点P.求证:AP=AB.【分析】延长CF、BA交于点M,先证△BCE≌△CDF,再证△CDF≌△AMF得BA=MA由直角三角形中斜边中线等于斜边的一半,可得Rt△MBP中AP=BM,即AP=AB.【解答】证明:延长CF、BA交于点M,∵点E、F分别是正方形ABCD的边CD和AD的中点,∴BC=CD,∠BCE=∠CDF,CE=DF,∴△BCE≌△CDF,∴∠CBE=∠DCF.∵∠DCF+∠BCP=90°,∴∠CBE+∠BCP=90°,∴∠BPM=∠CBE+∠BCP=90°.又∵FD=FA,∠CDF=∠MAF,∠CFD=∠MFA,∴△CDF≌△AMF,∴CD=AM.∵CD=AB,∴AB=AM.∴PA是直角△BPM斜边BM上的中线,∴AP=BM,即AP=AB.【点评】本题考查了正方形各边长相等、各内角为直角的性质,全等三角形的判定和对应边相等的性质,直角三角形斜边中线长为斜边长一半的性质,本题中求证△CDF≌△AMF是解题的关键.13.(2015春•禹州市期中)如图,点P为正方形ABCD对角线BD上一点,PE⊥BC于E,PF⊥DC于F.(1)求证:PA=EF;(2)若正方形ABCD的边长为a,求四边形PFCE的周长.【分析】(1)连接PC,证四边形PFCE是矩形,求出EF=PC,证△ABP≌△CBP,推出AP=PC即可;(2)证△CBD是等腰直角三角形,求出BF、PF,求出周长即可.【解答】解:证明:(1)连接PC,∵四边形ABCD是正方形,∴AB=CB,∠ABD=∠CBD=45°,∠C=90°,在△ABP与△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∵PE⊥BC,PF⊥CD,∴∠PFC=90°,∠PEC=90°.又∵∠C=90°,∴四边形PFCE是矩形,∴EF=PC,∴PA=EF.(2)由(1)知四边形PFCE是矩形,∴PE=CF,PF=CE,又∵∠CBD=45°,∠PEB=90°,∴BE=PE,又BC=a,∴矩形PFCE的周长为2(PE+EC)=2(BE+EC)=2BC=2a.【点评】本题主要考查正方形的性质,全等三角形的性质和判定等知识点的连接和掌握,能证出AP=PC是解此题的关键.14.(2015秋•福建校级期中)如图1,在正方形ABCD中,点E为BC上一点,连接DE,把△DEC沿DE折叠得到△DEF,延长EF交AB于G,连接DG.(1)求∠EDG的度数.(2)如图2,E为BC的中点,连接BF.①求证:BF∥DE;②若正方形边长为6,求线段AG的长.【分析】(1)由正方形的性质可得DC=DA.∠A=∠B=∠C=∠ADC=90°,由折叠的性质得出∠DFE=∠C,DC=DF,∠1=∠2,再求出∠DFG=∠A,DA=DF,然后由“HL”证明Rt△DGA≌Rt△DGF,由全等三角形对应角相等得出∠3=∠4,得出∠2+∠3=45°即可;(2)①由折叠的性质和线段中点的定义可得CE=EF=BE,∠DEF=∠DEC,再由三角形的外角性质得出∠5=∠DEC,然后利用同位角相等,两直线平行证明即可;②设AG=x,表示出GF、BG,根据点E是BC的中点求出BE、EF,从而得到GE 的长度,再利用勾股定理列出方程求解即可;【解答】(1)解:如图1所示:∵四边形ABCD是正方形,∴DC=DA.∠A=∠B=∠C=∠ADC=90°,∵△DEC沿DE折叠得到△DEF,∴∠DFE=∠C,DC=DF,∠1=∠2,∴∠DFG=∠A=90°,DA=DF,在Rt△DGA和Rt△DGF中,,∴Rt△DGA≌Rt△DGF(HL),∴∠3=∠4,∴∠EDG=∠3+∠2=∠ADF+∠FDC,=(∠ADF+∠FDC),=×90°,=45°;(2)①证明:如图2所示:∵△DEC沿DE折叠得到△DEF,E为BC的中点,∴CE=EF=BE,∠DEF=∠DEC,∴∠5=∠6,∵∠FEC=∠5+∠6,∴∠DEF+∠DEC=∠5+∠6,∴2∠5=2∠DEC,即∠5=∠DEC,∴BF∥DE;②解:设AG=x,则GF=x,BG=6﹣x,∵正方形边长为6,E为BC的中点,∴CE=EF=BE=×6=3,∴GE=EF+GF=3+x,在Rt△GBE中,根据勾股定理得:(6﹣x)2+32=(3+x)2,解得:x=2,即线段AG的长为2.【点评】本题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理、翻折变换的性质;熟练掌握正方形的性质,并能进行推理论证与计算是解决问题的关键.15.(2016春•召陵区期中)如图①,在正方形ABCD中,F是对角线AC上的一点,点E在BC的延长线上,且BF=EF.(1)求证:BF=DF;(2)求证:∠DFE=90°;(3)如果把正方形ABCD改为菱形,其他条件不变(如图②),当∠ABC=50°时,∠DFE=50度.【分析】(1)根据正方形的四条边都相等可得BC=DC,对角线平分一组对角可得∠BCF=∠DCF,然后利用“边角边”证明即可;(2)易证∠FBE=∠FEB,又因为∠FBE=∠FDC,所以可证明∠FEB=∠FDC,进而可证明∠DFE=90°;(3)根据全等三角形对应角相等可得∠CBF=∠CDF,根据等边对等角可得∠CBF=∠E,然后求出∠DFE=∠DCE,再根据两直线平行,同位角相等可得∠DCE=∠ABC,从而得解.【解答】(1)证明:在正方形ABCD中,BC=DC,∠BCF=∠DCF=45°,∵在△BCF和△DCF中,,∴△BCF≌△DCF(SAS);∴BF=DF;(2)证明:∵BF=EF,∴∠FBE=∠FEB,又∵∠FBE=∠FDC,∴∠FEB=∠FDC,又∵∠DGF=∠EGC,∴∠DFG=∠ECG=90°,即∠DFE=90°;(3)证明:由(1)知,△BCF≌△DCF,∴∠CBF=∠CDF,∵EE=FB,∴∠CBF=∠E,∵∠DGF=∠EGC(对顶角相等),∴180°﹣∠DGF﹣∠CDF=180°﹣∠EGC﹣∠E,即∠DFE=∠DCE,∵AB∥CD,∴∠DCE=∠ABC,∴∠DFE=∠ABC=50°,故答案为:50.【点评】本题考查了正方形的性质,全等三角形的判定与性质,菱形的性质,等边对等角的性质,熟记正方形的性质确定出∠BCF=∠DCF是解题的关键.16.(2015秋•泗县期中)已知正方形ABCD中,对角线AC、BD相交于O.①如图1,若E是AC上的点,过A 作AG⊥BE于G,AG、BD交于F,求证:OE=OF②如图2,若点E在AC的延长线上,AG⊥EB交EB的延长线于G,AG延长DB 延长线于点F,其它条件不变,OE=OF还成立吗?【分析】①由正方形的性质得出OA=OB,AC⊥BD,得出∠BOE=∠AOF=90°,由角的互余关系得出∠OBE=∠OAF,由ASA证明△BOE≌△AOF,得出对应边相等即可;②由正方形的性质得出OA=OB,AC⊥BD,得出∠BOE=∠AOF=90°,由角的互余关系得出∠OBE=∠OAF,由ASA证明△BOE≌△AOF,得出对应边相等即可.【解答】①证明:∵四边形ABCD是正方形,∴OA=OB,AC⊥BD,∴∠BOE=∠AOF=90°,∴∠OEB+∠OBE=90°,∵AG⊥BE,∴∠AGE=90°,∴∠OEB+∠OAF=90°,∴∠OBE=∠OAF,在△BOE和△AOF中,,∴△BOE≌△AOF(ASA),∴OE=OF;②解:OE=OF还成立;理由如下:∵四边形ABCD是正方形,∴OA=OB,AC⊥BD,∴∠BOE=∠AOF=90°,∴∠OEB+∠OBE=90°,∵AG⊥BE,∴∠AGE=90°,∴∠OEB+∠OAF=90°,∴∠OBE=∠OAF,在△BOE和△AOF中,,∴△BOE≌△AOF(ASA),∴OE=OF.【点评】本题考查了正方形的性质、全等三角形的判定与性质;熟练掌握正方形的性质,并能进行推理论证是解决问题的关键.17.(2016春•邳州市期中)如图,点P是菱形ABCD中对角线AC上的一点,且PE=PB.(1)求证:PE=PD;(2)求证:∠PDC=∠PEB;(3)若∠BAD=80°,连接DE,试求∠PDE的度数,并说明理由.【分析】(1)由菱形的性质得出AB=BC=CD=AD,AB∥CD,∠DCP=∠BCP,由SAS 证明△CDP≌△CBP,得出PB=PD,再由PE=PB,即可得出结论;(2)由等腰三角形的性质得出∠PBC=∠PEB,由全等三角形的性质得出∠PDC=∠PBC,即可得出∠PDC=∠PEB;(3)由四边形内角和定理得出∠DPE=100°,由等腰三角形的性质和三角形内角和定理即可得出结果.【解答】(1)解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,AB∥CD,∠DCP=∠BCP,在△DCP和△BCP中,,∴△CDP≌△CBP(SAS),∴PB=PD,∵PE=PB,∴PE=PD;(2)证明:∵PE=PB,∴∠PBC=∠PEB,∵△CDP≌△CBP,∴∠PDC=∠PBC,∴∠PDC=∠PEB;(3)解:如图所示:∠PDE=40°;理由如下:在四边形DPEC中,∵∠DPE=360°﹣(∠PDC+∠PEC+∠DCB)=360°﹣(∠PEB+∠PEC+∠DCB)=360°﹣(180°+80°)=100°,∵PE=PD∴∠PDE=∠PED=40°.【点评】本题考查了菱形的性质、全等三角形的判定与性质、等腰三角形的性质;熟练掌握菱形的性质,证明三角形全等是解决问题的关键.18.(2016春•昆山市期中)如图,正方形ABCD中,AB=1,点P是BC边上的任意一点(异于端点B、C),连接AP,过B、D两点作BE⊥AP于点E,DF⊥AP于点F.(1)求证:EF=DF﹣BE;(2)若△ADF的周长为,求EF的长.【分析】(1)由正方形的性质得出AD=AB,证出∠DAF=∠ABE,由AAS证明△ADF ≌△BAE,得出AF=BE,DF=AE,即可得出结论;(2)设DF=a,AF=b,EF=DF﹣AF=a﹣b>0,由已知条件得出DF+AF=,即a+b=,由勾股定理得出a2+b2=1,再由完全平方公式得出a﹣b即可.【解答】(1)证明:∵BE⊥AP,DF⊥AP,∴∠DFA=∠AEB=90°,∠ABE+∠BAE=90°,∵四边形ABCD为正方形,∴AD=AB,∠DAB=90°=∠DAF+∠BAE,∴∠DAF=∠ABE,在△ADF和△BAE中,,∴△ADF≌△BAE(AAS),∴AF=BE,DF=AE,∴EF=AE﹣AF=DF﹣BE;(2)解:设DF=a,AF=b,EF=DF﹣AF=a﹣b>0,∵△ADF的周长为,AD=1,∴DF+AF=,即a+b=,由勾股定理得:DF2+AF2=AD2,即a2+b2=1,∴(a﹣b)2=2(a2+b2)﹣(a+b)2=2﹣=,∴a﹣b=,即EF=.【点评】本题考查了正方形的性质、全等三角形的判定与性质、勾股定理等知识;熟练掌握正方形的性质,由勾股定理得出a与b的关系式是解决问题(2)的关键.19.(2015春•繁昌县期中)如图,正方形ABCD的对角线AC、BD的交点为O,以O为端点引两条互相垂直的射线OM、ON,分别交边AB、BC于点E、F.(1)求证:0E=OF;(2)若正方形的边长为4,求EF的最小值.【分析】(1)根据正方形的性质可得∠EAO=∠FBO=45°,OA=OB,再根据同角的余角相等可得∠AOE=∠BOE,然后利用“角边角”证明△AOE和△BOF全等,根据全等三角形对应边相等即可得证;(2)根据等腰直角三角形△EOF,当OE最小时,再根据勾股定理得出EF的最小值.【解答】解:(1)∵四边形ABCD是正方形,∴OA=OB,∠AOB=90°,∠EAO=∠FBO=45°,∴∠AOE+∠BOE=90°,∵OE⊥OF,∴∠BOF+∠BOE=90°,∴∠AOE=∠BOF,在△AOE与△BOF中,,∴△AOE≌△BOF(ASA),∴OE=OF;(2)由(1)可知,△EOF是等腰直角三角形,∠EOF是直角,当OE最小时,EF的值最小,∵OA=OB,OE⊥AB,∴点E是AB的中点,∴OE=AB,∵AB=4,∴OE=2,∴EF=,即EF的最小值是2.【点评】本题考查了正方形的性质,解决此类问题的关键是正确的利用旋转不变量.正确作出辅助线是关键.20.(2016春•江宁区期中)如图,在正方形ABCD中,点E是边AD上任意一点,BE的垂直平分线FG交对角AC于点F.求证:(1)BF=DF;(2)BF⊥FE.【分析】(1)由正方形的性质得出AB=AD,∠BAF=∠DAF=45°,由SAS证明△BAF ≌△DAF,得出对应边相等即可;(2)由线段垂直平分线的性质得出BF=EF,证出EF=DF,得出∠FDE=∠FED,再由全等三角形的性质证出∠ABF=∠FED,由邻补角关系得出∠FED+∠FEA=180°,证出∠ABF+∠FEA=180°,由四边形内角和得出∠BAE+∠BFE=180°,求出∠BFE=90°即可.【解答】证明:如图所示:(1)∵四边形ABCD是正方形,∴AB=AD,∠BAF=∠DAF=45°,∠BAE=90°,在△BAF和△DAF中,,∴△BAF≌△DAF(SAS),∴BF=DF;(2)∵BE的垂直平分线FG交对角AC于点F,∴BF=EF,∵BF=DF,∴EF=DF,∴∠FDE=∠FED,∵△BAF≌△DAF,∴∠ABF=∠FDE,∴∠ABF=∠FED,∵∠FED+∠FEA=180°,∴∠ABF+∠FEA=180°,∴∠BAE+∠BFE=180°,∴∠BFE=90°,∴BF⊥FE.。

