泛函分析论文

合集下载

泛函分析课程论文

泛函分析课程论文

泛函分析课程论文数学与计算科学学院 09数本2班 黄丽萍 2009224725大四新学年开始了,我们也开始学习了一门综合性及专业性强的课程——泛函分析。

首先,理解下“泛函分析”这个概念。

泛函分析是20世纪发展起来的一门新学科,其中泛函是函数概念的推广,对比函数是数与数之间的对应关系,我们发现泛函是函数和数之间的对应关系。

在学习泛函分析前,我们先确定学习目标:理解和掌握“三大空间和三大定理”。

所以在接下来的两章内容的学习中,我们将先学习“两大空间”——度量空间和赋范线性空间及其相关知识(第七章和第八章)。

在学习中慢慢体味泛函分析的综合性及专业性。

第七章的标题已经明确给出了学习任务——度量空间和赋范线性空间。

§1 度量空间§1.1 定义:若X 是一个非空集合,:d X XR ⨯→是满足下面条件的实值函数,对于,x y X ∀∈,有(1)(,)0d x y =当且仅当xy =;(2)(,)(,)d x y d y x =;(3)(,)(,)(,)d x y d x z d y z ≤+,则称d 为X 上的度量,称(,)X d 为度量空间。

【理解】度量空间就是:集合+距离;(满足非负性、对称性及三点不等式) 其实度量空间是在实变函数中接触的知识,但其在泛函分析学科中的重要性,我们可以通过度量空间的进一步例子来感受。

§1.2 度量空间的进一步例子例:1、离散的度量空间(,)X d ,设X 是一个非空集合,,x y X ∀∈,当1,(,)0,=x y d x y x y≠⎧=⎨⎩当当。

2、序列空间S ,i =1i |-|1(,)21+|-|i i i i d x y ξηξη∞=∑是度量空间 3、有界函数全体()B A ,(,)sup|(t)-(t)|t Ad x y x y ∈=是度量空间4、连续函数[a,b]C ,(,)max|(t)-(t)|a t bd x y x y ≤≤=是度量空间5、空间2l ,122=1(,)[(-)]k ki d x y y x ∞=∑是度量空间§1.3度量空间中的极限,稠密集,可分空间§1.3.1极限:类似数学分析定义极限,如果{}n x 是(,)X d 中点列,如果∃x X ∈,使n l im (,)=0n d x x →∞,则称点列{}n x 是(,)X d 中的收敛点列,x 是点列{}n x 的极限。

泛函分析课程总结论文

泛函分析课程总结论文

泛函分析课程总结论文第一部分:知识点体系第七章:度量空间和赋范线性空间度量空间:把距离概念抽象化,对某些一般的集合引进点和点之间的距离,使之成为距离空间,这将是深入研究极限过程的一个有效步骤。

泛函分析中要处理的度量空间,是带有某些代数结构的度量空间,例如赋范线性空间,就是一种带有线性结构的度量空间。

一、度量空间的进一步例子 1、度量空间的定义定义1.1 设X 为一个集合,一个映射X X R ⨯→d :.若对于任何x,y,z 属于X ,有1°d(,)0x y ≥,且d(,)0x y =当且仅当x y =(非负性); 2°(,)(,)d x y d y x =(对称性);3°(,)(,)(,)d x y d x z d z y ≤+ (三角不等式) 则称d 为集合X 的一个度量,同时称(),X d 为一个度量空间(课本第二章第一节中已经讲解了度量空间的定义,第七章第一节接着讲解度量空间,下面介绍六种度量空间。

)2、常见的度量空间 例2.1 离散的度量空间设 x 是任意的非空集合,对 x 中的任意两点 ,令 称为离散的度量空间。

例2.2 序列空间S令S 表示实数列(或复数列)的全体,对S 中的任意两点令 称为序列空间。

例2.3 (3)有界函数空间B(A ),x y X ∈1,(,)0,if x yd x y if x y ≠⎧=⎨=⎩(,)X d 1212(,,...,,...),(,,...,,...),n n x y ξξξηηη==1||1(,)21||i i i i i id x y ξηξη∞=-=+-∑(,)S d设A 是一个给定的集合,令B(A)表示A 上有界实值(或复值)函数全体,对B(A)中任意两点x,y ,定义例2.4 可测函数空间设M(X)为X 上实值(或复值)的勒贝格可测函数全体,m 为勒贝格测度,若,对任意两个可测函数 及 由于 ,所以这是X 上的可积函数。