八年级数学下《四边形》培优练习卷

八年级数学下《四边形》培优练习卷

八年级数学下《四边形》培优练习卷一、选择题1.若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是()A.矩形B.菱形C.对角线互相垂直的四边形D.对角线相等的四边形2.如图,在△ABC,∠ACB=90°中,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,CE=4,求四边形A CEB的周长。

A.4 B.10+ 4 C. 10+2 D. 23.在矩形ABCD中,AB=2AD,E是CD上一点,且AE=AB,则∠CBE= ( )A.30° B.22.5° C.15° D.以上都不对4.如图,将矩形ABCD沿AE折叠,若∠BAD'=30°,则∠AED' 等于 ( )A.30° B.45° C.60° D.75°第6题5.如图,矩形ABCD中,AB=3,BC=5.过对角线交点O作OE⊥AC交AD于E,则AE的长是 ( ) A.1.6 B.2.5 C.3 D.3.46.平行四边形ABCD中,点A1,A2,A3,A4和C1,C2,C3,C4分别是AB和CD五等分点,点B1,B2和D1,D2分别是BC和DA三等分点,若四边形A4B2C4D2面积为1.则平行四边形ABCD面积为 ( )A.2 B.35C.53D.157.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EB的长为()A.1 B.4C.4﹣2D.4﹣4第7题二、填空题8.在□ABCD中,一角的平分线把一条边分成3 cm和4 cm两部分,则□ABCD的周长为______.9.矩形的两条对角线的夹角为60°,一条对角线与较短边的和为15,则较长边的长为_______.10.已经△ABC中,∠C=90°,C=10,a:b=3:4 ,则a= b=11.如图,在△ABC中,AB=AC,将△ABC绕点C旋转180°得到△FEC,连接AE、BF.当∠ACB为度时,四边形ABFE为矩形.第11题第12题第13题第14题12.如图,矩形ABCD中,AB=2,BC=3,对角线AC的垂直平分线分别交AD,BC于点E、F.连接CE,则CE的长是_______.13.如图,将矩形纸片ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,若EH=3厘米,EF=4厘米,则边AD的长是_______厘米.14.如图,△ABC中,∠A的平分线交BC于点D,过点D作DE⊥AC,DF⊥AB,垂足分别为E,F,下面四个结论:①∠AFE=∠AEF;②AD垂直平分EF;③CEBFSSCEDBFD=∆∆;④EF∥BC.其中正确的是_______.15.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,7=∆ABCS,DE=2,AB=4,则AC长为.三、解答题16.如图,在四边形ABCD中,点E是线段AD上的任意一点(E与A,D不重合),G,F,H分别是BE,BC,CE的中点.(1)证明:四边形EGFH是平行四边形;(2)在(1)的条件下,若EF⊥BC,且EF=BC,证明:平行四边形EGFH是正方形.17.已知△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点D为BC边上一点.(1)求证:△ACE≌△ABD;(2)若AC=8,CD=1,求ED的长.18.如图,四边形ABCD中,AB=CD,M、N分别是AD、BC的中点,延长BA、NM、CD分别交于点E、F.求证:∠BEN=∠NFC. (提示:连结AC并取中点)19.如图,在Rt⊿ABC中,∠B=90°,AC=100cm,BC=80cm,点P从点A开始沿边AB向点B以1cm/s的速度运动,同时,另一点Q由点B开始沿边BC向点C以1.5cm/s的速度运动.(1)20s后,点P与点Q相距 cm.(2)在(1)的条件下,若P、Q两点同时在直线PQ上相向而行,多少秒后,两点相遇?(3)多少秒后,AP=CQ?20.△ABC中,∠ACB=90°,AC=BC,AB=2.现将一块三角板的直角顶点放在AB的中点D处,两直角边分别与直线..AC、直线..BC相交于点E、F.我们把DE⊥AC时的位置定为起始位置(如图1),将三角板绕点D顺时针方向旋转一个角度α (0°<α<90°).(1)在旋转过程中,当点E在线段AC上,点F在线段BC上时(如图2),①试判别△DEF的形状,并说明理由;②判断四边形ECFD的面积是否发生变化,并说明理由.(2)设直线..ED交直线..BC于点G,在旋转过程中,是否存在点G,使得△EFG为等腰三角形?若存在,求出CG的长,若不存在,说明理由;D DEADEDA。

八年级初二数学数学平行四边形的专项培优练习题(及答案

八年级初二数学数学平行四边形的专项培优练习题(及答案

八年级初二数学数学平行四边形的专项培优练习题(及答案一、选择题1.如图,菱形ABCD中,∠BAD=60°,AC与BD交于点O,E为CD延长线上的一点,且CD=DE,连接BE,分别交AC、AD于点F、G,连接OG,则下列结论:①OG=12AB;②图中与△EGD 全等的三角形共有5个;③以点A、B、D、E为项点的四边形是菱形;④ S四边形ODGF= S△ABF.其中正确的结论是()A.①③B.①③④C.①②③D.②②④2.如图,正方形ABCD的边长为4,点E在边AB上,AE=1,若点P为对角线BD上的一个动点,则△PAE周长的最小值是()A.3 B.4 C.5 D.63.如图所示,等边三角形ABC沿射线BC向右平移到DCE∆的位置,连接AD、BD,则下列结论:(1)AD BC=(2)BD与AC互相平分(3)四边形ACED是菱形(4)BD DE⊥,其中正确的个数是()A.1 B.2 C.3 D.44.如图,将矩形ABCD沿EF折叠后点D与B重合.若原矩形的长宽之比为3:1,则AE BF的值为()A .12B .13C .34D .45 5.如图,正方形ABCD 的边长为10,8AG CH ==,6BG DH ==,连接GH ,则线段GH 的长为( )A .835B .22C .145D .1052-6.如图,矩形ABCD 中,AB =10,AD =4,点E 从D 向C 以每秒1个单位的速度运动,以AE 为一边在AE 的左上方作正方形AEFG ,同时垂直于CD 的直线MN 也从C 向D 以每秒2个单位的速度运动,当点F 落在直线MN 上,设运动的时间为t ,则t 的值为( )A .1B .103C .4D .1437.将矩形纸片ABCD 按如图所示的方式折叠,AE 、EF 为折痕,∠BAE =30°,AB =3 ,折叠后,点C 落在AD 边上的C 1处,并且点B 落在EC 1边上的B 1处.则BC 的长为( )A 3B .3C .2D .38.如图,在正方形ABCD 中,E 为BC 上一点,过点E 作EF ∥CD ,交AD 于F ,交对角线BD 于G ,取DG 的中点H ,连结AH ,EH ,FH .下列结论:①∠EFH =45°;②△AHD≌△EHF;③∠AEF+∠HAD=45°;④若BEEC=2,则1113=BEHAHESS.其中结论正确的是()A.①②③B.①②④C.②③④D.①②③④9.如图,正方形ABCD的边长为2,Q为CD边上(异于C,D)的一个动点,AQ交BD于点M.过M作MN⊥AQ交BC于点N,作NP⊥BD于点P,连接NQ,下面结论:①AM=MN;②MP=2;③△CNQ的周长为3;④BD+2BP=2BM,其中一定成立的是()A.①②③④B.①②③C.①②④D.①④10.如图,BD为平行四边形ABCD的对角线,45DBC∠=︒,DE BC⊥于E,BF CD⊥于F,DE、BF相交于H,直线BF交线段AD的延长线于G,下面结论:①2BD BE=;②A BHE=∠∠;③AB BH=;④BHD BDG∠=∠其中正确的个数是()A.1 B.2 C.3 D.4二、填空题11.如图,正方形ABCD的边长为4,点E为CD边上的一个动点,以CE为边向外作正方形ECFG,连结BG,点H为BG中点,连结EH,则EH的最小值为______12.如图,在矩形ABCD中,4AB=,2AD=,E为边CD的中点,点P在线段AB 上运动,F是CP的中点,则CEF∆的周长的最小值是____________.13.如图,在等边ABC 和等边DEF 中,FD 在直线AC 上,33,BC DE ==连接,BD BE ,则BD BE +的最小值是______.14.已知在矩形ABCD 中,3,3,2AB BC ==点P 在直线BC 上,点Q 在直线CD 上,且,AP PQ ⊥当AP PQ =时,AP =________________.15.在ABC 中,AB=12,AC=10,BC=9,AD 是BC 边上的高.将ABC 按如图所示的方式折叠,使点A 与点D 重合,折痕为EF ,则DEF 的周长为______.16.如图,直线1l ,2l 分别经过点(1,0)和(4,0)且平行于y 轴.OABC 的顶点A ,C 分别在直线1l 和2l 上,O 是坐标原点,则对角线OB 长的最小值为_________.17.如图,在平面直角坐标系中,直线112y x =+与x 轴、y 轴分别交于A ,B 两点,以AB 为边在第二象限内作正方形ABCD ,则D 点坐标是_______;在y 轴上有一个动点M ,当MDC △的周长值最小时,则这个最小值是_______.18.如图,在菱形ABCD 中,AC 交BD 于P ,E 为BC 上一点,AE 交BD 于F ,若AB=AE ,EAD 2BAE ∠∠=,则下列结论:①AF=AP ;②AE=FD ;③BE=AF .正确的是______(填序号).19.如图,点E 、F 分别在平行四边形ABCD 边BC 和AD 上(E 、F 都不与两端点重合),连结AE 、DE 、BF 、CF ,其中AE 和BF 交于点G ,DE 和CF 交于点H .令AF n BC=,EC m BC=.若m n =,则图中有_______个平行四边形(不添加别的辅助线);若1m n +=,且四边形ABCD 的面积为28,则四边形FGEH 的面积为_______.20.如图所示,已知AB = 6,点C ,D 在线段AB 上,AC =DB = 1,P 是线段CD 上的动点,分别以AP ,PB 为边在线段AB 的同侧作等边△AEP 和等边△PFB ,连接EF ,设EF 的中点为G ,当点P 从点C 运动到点D 时,则点G 移动路径的长是_________.三、解答题21.在ABCD 中,以AD 为边在ABCD 内作等边ADE ∆,连接BE .(1)如图1,若点E 在对角线BD 上,过点A 作AH BD ⊥于点H ,且75DAB ∠=︒,AB 6=,求AH 的长度; (2)如图2,若点F 是BE 的中点,且CF BE ⊥,过点E 作MNCF ,分别交AB ,CD 于点,M N ,在DC 上取DG CN =,连接CE ,EG .求证:①CEN DEG ∆∆≌;②ENG ∆是等边三角形.22.综合与探究(1)如图1,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF BE =.CE 和CF 之间有怎样的关系.请说明理由.(2)如图2,在正方形ABCD 中,E 是AB 上一点,G 是AD 上一点,如果45GCE ∠=︒,请你利用(1)的结论证明:GE BE CD =+.(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3在直角梯形ABCD 中,//()AD BC BC AD >,90B ∠=︒,12AB BC ==,E 是AB 上一点,且45DCE ∠=︒,4BE =,求DE 的长.23.已知四边形ABCD 是正方形,将线段CD 绕点C 逆时针旋转α(090α︒<<︒),得到线段CE ,联结BE 、CE 、DE . 过点B 作BF ⊥DE 交线段DE 的延长线于F .(1)如图,当BE =CE 时,求旋转角α的度数;(2)当旋转角α的大小发生变化时,BEF ∠的度数是否发生变化?如果变化,请用含α的代数式表示;如果不变,请求出BEF ∠的度数;(3)联结AF,求证:2.DE AF24.已知:在矩形ABCD中,点F为AD中点,点E为AB边上一点,连接CE、EF、CF,EF 平分∠AEC.(1)如图1,求证:CF⊥EF;(2)如图2,延长CE、DA交于点K, 过点F作FG∥AB交CE于点G若,点H为FG上一点,连接CH,若∠CHG=∠BCE, 求证:CH=FK;(3)如图3, 过点H作HN⊥CH交AB于点N,若EN=11,FH-GH=1,求GK长.25.定义:只有一组对角是直角的四边形叫做损矩形,连结它的两个非直角顶点的线段叫做这个损矩形的直径。