泛函分析论文

泛函分析论文

泛函分析在最优控制中的应用一、引言控制理论中几乎所有的问题,都可以用泛函分析中有关空间和算子的术语来描述,而泛函分析严谨广博的理论体系,对所研究问题的归属有明确的规定,同时可以向研究者提供解决的途径。

例如,利用对偶空间和伴随算子的理论,可以解释控制理论中几乎所有的对偶定理。

而这些定理的发现,大多也是数学结论直接演绎的结果。

控制理论所研究的问题,可以概括为系统分析、系统综合、建模和优化,系统分析包括系统的稳定性分析,能控能观性分析,鲁棒性分析等,主要是分析用以描述系统行为的算子的特性。

传统的分析方法是实用的,但只限于某些类型的非线性系统进行统一的处理,从而获得更加一般的结论。

系统的综合包括控制器和补偿器的设计等,使系统得以镇定或获得某种性能,这是分析的逆问题。

传统的综合方法不仅费时费事,而且解决问题的范围比较狭窄。

现代的综合方法倾向与构造能用于计算机实现某些算法。

迭代算法或递推算法的收敛性分析,以及闭环控制的稳定性分析等,只有借助于泛函分析所提供的工具,才有可能使问题得以解决。

系统建模和系统的最优控制,一般是在某些约束条件下,对某个泛函指标进行优化的问题,这更是泛函分析研究范围内的问题。

在最优控制问题中,目的是根据被控对象的动态过程选取一个最优的容许控制,使得某一性能指标(泛函)达到最优值。

从数学角度来看,这是求取一类带有约束条件的泛函极值问题二、问题描述考虑一个动态系统(,,),x f x u t = 00()x t x = (1) 其中()x t 为n 维状态向量;()u t 为m 维控制向量;f 为n 维向量函数。

确定一个最优的容许控制*()u t ,使得系统产生一个容许状态()x t 满足目标集约束 [(),]0f f x t t ψ= (2) 同时,还要使性能指标[(),](,,)ft f f t J x t t L x u t dt ϕ=+⎰(3)达到极值。