【数学】数学平行四边形的专项培优 易错 难题练习题(含答案)含答案解析

【数学】数学平行四边形的专项培优 易错 难题练习题(含答案)含答案解析

一、平行四边形真题与模拟题分类汇编(难题易错题)1.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.(1)①猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系,不必证明;②将图1中的正方形CEFG绕着点C按顺时针方向旋转任意角度α,得到如图2情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并证明你的判断.(2)将原题中正方形改为矩形(如图3、4),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图4为例简要说明理由.(3)在第(2)题图4中,连接DG、BE,且a=3,b=2,k=12,求BE2+DG2的值.【答案】(1)①BG⊥DE,BG=DE;②BG⊥DE,证明见解析;(2)BG⊥DE,证明见解析;(3)16.25.【解析】分析:(1)①根据正方形的性质,显然三角形BCG顺时针旋转90°即可得到三角形DCE,从而判断两条直线之间的关系;②结合正方形的性质,根据SAS仍然能够判定△BCG≌△DCE,从而证明结论;(2)根据两条对应边的比相等,且夹角相等可以判定上述两个三角形相似,从而可以得到(1)中的位置关系仍然成立;(3)连接BE、DG.根据勾股定理即可把BE2+DG2转换为两个矩形的长、宽平方和.详解:(1)①BG⊥DE,BG=DE;②∵四边形ABCD和四边形CEFG是正方形,∴BC=DC,CG=CE,∠BCD=∠ECG=90°,∴∠BCG=∠DCE,∴△BCG≌△DCE,∴BG=DE,∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(2)∵AB=a,BC=b,CE=ka,CG=kb,∴BC CG b==,DC CE a又∵∠BCG=∠DCE,∴△BCG∽△DCE,∴∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(3)连接BE、DG.根据题意,得AB=3,BC=2,CE=1.5,CG=1,∵BG⊥DE,∠BCD=∠ECG=90°∴BE2+DG2=BO2+OE2+DO2+OG2=BC2+CD2+CE2+CG2=9+4+2.25+1=16.25.点睛:此题综合运用了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理.2.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系;(2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由(3)若|CF﹣AE|=2,3△POF为等腰三角形时,请直接写出线段OP的长.【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP的长为62或233.【解析】【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再根据直角三角形斜边中线等于斜边一半即可得OF=OE;(2)如图2中,延长EO交CF于K,由已知证明△ABE≌△BCF,△AOE≌△COK,继而可证得△EFK是等腰直角三角形,由等腰直角三角形的性质即可得OF⊥EK,OF=OE;(3)分点P在AO上与CO上两种情况分别画图进行解答即可得.【详解】(1)如图1中,延长EO交CF于K,∵AE⊥BE,CF⊥BE,∴AE∥CK,∴∠EAO=∠KCO,∵OA=OC,∠AOE=∠COK,∴△AOE≌△COK,∴OE=OK,∵△EFK是直角三角形,∴OF=12EK=OE;(2)如图2中,延长EO交CF于K,∵∠ABC=∠AEB=∠CFB=90°,∴∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF,∵AB=BC,∴△ABE≌△BCF,∴BE=CF,AE=BF,∵△AOE≌△COK,∴AE=CK,OE=OK,∴FK=EF,∴△EFK是等腰直角三角形,∴OF⊥EK,OF=OE;(3)如图3中,点P在线段AO上,延长EO交CF于K,作PH⊥OF于H,∵|CF﹣AE|=2,EF=23,AE=CK,∴FK=2,在Rt△EFK中,tan∠FEK=3,∴∠FEK=30°,∠EKF=60°,∴EK=2FK=4,OF=12EK=2,∵△OPF是等腰三角形,观察图形可知,只有OF=FP=2,在Rt△PHF中,PH=12PF=1,HF=3,OH=2﹣3,∴OP=()2212362+-=-.如图4中,点P在线段OC上,当PO=PF时,∠POF=∠PFO=30°,∴∠BOP=90°,∴323综上所述:OP6223.【点睛】本题考查了全等三角形的判定与性质、直角三角形斜边中线等于斜边一半、等腰直角三角形的判定与性质、解直角三角形等,综合性较强,正确添加辅助线是解题的关键.3.如图所示,矩形ABCD中,点E在CB的延长线上,使CE=AC,连接AE,点F是AE的中点,连接BF、DF,求证:BF⊥DF.【答案】见解析.【解析】【分析】延长BF,交DA的延长线于点M,连接BD,进而求证△AFM≌△EFB,得AM=BE,FB=FM,即可求得BC+BE=AD+AM,进而求得BD=BM,根据等腰三角形三线合一的性质即可求证BF⊥DF.【详解】延长BF,交DA的延长线于点M,连接BD.∵四边形ABCD是矩形,∴MD∥BC,∴∠AMF=∠EBF,∠E=∠MAF,又FA=FE,∴△AFM≌△EFB,∴AM=BE,FB=FM.∵矩形ABCD中,∴AC=BD,AD=BC,∴BC+BE=AD+AM,即CE=MD.∵CE=AC,∴AC=CE= BD =DM.∵FB=FM,∴BF⊥DF.【点睛】本题考查了矩形的性质,全等三角形的判定和对应边相等的性质,等腰三角形三线合一的性质,本题中求证DB=DM是解题的关键.4.如图,在正方形ABCD中,对角线AC与BD交于点O,在Rt△PFE中,∠EPF=90°,点E、F分别在边AD、AB上.(1)如图1,若点P与点O重合:①求证:AF=DE;②若正方形的边长为3,当∠DOE=15°时,求线段EF的长;(2)如图2,若Rt△PFE的顶点P在线段OB上移动(不与点O、B重合),当BD=3BP 时,证明:PE=2PF.【答案】(1)①证明见解析,②22;(2)证明见解析.【解析】【分析】(1)①根据正方形的性质和旋转的性质即可证得:△AOF ≌△DOE 根据全等三角形的性质证明; ②作OG ⊥AB 于G ,根据余弦的概念求出OF 的长,根据勾股定理求值即可;(2)首先过点P 作HP ⊥BD 交AB 于点H ,根据相似三角形的判定和性质求出PE 与PF 的数量关系.【详解】(1)①证明:∵四边形ABCD 是正方形,∴OA=OD ,∠OAF=∠ODE=45°,∠AOD=90°,∴∠AOE+∠DOE=90°,∵∠EPF=90°,∴∠AOF+∠AOE=90°,∴∠DOE=∠AOF ,在△AOF 和△DOE 中,OAF ODE OA ODAOF DOE ===∠∠⎧⎪⎨⎪∠∠⎩, ∴△AOF ≌△DOE ,∴AF=DE ;②解:过点O 作OG ⊥AB 于G ,∵正方形的边长为3∴OG=123∵∠DOE=15°,△AOF ≌△DOE ,∴∠AOF=15°,∴∠FOG=45°-15°=30°,∴OF=OG cos DOG ∠=2, ∴EF=22=22OF OE +;(2)证明:如图2,过点P 作HP ⊥BD 交AB 于点H ,则△HPB 为等腰直角三角形,∠HPD=90°,∴HP=BP ,∵BD=3BP ,∴PD=2BP ,∴PD=2HP ,又∵∠HPF+∠HPE=90°,∠DPE+∠HPE=90°,∴∠HPF=∠DPE ,又∵∠BHP=∠EDP=45°,∴△PHF ∽△PDE ,∴12PF PH PE PD ==, ∴PE=2PF .【点睛】 此题属于四边形的综合题.考查了正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质以及勾股定理.注意准确作出辅助线是解此题的关键.5.如图,已知矩形ABCD 中,E 是AD 上一点,F 是AB 上的一点,EF ⊥EC ,且EF =EC . (1)求证:△AEF ≌△DCE .(2)若DE =4cm ,矩形ABCD 的周长为32cm ,求AE 的长.【答案】(1)证明见解析;(2)6cm.【解析】分析:(1)根据EF⊥CE,求证∠AEF=∠ECD.再利用AAS即可求证△AEF≌△DCE.(2)利用全等三角形的性质,对应边相等,再根据矩形ABCD的周长为32cm,即可求得AE的长.详解:(1)证明:∵EF⊥CE,∴∠FEC=90°,∴∠AEF+∠DEC=90°,而∠ECD+∠DEC=90°,∴∠AEF=∠ECD.在Rt△AEF和Rt△DEC中,∠FAE=∠EDC=90°,∠AEF=∠ECD,EF=EC.∴△AEF≌△DCE.(2)解:∵△AEF≌△DCE.AE=CD.AD=AE+4.∵矩形ABCD的周长为32cm,∴2(AE+AE+4)=32.解得,AE=6(cm).答:AE的长为6cm.点睛:此题主要考查学生对全等三角形的判定与性质和矩形的性质等知识点的理解和掌握,难易程度适中,是一道很典型的题目.6.如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.【答案】(1)AG2=GE2+GF2(2)【解析】试题分析:(1)结论:AG2=GE2+GF2.只要证明GA=GC,四边形EGFC是矩形,推出GE=CF,在Rt△GFC中,利用勾股定理即可证明;(2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.易证AM=BM=2x,MN=x,在Rt△ABN中,根据AB2=AN2+BN2,可得1=x2+(2x+x)2,解得x=,推出BN=,再根据BG=BN÷cos30°即可解决问题.试题解析:(1)结论:AG2=GE2+GF2.理由:连接CG.∵四边形ABCD是正方形,∴A、C关于对角线BD对称,∵点G在BD上,∴GA=GC,∵GE⊥DC于点E,GF⊥BC于点F,∴∠GEC=∠ECF=∠CFG=90°,∴四边形EGFC是矩形,∴CF=GE,在Rt△GFC中,∵CG2=GF2+CF2,∴AG2=GF2+GE2.(2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.∵∠AGF=105°,∠FBG=∠FGB=∠ABG=45°,∴∠AGB=60°,∠GBN=30°,∠ABM=∠MAB=15°,∴∠AMN=30°,∴AM=BM=2x,MN=x,在Rt△ABN中,∵AB2=AN2+BN2,∴1=x2+(2x+x)2,解得x=,∴BN=,∴BG=BN÷cos30°=.考点:1、正方形的性质,2、矩形的判定和性质,3、勾股定理,4、直角三角形30度的性质7.问题探究(1)如图①,已知正方形ABCD的边长为4.点M和N分别是边BC、CD上两点,且BM =CN,连接AM和BN,交于点P.猜想AM与BN的位置关系,并证明你的结论.(2)如图②,已知正方形ABCD的边长为4.点M和N分别从点B、C同时出发,以相同的速度沿BC、CD方向向终点C和D运动.连接AM和BN,交于点P,求△APB周长的最大值;问题解决(3)如图③,AC为边长为23的菱形ABCD的对角线,∠ABC=60°.点M和N分别从点B、C同时出发,以相同的速度沿BC、CA向终点C和A运动.连接AM和BN,交于点P.求△APB周长的最大值.【答案】(1)AM⊥BN,证明见解析;(2)△APB周长的最大值4+42;(3)△PAB的周长最大值=23+4.【解析】试题分析:根据全等三角形的判定SAS证明△ABM≌△BCN,即可证得AM⊥BN;(2)如图②,以AB为斜边向外作等腰直角△AEB,∠AEB=90°,作EF⊥PA于E,作EG⊥PB于G,连接EP,证明PA+PB=2EF,求出EF的最大值即可;(3)如图③,延长DA到K,使得AK=AB,则△ABK是等边三角形,连接PK,取PH=PB,证明PA+PB=PK,求出PK的最大值即可.试题解析:(1)结论:AM⊥BN.理由:如图①中,∵四边形ABCD是正方形,∴AB=BC,∠ABM=∠BCN=90°,∵BM=CN,∴△ABM≌△BCN,∴∠BAM=∠CBN,∵∠CBN+∠ABN=90°,∴∠ABN+∠BAM=90°,∴∠APB=90°,∴AM⊥BN.(2)如图②中,以AB为斜边向外作等腰直角三角形△AEB,∠AEB=90°,作EF⊥PA于E,作EG⊥PB于G,连接EP.∵∠EFP=∠FPG=∠G=90°,∴四边形EFPG是矩形,∴∠FEG=∠AEB=90°,∴∠AEF=∠BEG,∵EA=EB,∠EFA=∠G=90°,∴△AEF≌△BEG,∴EF=EG,AF=BG,∴四边形EFPG是正方形,∴PA+PB=PF+AF+PG﹣BG=2PF=2EF,∵EF≤AE,∴EF的最大值=AE=2,∴△APB周长的最大值=4+4.(3)如图③中,延长DA到K,使得AK=AB,则△ABK是等边三角形,连接PK,取PH=PB.∵AB=BC,∠ABM=∠BCN,BM=CN,∴△ABM≌△BCN,∴∠BAM=∠CBN,∴∠A PN=∠BAM+∠ABP=∠CBN+∠ABN=60°,∴∠APB=120°,∵∠AKB=60°,∴∠AKB+∠APB=180°,∴A、K、B、P四点共圆,∴∠BPH=∠KAB=60°,∵PH=PB,∴△PBH是等边三角形,∴∠KBA=∠HBP,BH=BP,∴∠KBH=∠ABP,∵BK=BA,∴△KBH≌△ABP,∴HK=AP,∴PA+PB=KH+PH=PK,∴PK的值最大时,△APB的周长最大,∴当PK是△ABK外接圆的直径时,PK的值最大,最大值为4,∴△PAB的周长最大值=2+4.8.如图,抛物线y=mx2+2mx+n经过A(﹣3,0),C(0,﹣32)两点,与x轴交于另一点B.(1)求经过A,B,C三点的抛物线的解析式;(2)过点C作CE∥x轴交抛物线于点E,写出点E的坐标,并求AC、BE的交点F的坐标(3)若抛物线的顶点为D,连结DC、DE,四边形CDEF是否为菱形?若是,请证明;若不是,请说明理由.【答案】(1)y=12x2+x﹣32;(2)F点坐标为(﹣1,﹣1);(3)四边形CDEF是菱形.证明见解析【解析】【分析】将A、C点的坐标代入抛物线的解析式中,通过联立方程组求得该抛物线的解析式;根据(1)题所得的抛物线的解析式,可确定抛物线的对称轴方程以及B、C点的坐标,由CE∥x轴,可知C、E关于对称轴对称。

八年级初二数学 数学平行四边形的专项培优练习题(含答案

八年级初二数学 数学平行四边形的专项培优练习题(含答案

八年级初二数学 数学平行四边形的专项培优练习题(含答案一、解答题1.在四边形ABCD 中,AD ∥BC ,AB=8cm ,AD=16cm ,BC=22cm ,∠ABC=90°.点P 从点A 出发,以1cm/s 的速度向点D 运动,点Q 从点C 同时出发,以3cm/s 的速度向点B 运动,其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t 秒.(1)当t= 时,四边形ABQP 成为矩形?(2)当t= 时,以点P 、Q 与点A 、B 、C 、D 中的任意两个点为顶点的四边形为平行四边形?(3)四边形PBQD 是否能成为菱形?若能,求出t 的值;若不能,请说明理由,并探究如何改变Q 点的速度(匀速运动),使四边形PBQD 在某一时刻为菱形,求点Q 的速度.2.如图1,ABC ∆是以ACB ∠为直角的直角三角形,分别以AB ,BC 为边向外作正方形ABFG ,BCED ,连结AD ,CF ,AD 与CF 交于点M ,AB 与CF 交于点N .(1)求证:ABD FBC ∆≅∆;(2)如图2,在图1基础上连接AF 和FD ,若6AD =,求四边形ACDF 的面积.3.如图1,在正方形ABCD 和正方形BEFG 中,点,,A B E 在同一条直线上,P 是线段DF 的中点,连接,PG PC .(1)求证:,PG PC PG PC ⊥=.简析:由Р是线段DF 的中点,//DC CF ,不妨延长GP 交DC 于点M ,从而构造出一对全等的三角形,即_______≅________.由全等三角形的性质,易证CMG 是_______三角形,进而得出结论;(2)如图2,将原问题中的正方形ABCD 和正方形BEFG 换成菱形ABCD 和菱形BEFG ,且60ABC BEF ∠=∠=︒,探究PG 与PC 的位置关系及PG PC 的值,写出你的猜想并加以证明;(3)当6,2AB BE ==时,菱形ABCD 和菱形BEFG 的顶点都按逆时针排列,且60ABC BEF ∠=∠=︒.若点A B E 、、在一条直线上,如图2,则CP =________;若点A B G 、、在一条直线上,如图3,则CP =________.4.综合与探究(1)如图1,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF BE =.CE 和CF 之间有怎样的关系.请说明理由.(2)如图2,在正方形ABCD 中,E 是AB 上一点,G 是AD 上一点,如果45GCE ∠=︒,请你利用(1)的结论证明:GE BE CD =+.(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3在直角梯形ABCD 中,//()AD BC BC AD >,90B ∠=︒,12AB BC ==,E 是AB 上一点,且45DCE ∠=︒,4BE =,求DE 的长.5.已知正方形ABCD .(1)点P 为正方形ABCD 外一点,且点P 在AB 的左侧,45APB ∠=︒.①如图(1),若点P 在DA 的延长线上时,求证:四边形APBC 为平行四边形.②如图(2),若点P 在直线AD 和BC 之间,以AP ,AD 为邻边作APQD □,连结AQ .求∠PAQ 的度数.(2)如图(3),点F 在正方形ABCD 内且满足BC=CF ,连接BF 并延长交AD 边于点E ,过点E 作EH ⊥AD 交CF 于点H ,若EH=3,FH=1,当13AE CF =时.请直接写出HC 的长________.6.(1)如图①,在正方形ABCD 中,AEF ∆的顶点E ,F 分别在BC ,CD 边上,高AG 与正方形的边长相等,求EAF ∠的度数;(2)如图②,在Rt ABD ∆中,90,BAD AD AB ︒∠==,点M ,N 是BD 边上的任意两点,且45MAN ︒∠=,将ABM ∆绕点A 逆时针旋转90度至ADH ∆位置,连接NH ,试判断MN ,ND ,DH 之间的数量关系,并说明理由;(3)在图①中,连接BD 分别交AE ,AF 于点M ,N ,若正方形ABCD 的边长为12,GF=6,BM= 32,求EG ,MN 的长.7.(解决问题)如图1,在ABC ∆中,10AB AC ==,CG AB ⊥于点G .点P 是BC 边上任意一点,过点P 作PE AB ⊥,PF AC ⊥,垂足分别为点E ,点F .(1)若3PE =,5PF =,则ABP ∆的面积是______,CG =______.(2)猜想线段PE ,PF ,CG 的数量关系,并说明理由.(3)(变式探究)如图2,在ABC ∆中,若10AB AC BC ===,点P 是ABC ∆内任意一点,且PE BC ⊥,PF AC ⊥,PG AB ⊥,垂足分别为点E ,点F ,点G ,求PE PF PG ++的值.(4)(拓展延伸)如图3,将长方形ABCD 沿EF 折叠,使点D 落在点B 上,点C 落在点C '处,点P 为折痕EF 上的任意一点,过点P 作PG BE ⊥,PH BC ⊥,垂足分别为点G ,点H .若8AD =,3CF =,直接写出PG PH +的值.8.如图,点A 的坐标为(6,6)-,AB x ⊥轴,垂足为B ,AC y ⊥轴,垂足为C ,点,D E 分别是射线BO 、OC 上的动点,且点D 不与点B 、O 重合,45DAE ︒∠=.(1)如图1,当点D 在线段BO 上时,求DOE ∆的周长;(2)如图2,当点D 在线段BO 的延长线上时,设ADE ∆的面积为1S ,DOE ∆的面积为2S ,请猜想1S 与2S 之间的等量关系,并证明你的猜想.9.如图1,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点O 作直线EF ⊥BD ,且交AC 于点E ,交BC 于点F ,连接BE 、DF ,且BE 平分∠ABD .(1)①求证:四边形BFDE是菱形;②求∠EBF的度数.(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的数量关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.10.已知三角形纸片ABC的面积为48,BC的长为8.按下列步骤将三角形纸片ABC进行裁剪和拼图:第一步:如图1,沿三角形ABC的中位线DE将纸片剪成两部分.在线段DE上任意..取一点F,在线段BC上任意..取一点H,沿FH将四边形纸片DBCE剪成两部分;第二步:如图2,将FH左侧纸片绕点D旋转180°,使线段DB与DA重合;将FH右侧纸片绕点E旋转180°,使线段EC与EA重合,再与三角形纸片ADE拼成一个与三角形纸片ABC 面积相等的四边形纸片.图1 图2(1)当点F,H在如图2所示的位置时,请按照第二步的要求,在图2中补全拼接成的四边形;(2)在按以上步骤拼成的所有四边形纸片中,其周长的最小值为_________.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)112;(2)112或4;(3)四边形PBQD不能成为菱形【分析】(1)由∠B=90°,AP∥BQ,由矩形的判定可知当AP=BQ时,四边形ABQP成为矩形;(2)由(1)可求得点P 、Q 与点A 、B 为顶点的四边形为平行四边形;然后由当PD=CQ 时,CDPQ 是平行四边形,求得t 的值;(3)由PD ∥BQ ,当PD=BQ=BP 时,四边形PBQD 能成为菱形,先由PD=BQ 求出运动时间t 的值,再代入求BP ,发现BP≠PD ,判断此时四边形PBQD 不能成为菱形;设Q 点的速度改变为vcm/s 时,四边形PBQD 在时刻t 为菱形,根据PD=BQ=BP 列出关于v 、t 的方程组,解方程组即可求出点Q 的速度.【详解】(1)如图1,∵∠B=90°,AP ∥BQ ,∴当AP=BQ 时,四边形ABQP 成为矩形,此时有t=22﹣3t ,解得t=112. ∴当t=112时,四边形ABQP 成为矩形; 故答案为112; (2)如图1,当t=112时,四边形ABQP 成为矩形, 如图2,当PD=CQ 时,四边形CDPQ 是平行四边形,则16﹣t=3t ,解得:t=4, ∴当t=112或4时,以点P 、Q 与点A 、B 、C 、D 中的任意两个点为顶点的四边形为平行四边形; 故答案为112或4; (3)四边形PBQD 不能成为菱形.理由如下:∵PD ∥BQ ,∴当PD=BQ=BP 时,四边形PBQD 能成为菱形.由PD=BQ ,得16﹣t=22﹣3t ,解得:t=3,当t=3时,PD=BQ=13,,∴四边形PBQD 不能成为菱形;如果Q 点的速度改变为vcm/s 时,能够使四边形PBQD 在时刻ts 为菱形,由题意,得162216t vtt -=-⎧⎪⎨-=⎪⎩62t v =⎧⎨=⎩. 故点Q 的速度为2cm/s 时,能够使四边形PBQD 在某一时刻为菱形.【点睛】此题属于四边形的综合题.考查了矩形的判定、菱形的判定以及勾股定理等知识.注意掌握分类讨论思想与方程思想的应用是解此题的关键.2.(1)详见解析;(2)18【分析】(1)根据正方形的性质得出BC=BD ,AB=BF ,∠CBD=∠ABF=90°,求出∠ABD=∠CBF ,根据全等三角形的判定得出即可;(2)根据全等三角形的性质得出∠BAD=∠BFC ,AD=FC=6,求出AD ⊥CF ,根据三角形的面积求出即可.【详解】解:(1)四边形ABFG 、BCED 是正方形,AB FB ∴=,CB DB =,90ABF CBD ∠=∠=︒,ABF ABC CBD ABC ∴∠+∠=∠+∠,即ABD CBF ∠=∠在ABD ∆和FBC ∆中,AB FB ABD CBF DB CB =⎧⎪∠=∠⎨⎪=⎩()ABD FBC SAS ∴∆≅∆;图1 图2(2)ABD FBC ∆≅∆,BAD BFC ∴∠=∠,6AD FC ==,180AMF BAD CNA ∴∠=︒-∠-∠ 180()BFC BNF =︒-∠+∠1809090=︒-︒=︒AD CF ∴⊥-ACD ACF DFM ACM ACDF S S S S S ∆∆∆∆∴=++四边形11112222AD CM CF AM DM FM AM CM =⋅+⋅+⋅-⋅ 1133(6)(6)1822CM AM AM CM AM CM =++---⋅= 【点睛】本题考查了正方形的性质,全等三角形的性质和判定,三角形的面积等知识点,能求出△ABD ≌△FBC 是解此题的关键.3.(1)ΔDPM,ΔFPG ;等腰直角;(2)线段PG 与PC 的位置关系是PG ⊥PC ;PG PC =3;(3)213【分析】(1)延长GP 交DC 于点M ,由Р是线段DF 的中点,//DC CF ,可得∠MDP=∠GFP ,DP=FP ,利用ASA 可证明△DPM ≌△FPG ;可得DM=GF ,MP=GP ,根据正方形的性质可得CM=CG ,即可证明△CMG 是等腰直角三角形,即可得答案;(2)如图,延长GP 交DC 于点H ,利用ASA 可证明△GFP ≌△HDP ,可得GP =HP ,GF =HD ,进而根据菱形的性质可证明△CHG 是等腰三角形,根据等腰三角形“三线合一”的性质可得PG ⊥PC ,∠HCP=∠GCP ,由∠ABC=60°可得∠HCG=120°,进而可得∠CGP=30°,根据含30°角的直角三角形的性质及勾股定理即可得答案;(3)利用线段的和差关系可求出图2中CG 的长,由(2)可知∠CGP=30°,根据含30°角的直角三角形的性质即可求出CP 的长;在图3中,延长GP 到N ,使GP=PN ,连接DN 、CN 、CG ,过N 作NK ⊥CD ,交CD 延长线于K ,利用SAS 可证明△FGP ≌△DNP ,可得GF=DN ,∠GFP=∠NDP ,根据角的和差关系可得∠CDN=120°,根据平角的定义可得∠GBC=120°,利用菱形的性质及等量代换可得DN=GB ,利用SAS 可证明△NDC ≌△GBC ,可得CN=CG,∠DCN=∠BCG,根据等腰三角形的性质可得PC⊥GN,根据角的和差关系可得∠NCG=120°,进而可得出∠CNP=30°,可得PC=12CG,根据平角的定义可得∠KDN=60°,即可得出∠KND=30°,根据含30°角的直角三角形的性质可得得出KD的长,利用勾股定理可求出KN的长,再利用勾股定理可求出CN的长,根据含30°角的直角三角形的性质即可得出PC的长.【详解】(1)如图,延长GP交DC于点M,∵Р是线段DF的中点,四边形ABCD、BEFG是正方形,点,,A B E在同一条直线上,∴//DC CF,DP=FP,CD=BC,FG=BG,在△DPM和△FPG中,MDP GFP DP FPDPM FPG ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△DPM≌△FPG,∴DM=FG,KP=GP,∴CD-DM=BC-BC,即CM=CG,∴△CMG是等腰直角三角形,∴PG⊥PC,PG=PC.故答案为:ΔDPM,ΔFPG;等腰直角(2)猜想:线段PG与PC的位置关系是PG⊥PC;PGPC3.如图,延长GP交DC于点H,∵P是线段DF的中点,∴FP=DP,∵四边形ABCD和四边形BEFG是菱形,∴CD//AB,CF//BE,CD=CB,GF=GB,∵点A B E、、在一条直线上,∴DC∥GF,∴∠GFP=∠HDP,在△GFP和△HDP中,GFP HDP FP DPGPF HPD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△GFP≌△HDP,∴GP=HP,GF=HD,∴CD-DH=CB-GB,即CG=CH,∴△CHG是等腰三角形.∴PG⊥PC,(三线合一),∠HCP=∠GCP,∵∠ABC=∠BEF=60°,∴∠HCG=120°,∴∠CGP=12(180°-120°)=30°,∴CG=2PC,∴PG=2222(2)3CG PC PC PC PC-=-=,∴PGPC=3.(3)如图2,∵AB=6,BE=2,∴CG=AB-BE=4,由(2)可知∠CGP=30°,PG⊥PC,∴PC=12CG=2,如图3,延长GP到N,使GP=PN,连接DN、CN、CG,过N作NK⊥CD,交CD延长线于K,在△DNP和△FGP中,DP FPNPD GPFPN PG=⎧⎪∠=∠⎨⎪=⎩,∴△DNP≌△FGP,∴DN=GF=BG=BE=2,∠NDP=∠GFP,∵四边形ABCD和四边形BEFG是菱形,∴CD//AB,EF//BC,∵点A、B、G在一条直线上,∴DC∥EF,∴∠CDP=∠EFP,∵∠ABC=∠BEF=60°,∴∠EFG=∠CBG=120°,∴∠NDP+CDP=∠GFP+∠EFP=∠EFG=120°,即∠NDC=120°,∴∠KDN=60°,∠KND=30°,∴KD=12DN=1,NK=223DN KD-=,∴CK=CD+KD=7,∴CN=22CK NK+=213,在△CDN和△CBG中,CD BCCDN CBGND BG=⎧⎪∠=∠⎨⎪=⎩,∴CN=CG,∠DCN=∠BCG,∴PC⊥GN,∠DCN+∠NCB=∠BCG+∠NCB=∠DCB=120°,即∠NCG=120°,∴∠CNP=12(180°-∠NCG)=30°,∴PC=12CN=13.故答案为:213【点睛】本题考查正方形的性质、菱形的性质、等腰直角三角形的性质、全等三角形的判定与性质、含30°角的直角三角形的性质及勾股定理,正确作出辅助线、熟记30°角所对的直角边等于斜边的一半的性质及全等三角形的判定定理是解题关键.4.(1)CE=CF且CE⊥CF,理由见解析;(2)见解析;(3)10【分析】(1)根据正方形的性质,可证明△CBE≌△CDF(SAS),从而得出CE=CF,∠BCE=∠DCF,再利用余角的性质得到CE⊥CF;(2)延长AD至M,使DM=BE,连接CM,由△BEC≌△DFC,可得∠BCE=∠DCF,即可求∠GCF=∠GCE=45°,且GC=GC,EC=CF可证△ECG≌△GCF(SAS),则结论可求.(3)过点C作CF⊥AD于F,可证四边形ABCF是正方形,根据(2)的结论可得DE=DF+BE=4+DF,根据勾股定理列方程可求DF的长,即可得出DE.【详解】解:(1)CE=CF且CE⊥CF,证明:如图1,∵四边形ABCD是正方形,∴BC=CD,∠B=∠CDF=90°,又∵BE=DF,∴△CBE≌△CDF(SAS),∴CE=CF,∠BCE=∠DCF,∵∠BCD=∠BCE+∠ECD=90°,∴∠ECD+∠DCF=90°,即CE⊥CF;(2)延长AD至M,使DM=BE,连接CM,∵∠GCE=45°,∴∠BCE+∠GCD=45°,∵△BEC≌△DFC,∴∠BCE=∠DCF,∴∠DCF+∠GCD=45°,即∠GCF=45°,∴∠GCE=∠GCF,且GC=GC,CE=CF,∴△GCE≌△GCF(SAS),∴GE=GF,∴GE=GD+DF=BE+GD;(3)如图:过点C作CF⊥AD于F,∵AD∥BC,∠B=90°,∴∠A=90°,∵∠A=∠B=90°,FC⊥AD,∴四边形ABCF是矩形,且AB=BC=12,∴四边形ABCF是正方形,∴AF=12,由(2)可得DE=DF+BE ,∴DE=4+DF ,在△ADE 中,AE 2+DA 2=DE 2.∴(12-4)2+(12-DF )2=(4+DF )2.∴DF=6,∴DE=4+6=10.【点睛】本题是四边形综合题,考查了正方形的性质,勾股定理,全等三角形的判定与性质,四边形的面积,熟练掌握正方形的性质是解题的关键.5.(1)①证明见详解;②45PAQ ∠=︒,见解析;(2)5.【分析】(1)①只要证明//PB AC 即可解决问题;②如图2中,连接QC ,作DT DQ ⊥交QC 的延长线于T ,利用全等三角形的性质解决问题即可;(2)如图3中,延长EH 交BC 于点G ,设AE=x ,由题意易得AB=BC=CF=EG=3x ,然后可得CG=2x ,HG=3x-3,CH=3x-1,利用勾股定理求解即可.【详解】(1)①证明:四边形ABCD 是正方形,∴//B DP C ,45DAC ∠=︒,∴135PAC ∠=︒45APB ∠=︒,∴+180APB PAC ∠∠=︒,∴//PB AC∴四边形APBC 是平行四边形; ②四边形PADQ 是平行四边形,∴DQ//,//,AP AD PQ AD PQ BC ==,AD//B C ,∴,//PQ BC PQ BC =,∴四边形PQCB 是平行四边形,∴QC//BP ,∴45APQ DQC ∠=∠=︒,90ADC QDT ∠=∠=︒,∴DQ=DT ,45,T DQT ADQ CDT ∠=∠=︒∠=∠,AD=DC ,∴ADQ CDT ≌,∴45AQD T ∠=∠=︒,AP//DQ ,∴45PAQ DQA ∠=∠=︒;(3)CH=5,理由如下:如图3所示:延长EH 交BC 于点G ;四边形ABCD 是正方形,∴AB=BC ,90D ∠=︒, 又EH=3,FH=1,EH ⊥AD ,∴EH//CD ,∴90HGC ∠=︒设AE=x ,1,3AE CF BC CF ==,∴AB=BC=CF=EG=3x , ∴CG=2x ,HG=3x-3,CH=3x-1 在Rt HGC △中,()()22222243331CG HG CH x x x +=+-=-即,解得121,2x x ==当x=1时,AB=3(不符合题意,舍去);当x=2时,AB=6,∴CH=5.故答案为5.【点睛】本题主要考查正方形的综合问题、三角形全等及勾股定理,关键是利用已知条件及四边形的性质得到它们之间的联系,然后利用勾股定理求解线段的长即可.6.(1)见解析;(2)MN 2=ND 2+DH 2,理由见解析;(3)EG=4,MN=52【分析】(1)根据高AG 与正方形的边长相等,证明三角形全等,进而证明角相等,从而求出解. (2)用三角形全等和正方形的对角线平分每一组对角的知识可证明结论.(3)设EG=BE=x ,根据正方形的边长得出CE ,CF ,EF ,在Rt △CEF 中利用勾股定理得到方程,求出EG 的长,设MN=a ,根据MN 2=ND 2+BM 2解出a 值即可.【详解】解:(1)在Rt △ABE 和Rt △AGE 中,AB=AG ,AE=AE ,∴Rt △ABE ≌Rt △AGE (HL ).∴∠BAE=∠GAE .同理,∠GAF=∠DAF .∴∠EAF =12∠BAD =45°; (2)MN 2=ND 2+DH 2.∵∠BAM=∠DAH ,∠BAM+∠DAN=45°,∴∠HAN=∠DAH+∠DAN=45°.∴∠HAN=∠MAN ,又∵AM=AH ,AN=AN ,∴△AMN ≌△AHN (SAS ).∴MN=HN ,∵∠BAD=90°,AB=AD ,∴∠ABD=∠ADB=45°,∴∠HDN=∠HDA+∠ADB=90°,∴NH 2=ND 2+DH 2,∴MN 2=ND 2+DH 2;(3)∵正方形ABCD 的边长为12,∴AB=AG=12,由(1)知,BE=EG ,DF=FG .设EG=BE=x ,则CE=12-x ,∵GF=6=DF ,∴CF=12-6=6,EF=EG+GF=x+6,在Rt △CEF 中,∵CE 2+CF 2=EF 2,∴(12-x )2+62=(x+6)2,解得x=4,即EG=BE=4,在Rt △ABD 中, 22AB AD +2,在(2)中,MN 2=ND 2+DH 2,BM=DH ,∴MN 2=ND 2+BM 2.设MN=a ,则a 2=()(2212222a+, 即a 2=()(22232a +, ∴a=52MN =52【点睛】本题考查正方形的性质,四边相等,对角线平分每一组对角,以及全等三角形的判定和性质,勾股定理的知识点等.7.(1)15,8;(2)PE PF CG +=,见解析;(3)53;(4)4 【分析】 解决问题(1)只需运用面积法:ABC ABP ACP S S S ∆∆∆=+,即可解决问题;(2)解法同(1);(3)连接PA 、PB 、PC ,作AM BC ⊥于M ,由等边三角形的性质得出152BM BC ==,由勾股定理得出2253AM AB BM =-=,得出ABC ∆的面积12532BC AM =⨯=,由ABC ∆的面积BCP =∆的面积ACP +∆的面积APB +∆的面积1111()2532222BC PE AC PF AB PG AB PE PF PG =⨯+⨯+⨯=++=,即可得出答案; (4)过点E 作EQ BC ⊥,垂足为Q ,易证BE BF =,过点E 作EQ BF ⊥,垂足为Q ,由解决问题(1)可得PG PH EQ +=,易证EQ DC =,BF DF =,只需求出BF 即可.【详解】解:(1)∵PE AB ⊥,10AB =,3PE =,∴ABP ∆的面积111031522AB PE =⨯=⨯⨯=, ∵PE AB ⊥,PF AC ⊥,CG AB ⊥,且ABC ABP ACP S S S ∆∆∆=+,∴AB CG AB PE AC PF ⋅=⋅+⋅,∵AB AC =,∴358CG PE PF =+=+=.故答案为:15,8.(2)∵PE AB ⊥,PF AC ⊥,CG AB ⊥,且ABC ABP ACP S S S ∆∆∆=+,∴AB CG AB PE AC PF ⋅=⋅+⋅,∵AB AC =,∴CG PE PF =+.(3)连接PA 、PB 、PC ,作AM BC ⊥于M ,如图2所示:∵10AB AC BC ===,∴ABC ∆是等边三角形,∵AM BC ⊥, ∴152BM BC ==, ∴222210553AM AB BM =-=-=,∴ABC ∆的面积11105325322BC AM =⨯=⨯⨯=, ∵PE BC ⊥,PF AC ⊥,PG AB ⊥,∴ABC ∆的面积BCP =∆的面积ACP +∆的面积APB +∆的面积111222BC PE AC PF AB PG =⨯+⨯+⨯1()2AB PE PF PG =++ 253=,∴22535310PE PF PG ⨯++==. (4)过点E 作EQ BC ⊥,垂足为Q ,如图3所示:∵四边形ABCD 是矩形,∴AD BC =,90C ADC ∠=∠=︒,∵8AD =,3CF =,∴5BF BC CF AD CF =-=-=,由折叠可得:5DF BF ==,BEF DEF ∠=∠,∵90C ∠=︒,∴2222534DC DF FC =-=-=,∵EQ BC ⊥,90C ADC ∠=∠=︒,∴90EQC C ADC ∠=︒=∠=∠,∴四边形EQCD 是矩形,∴4EQ DC ==,∵//AD BC ,∴DEF EFB ∠=∠,∵BEF DEF ∠=∠,∴BEF EFB ∠=∠,∴BE BF =,由解决问题(1)可得:PG PH EQ +=,∴4PG PH +=,即PG PH +的值为4.【点睛】本题是四边形综合题目,考查了矩形的性质与判定、等腰三角形的性质与判定、平行线的性质与判定、等边三角形的性质、勾股定理等知识,考查了用面积法证明几何问题,考查了运用已有的经验解决问题的能力,体现了自主探究与合作交流的新理念,是充分体现新课程理念难得的好题.8.(1)12;(2)2S 1=36 +S 2.【分析】(1)根据已知条件证得四边形ABOC 是正方形,在点B 左侧取点G ,连接AG ,使AG=AE ,利用HL 证得Rt △ABG ≌Rt △ACE ,得到∠GAB=∠EAC,GB=CE ,再利用45DAE ︒∠=证得△GAD ≌△EAD ,得到DE=GB+BD ,由此求得DOE ∆的周长;(2) 在OB 上取点F ,使AF=AE ,根据HL 证明Rt △ABF ≌Rt △ACE ,得到∠FAE=∠ABC=90︒,再证明△ADE ≌△ADF ,利用面积相加关系得到四边形AEDF 的面积=S △ACE +S 四边形ACOF +S △ODE ,根据三角形全等的性质得到2S △ADE =S 正方形ABOC +S △OD E ,即可得到2S △ADE =36 +S △ODE .【详解】(1)∵点A 的坐标为(6,6)-,AB x ⊥轴,AC y ⊥轴,∴AB=BO=AC=OC=6,∴四边形ABOC 是菱形,∵∠BOC=90︒,∴四边形ABOC 是正方形,在点B 左侧取点G ,连接AG ,使AG=AE ,∵四边形ABOC 是正方形,∴AB=AC ,∠ABG=∠ACE=90︒,∴Rt △ABG ≌Rt △ACE ,∴∠GAB=∠EAC,GB=CE ,∵∠BAE+∠EAC=90︒,∴∠GAB+∠BAE=90︒,即∠GAE=90︒,∵45DAE ︒∠=∴∠GAD=45DAE ︒∠=,又∵AD=AD,AG=AE ,∴△GAD ≌△EAD ,∴DE=GD=GB+BD,∴DOE ∆的周长=DE+OD+OE=GB+BD+OD+OE=OB+OC=6+6=12(2) 2S 1=36 +S 2,理由如下:在OB 上取点F ,使AF=AE ,∵AB=AC ,∠ABF=∠ACE=90︒,∴Rt △ABF ≌Rt △ACE ,∴∠BAF=∠CAE,∴∠FAE=∠ABC=90︒,∵∠DAE=45︒,∴∠DAF=∠DAE=45︒,∵AD=AD ,∴△ADE ≌△ADF ,∵四边形AEDF 的面积=S △ACE +S 四边形ACOF +S △ODE ,∴2S △ADE =S 正方形ABOC +S △OD E ,∴2S △ADE =36 +S △ODE.即:2S 1=36 +S 2【点睛】此题考查三角形全等的判定及性质,根据题中的已知条件证得三角形全等,即可利用性质得到边长相等,面积相等的关系,(2)中需根据面积的加减关系进行推导,这是此题的难点.9.(1)①证明见解析;②60EBF ∠=︒;(2)3IH FH =;(3)222EG AG CE =+. 【分析】(1)①由DOE BOF ∆≅∆,推出EO OF =,OB OD =,推出四边形EBFD 是平行四边形,再证明EB ED =即可.②先证明2ABD ADB ∠=∠,推出30ADB ∠=︒,延长即可解决问题.(2)3IH FH =.只要证明IJF ∆是等边三角形即可.(3)结论:222EG AG CE =+.如图3中,将ADG ∆绕点D 逆时针旋转90︒得到DCM ∆,先证明DEG DEM ∆≅∆,再证明ECM ∆是直角三角形即可解决问题.【详解】(1)①证明:如图1中,四边形ABCD 是矩形,//AD BC ∴,OB OD =,EDO FBO ∴∠=∠, 在DOE ∆和BOF ∆中,EDO FBO OD OBEOD BOF ∠=∠⎧⎪=⎨⎪∠=∠⎩, DOE BOF ∴∆≅∆,EO OF ∴=,OB OD =,∴四边形EBFD 是平行四边形,EF BD ⊥,OB OD =, EB ED ∴=,∴四边形EBFD 是菱形.②BE 平分ABD ∠,ABE EBD ∴∠=∠,EB ED =,EBD EDB ∴∠=∠,2ABD ADB ∴∠=∠,90ABD ADB ∠+∠=︒,30ADB ∴∠=︒,60ABD ∠=︒,30ABE EBO OBF ∴∠=∠=∠=︒,60EBF ∴∠=︒.(2)结论:3IH FH =.理由:如图2中,延长BE 到M ,使得EM EJ =,连接MJ .四边形EBFD 是菱形,60B ∠=︒,EB BF ED ∴==,//DE BF ,JDH FGH ∴∠=∠,在DHJ ∆和GHF ∆中,DHG GHF DH GHJDH FGH ∠=∠⎧⎪=⎨⎪∠=∠⎩, DHJ GHF ∴∆≅∆,DJ FG ∴=,JH HF =,EJ BG EM BI ∴===,BE IM BF ∴==,60MEJ B ∠=∠=︒,MEJ ∴∆是等边三角形,MJ EM NI ∴==,60M B ∠=∠=︒在BIF ∆和MJI ∆中,BI MJ B M BF IM =⎧⎪∠=∠⎨⎪=⎩,BIF MJI ∴∆≅∆,IJ IF ∴=,BFI MIJ ∠=∠,HJ HF =,IH JF ∴⊥,120BFI BIF ∠+∠=︒,120MIJ BIF ∴∠+∠=︒,60JIF ∴∠=︒,JIF ∴∆是等边三角形,在Rt IHF ∆中,90IHF ∠=︒,60IFH ∠=︒,30FIH ∴∠=︒,3IH FH ∴=.(3)结论:222EG AG CE =+.理由:如图3中,将ADG ∆绕点D 逆时针旋转90︒得到DCM ∆,90FAD DEF ∠+∠=︒,AFED ∴四点共圆,45EDF DAE ∴∠=∠=︒,90ADC ∠=︒,45ADF EDC ∴∠+∠=︒,ADF CDM ∠=∠,45CDM CDE EDG ∴∠+∠=︒=∠,在DEM ∆和DEG ∆中,DE DE EDG EDM DG DM =⎧⎪∠=∠⎨⎪=⎩,DEG DEM ∴∆≅∆,GE EM ∴=,45DCM DAG ACD ∠=∠=∠=︒,AG CM =,90ECM ∴∠=︒222EC CM EM ∴+=,EG EM =,AG CM =,222GE AG CE ∴=+.【点睛】本题考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题,属于中考压轴题.10.28【分析】(1)利用旋转的旋转即可作出图形;(2)先求出ABC 的边长边上的高为12,进而求出DE 与BC 间的距离为6,再判断出FH 最小时,拼成的四边形的周长最小,即可得出结论.【详解】(1)∵DE 是△ABC 的中位线,1DE BC 4,AD BD,AE CE 2∴==== ∴四边形BDFH 绕点D 顺时针旋转,点B 和点A 重合,四边形CEFH 绕点E 逆时针旋转,点C 和点A 重合,∴补全图形如图1所示,(2)∵△ABC的面积是48,BC=8,∴点A到BC的距离为12,∵DE是△ABC的中位线,∴平行线DE与BC间的距离为6,由旋转知,∠DAH''=∠B,∠CAH'=∠C,∴∠DAH''+∠BAC+∠CAH'=180°,∴点H'',A,H'在同一条直线上,由旋转知,∠AEF'=∠CEF,∴∠AEF'+∠CEF'=∠CEF+∠CEF'=180°,∴点F,E,F'在同一条直线上,同理:点F,D,F''在同一条直线上,即:点F',F''在直线DE上,由旋转知,AH''=BH,AH'=CH,DF''=DF,EF'=EF,F''H''=FH=F'H',∴F'F''=2DE=BC=H'H'',∴四边形F'H'H''F''是平行四边形,∴▱F'H'H''F''的周长为2F'F''+2F'H'=4DE+2FH=2BC+2FH=16+2FH,∵拼成的所有四边形纸片中,其周长的最小时,FH最小,即:FH⊥BC,∴FH=6,∴周长的最小值为16+2×6=28,故答案为28.【点睛】此题是四边形综合题,主要考查了旋转的旋转和作图,判断三点共线的方法,平行四边形FH H F是平行四边形是解本题的关键.的判断和性质,判断出四边形'''''。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

菱形正方形一.选择题(共16小题)★★★1.如图,在矩形ABCD中,AD=6,AB=4,点E、G、H、F分别在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,点P是直线EF、GH之间任意一点,连接PE、PF、PG、PH,则图中阴影面积(△PEF和△PGH的面积和)等于()A.7 B.8 C.12 D.14★★★2.如图,在矩形ABCD中,AB=3,BC=2,O是AD的中点,连接OB、OC,点E在线段BC上(点E不与点B、C重合),过点E作EM⊥OB于M,EN⊥OC 于N,则EM+EN的值为()A.6 B.1.5 C.D.★★★3.如图,O为矩形ABCD对角线的交点,AD=8cm,AB=6cm,将△ABO向右平移得到△DCE,则△ABO向右平移过程中扫过的面积是()A.12cm2B.24cm2C.48cm2D.60cm2★★★4.如图,线段AB的长为,点D在AB上,△ACD是边长为15的等边三角形,过点D作与CD垂直的射线DP,过DP上一动点G(不与D重合)作矩形CDGH,记矩形CDGH的对角线交点为O,连接OB,则线段BO的最小值为()A.B.15 C.D.30★★★5.如图是由三个边长分别为6、9、x的正方形所组成的图形,若直线AB 将它分成面积相等的两部分,则x的值是()A.1或9 B.3或5 C.4或6 D.3或6★★★6.如图,在矩形ABCD中,AD=6,AE⊥BD,垂足为E,ED=3BE,点P、Q 分别在BD,AD上,则AP+PQ的最小值为()A.2 B.C.2 D.3★★★7.如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC 的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是()A.4.8 B.5 C.6 D.7.2★★★8.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1) B.(3,)C.(3,)D.(3,2)9.如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD 成为菱形,下列给出的条件不正确的是()A.AB=AD B.AC⊥BD C.AC=BD D.∠BAC=∠DAC★★★10.已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=4,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P 的坐标为()A.(0,0) B.(1,)C.(,)D.(,)★★★11.如图,菱形ABCD的边AB=8,∠B=60°,P是AB上一点,BP=3,Q是CD边上一动点,将梯形APQD沿直线PQ折叠,A的对应点A′.当CA′的长度最小时,CQ的长为()A.5 B.7 C.8 D.二.填空题(共3小题)★★★12.如图,AC是四边形ABCD的对角线,∠B=90°,∠ADC=∠ACB+45°,BC=AB+,若AC=CD,则边AD的长为.★★★13.如图,正方形ABCD的长为8cm,E、F、G、H分别是AB、BC、CD、DA上的动点,且AE=BF=CG=DH,则四边形EFGH面积的最小值是cm2.★★★14.已知正方形ABCD,正方形CEFG,正方形PQFH如图放置,且正方形CEFG的边长为4,A、G、P三点在同一条直线上,连接AE、EP,那么△AEP的面积是.15.如图,矩形ABCD中,AB=8,BC=4,点E在边AB上,点F在边CD上,点G、H在对角线AC上,若四边形EGFH是菱形,则AE的长是.★★★16.如图所示,在平面直角坐标系中,矩形ABCD定点A、B在y轴、x 轴上,当B在x轴上运动时,A随之在y轴运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为.17.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于度.★★★18.如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,M为斜边AB上一动点,过M作MD⊥AC,过M作ME⊥CB于点E,则线段DE的最小值为.★★★19.如图,正方形ABCD中,点E、F分别为AB、CD上的点,且AE=CF=AB,点O为线段EF的中点,过点O作直线与正方形的一组对边分别交于P、Q两点,并且满足PQ=EF,则这样的直线PQ(不同于EF)有条.★★★20.如图,在正方形ABCD中,AB=6,点E在边CD上,DE=DC,连接AE,将△ADE沿AE翻折,点D落在点F处,点O是对角线BD的中点,连接OF 并延长OF交CD于点G,连接BF,BG,则△BFG的周长是.★★★21.如图,正方形ABCD的面积为3cm2,E为BC边上一点,∠BAE=30°,F为AE的中点,过点F作直线分别与AB,DC相交于点M,N.若MN=AE,则AM的长等于cm.★★★22.如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则的值等于.23.有一面积为5的等腰三角形,它的一个内角是30°,则以它的腰长为边的正方形的面积为.12.正方形ABCD中,对角线AC,BD相交于点O,DE平分∠ADO交AC于点E,把△ADE沿AD翻折,得到△ADE′,点F是DE的中点,连接AF,BF,E′F.若AE=.则四边形ABFE′的面积是.24.如图,正方形ABCO的顶点C、A分别在x轴、y轴上,BC是菱形BDCE的对角线,若∠D=60°,BC=2,则点D的坐标是.★★★25.如图,矩形ABCD中,AB=4,BC=2,E是AB的中点,直线l平行于直线EC,且直线l与直线EC之间的距离为2,点F在矩形ABCD边上,将矩形ABCD 沿直线EF折叠,使点A恰好落在直线l上,则DF的长为.26.如图,四边形OABC为矩形,点A,C分别在x轴和y轴上,连接AC,点B 的坐标为(4,3),∠CAO的平分线与y轴相交于点D,则点D的坐标为.27.如图,在矩形ABCD中,点E、F分别在边CD、BC上,且DC=3DE=3a.将矩形沿直线EF折叠,使点C恰好落在AD边上的点P处,则FP=.28.如图,矩形ABCD中,对角线AC=2,E为BC边上一点,BC=3BE,将矩形ABCD沿AE所在的直线折叠,B点恰好落在对角线AC上的B′处,则AB=.★★★29.如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为.★★★30.如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是.★★★31.如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为.32.如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF 与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6,则FG的长为.33.如图,在菱形ABCD中,过点B作BE⊥AD,BF⊥CD,垂足分别为点E,F,延长BD至G,使得DG=BD,连结EG,FG,若AE=DE,则=.34.如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则OE=.35.有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2=.★★★36.如图,点E为正方形ABCD中AD边上的动点,AB=2,以BE为边画正方形BEFG,连结CF和CE,则△CEF面积的最小值为.★★★37.如图,在平面直角坐标系xOy中,边长为2的正方形OCBA,点A、C 分别在x轴、y轴上,把正方形绕点O逆时针旋转α 度后得到正方形OC1B1A1(0<α<90)﹒(1)直线OB的表达式是;(2)在直线OB上找一点P(原点除外),使△PB1A1为等腰直角三角形,则点P 的坐标是.★★★38.如图,已知正方形ABCD的边长是4cm,点E是CD的中点,连结AE,点M是AE的中点,过点M任意作直线分别与边AD、BC相交于点P、Q.若PQ=AE,则AP=cm.★★★39.如图,E、F是正方形ABCD的边AD上有两个动点,满足AE=DF,连接CF交BD于G,连接BE交AG于点H,若正方形的边长为3,则线段DH长度的最小值是.★★★40.如图,正方形ABCD的边长为4,线段GH=AB,将GH的两端放在正方形的相邻的两边上同时滑动,如果G点从A点出发,沿图中所示方向按A→B→C→D→A滑动到A止,同时点H从点B出发,沿图中所示方向按B→C→D→A→B滑动到B止,在这个过程中,线段GH的中点P所经过的路线围成的图形的面积为.★★★41.如图,在正方形ABCD中,AB=,点P为边AB上一动点(不与A、B重合),过A、P在正方形内部作正方形APEF,交边AD于F点,连接DE、EC,当△CDE为等腰三角形时,AP=.★★★42.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是.★★★43.如图,矩形ABCD中,AB=6,BC=4,点E在AB上,EF⊥DC于点F,在边AD,DF,EF,AE上分别存在点M,N,P,Q,这四点构成的四边形与矩形BCFE全等,则DM的长度为.★★★44.如图,矩形ABCD中,AD=3,∠CAB=30°,点P是线段AC上的动点,点Q是线段CD上的动点,则AQ+QP的最小值是.★★★45.如图,矩形ABCD,对角线AC,BD相交于点O,点E是边CD上一动点,已知AC=10,CD=6,则OE的最小值是.★★★46.如图,线段AB的长为10cm,点D在AB上,△ACD为等边三角形,过点D作DP⊥CD,点G是DP上不与点D重合的一动点,作矩形CDGH.记矩形CDGH的对角线交点为O,连接OA、OB,(1)∠OAB=度;(2)线段BO的最小值为cm.★★★47.如图,在矩形ABCD中,AB=2,AD=4,点E是BC边上一个动点,连接AE,作DF⊥AE于点F,当BE的长为时,△CDF是等腰三角形.★★★48.如图,矩形ABCD中,AD=6,CD=6+,E为AD上一点,且AE=2,点F,H分别在边AB,CD上,四边形EFGH为矩形,点G在矩形ABCD的内部,则当△BGC为直角三角形时,AF的值是.★★★49.如图,在矩形ABCD中,AB=4,BC=6,点E是BC的中点,点F在AD 上运动,沿直线EF折叠四边形CDFE,得到四边形GHFE,其中点C落在点G处,连接AG,AH,则AG的最小值是.★★★50.如图,在Rt△ABC中,∠BAC=90°,AB=AC=,AD为BC边上的高,动点P在AD上,从点A出发,沿A→D方向运动,设AP=x,△ABP的面积为S1,矩形PDFE的面积为S2,运y=S1+S2,则y与x的关系式是.★★★51.如图,在矩形ABCD中,点E,F分别是BC,DC上的一个动点,以EF为对称轴折叠△CEF,使点C的对称点G落在AD上,若AB=3,BC=5,则CF 的取值范围为.★★★52.如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是.★★★53.如图,在平面直角坐标系中,O为坐标原点,四边形ABCD是矩形,顶点A、B、C、D的坐标分别为(﹣1,0),(5,0),(5,2),(﹣1,2),点E (3,0)在x轴上,点P在CD边上运动,使△OPE为等腰三角形,则满足条件的P点有个.★★★54.如图,矩形ABCD中,AB=1,AD=2,点E是边AD上的一个动点,把△BAE沿BE折叠,点A落在A′处,如果A′恰在矩形的对称轴上,则AE的长为.★★★55.矩形ABCD中,AB=10,BC=4,Q为AB边的中点,P为CD边上的动点,且△AQP是腰长为5的等腰三角形,则CP的长为.★★★56.如图,在矩形ABCD中,BC=6,CD=8,点P是AB上(不含端点A,B)任意一点,把△PBC沿PC折叠,当点B的对应点B′落在矩形ABCD对角线上时,BP=.★★★57.如图,在矩形ABCD中,AB=8,AD=6,P,Q分别是AB和CD上的任意一点,且AP=CQ,线段EF是PQ的垂直平分线,交BC于F,交PQ于E.设AP=x,BF=y,则y与x的函数关系式为.★★★58.如图,在矩形ABCD中,AD=6,AB=4,点E、G、H、F分别在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,点P是直线EF、GH之间任意一点,连接PE、PF、PG、PH,则△PEF和△PGH的面积和等于.★★★59.如图,在平面直角坐标系xOy中,菱形OABC的顶点A在x轴上,顶点B的坐标为(8,4),点P是对角线OB上一个动点,点D的坐标为(0,﹣2),当DP与AP之和最小时,点P的坐标为.★★★60.如图,已知菱形ABCD的两条对角线长分别是3和4,点M、N分别是边BC、CD的中点,点P是对角线上的一点,则PM+PN的最小值是.★★★61.如图,在菱形ABCD中,AB=5,AC=8,点P是对角线AC上的一个动点,过点P作EF⊥AC分别交AD、AB于点E、F,将△AEF沿EF折叠,点A落在点A′处,当△A′BC是等腰三角形时,AP的长为.★★★62.如图,在边长为4的菱形ABCD中,∠A=60°,M是AD边的中点,点N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,则线段A′C长度的最小值是.★★★63.如图,在菱形ABCD中,sin∠D=,E,F分别是AB和CD上的点,BC=5,AE=CF=2,点P是线段EF上一点,则当△BPC是直角三角形时,CP的长为.★★★64.如图,菱形ABCD中,AB=4,∠B=60°,E,F分别是BC,DC上的点,∠EAF=60°,连接EF,则△AEF的面积最小值是.三.解答题(共11小题)★★★65.如图,等腰三角形ABC中,AB=AC,AD平分∠BAC交BC于点D,在线段AD上任取一点P(点A除外),过点P作EF∥AB,分别交AC,BC于点E 和点F,作PQ∥AC,交AB于点Q,连接QE.(1)求证:四边形AEPQ为菱形;(2)当点P在何处时,菱形AEPQ的面积为四边形EFBQ面积的一半?66.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,并且AF=CE.(1)求证:四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论.★★★67.如图,在边长为4的菱形ABCD中,BD=4,E、F分别是AD、CD上的动点(包含端点),且AE+CF=4,连接BE、EF、FB.(1)试探究BE与BF的数量关系,并证明你的结论;(2)求EF的最大值与最小值.★★★68.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM 沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.69.如图,在Rt△ABC中,∠ABC=90°,点M是AC的中点,以AB为直径作⊙O 分别交AC,BM于点D,E.(1)求证:MD=ME;(2)填空:①若AB=6,当AD=2DM时,DE=;②连接OD,OE,当∠A的度数为时,四边形ODME是菱形.70.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD 的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.★★★71.如图,把△EFP放置在菱形ABCD中,使得顶点E,F,P分别在线段AB,AD,AC上,已知EP=FP=6,EF=6,∠BAD=60°,且AB>6.(1)求∠EPF的大小;(2)若AP=10,求AE+AF的值;(3)若△EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.精品文档.。

相关文档
最新文档