在这个一般描述中,末端时刻f t 可取两种情形:可固定,可自由;末端的状态()f x t 可取三种情形:固定,自由及受[(),]0f f x t t ψ=约束。

泛函分析在信号压缩中的应用

泛函分析在信号压缩中的应用

泛函分析在信号压缩中的应用泛函分析是数学中的一个重要分支,它研究的是函数空间和函数的性质。

在信号处理领域,泛函分析被广泛应用于信号的压缩和重构。

本文将探讨泛函分析在信号压缩中的应用,从理论和实践两个方面进行讨论。

一、信号压缩的背景和挑战在现代通信和信息处理中,信号的压缩是一个重要的问题。

随着数据量的增加和传输速度的提高,如何高效地压缩和传输信号成为了一个迫切的需求。

传统的信号压缩方法主要是基于采样和量化,但是这种方法存在着信息丢失和传输效率低下的问题。

因此,人们开始寻求更高效的信号压缩方法。

二、泛函分析在信号压缩中的理论基础泛函分析为信号压缩提供了理论基础。

在泛函分析中,函数可以看作是向量,函数空间可以看作是向量空间。

通过引入合适的范数和内积,可以定义函数空间中的距离和正交性。

这些概念为信号的压缩和重构提供了数学工具。

三、稀疏表示和压缩感知稀疏表示和压缩感知是泛函分析在信号压缩中的重要应用。

稀疏表示是指信号在某个基底下具有较少的非零系数,即信号在某个基底下可以用较少的基函数表示。

压缩感知则是指通过少量的采样和线性运算,可以恢复出原始信号。

这种方法通过利用信号的稀疏性,可以实现高效的信号压缩。

四、小波变换和信号压缩小波变换是信号压缩中常用的方法之一。

小波变换可以将信号分解成不同频率的子信号,并通过舍弃高频子信号来实现信号的压缩。

小波变换具有多分辨率分析的特点,可以在不同尺度上对信号进行分析,从而提取出信号的重要信息。

通过适当选择小波基函数,可以实现对不同类型信号的压缩和重构。

五、实践应用和案例分析泛函分析在信号压缩中的应用不仅仅停留在理论层面,还在实践中得到了广泛应用。

例如,在图像压缩领域,基于小波变换的JPEG2000压缩标准就是一个成功的案例。

该标准通过利用小波变换和量化技术,实现了对图像的高效压缩和重构。

六、总结和展望泛函分析在信号压缩中的应用为信号处理领域带来了新的思路和方法。

通过引入稀疏表示、压缩感知和小波变换等技术,可以实现对信号的高效压缩和重构。

实变函数与泛函分析基础之课程论文提纲

实变函数与泛函分析基础之课程论文提纲

∀ {xn} ⊂ U (x0, λ) ⊂ Df , xn → a, 成立:f (xn) → a
特别地,当 f (x) 在 x0 ∈ X 点连续,即:limx→x0 ∈ Y f (x) = f (x0) ∈ Y ,则上述去心领域均可 改成含心领域。
Theorem 1 复合映照极限定理 设有:
(1) limy→y0 ∈ Y g(y) = c ∈ Z
《实变函数与泛函分析基础》之课程论文提纲
2007 年 7 月 5 日1 赋范线性空间基本概念
Problem 1 (Ck(Ω) 空间) 设 Ω ⊂ Em,Ck(Ω) 表示 Ω 上具有有界连续的 k 阶各类偏导数
的 函 数 全 体 按 通 常 函 数 加 法 和 数 乘 所 成 的 线 性 空 间 。 用 p = (p1, · · · , pn) 表 示 非 负 整 数
注: 1. 上述可测简单函数列中的每一个均可取成具有紧支集的函数。 2. 若 f (x) 是有界的,则上述收敛是都是一致的。
Problem 8 按周民强著《实变函数论》整理 Rm 上测度理论的建立。 Problem 9 按夏道行等著《实变函数论与泛函分析》(上册)整理一般集类上测度理论的建 立。 Problem 10 按周民强著《实变函数论》或夏道行等著《实变函数论与泛函分析》(上册)进 行有关问题(习题)的解答。
注:本学期本课程采用课题论文形式进行考核。可参考上述的提纲进行相关内容的整理 (可以扩充内容或更改上述提纲所反映的思路):(1)澄清概念;(2)完成性质的证明及 问题解答。要求:正本清源;思想清晰,证明推理严谨,并尽量体现微积分及线性代数的思 想和方法在本课程中的应用。
3
f (x0 + h) = f (x) + Df (x0) · h + o(|h|X ), h ∈ X

高馨泛函分析论文

高馨泛函分析论文

泛函分析论文摘要:本文介绍了Hilbert 空间、Banach 空间、距离空间、拓扑空间的概念,通过一些典型例题论述它们空间之间的关系及算子定义和特征值关键词:Hilbert 空间、Banach 空间、距离空间、拓扑空间、算子一、空间每一个内积空间是赋范空间.我们称完备的内积空间为Hilibert 空间..一个内积空间必是一个赋范空间.反之,,每一个赋范空间都可以引进一个内积,使得由这个内积产生的范数是原来的范数,其中范数要满足平行四边形则.Hilbert space 是完备的线性赋范空间(Banach space )的一个特例.1、Hilbert 空间有穷维线性空间可以引进各种种范数使它成为bananch 空间,但是通常欧式空间的一个重要特性是它上面定义了内积,借助于内积就可以定义向量的长和两个向量的正交性。

我们把这种方法推广到无穷维空间的情形,在下面里,我们引进内积空间Hilbert 空间的概念。

设H 是域K 上的线性空间,任意H y x ∈,,有一个K 中数(x,y)与之对应,使得对任意K a H z y x ∈∈,,,满足:⑴正定性:()(),0,;0,=≥x x y x 当且仅当;0=x⑵共轭对称性:()();,,x y y x =⑶对第一变元的线性性:()();,,y x a y ax =()()().,,,z y z x z y x +=+称( , )是H上的一个内积,H 上定义了内积称为内积空间。

()().,,y x a ay x =定理 1.1.1(Schwarz 不等式) 设H 是内积空间,则对任意H y x ∈,有()()().,,,2y y x x y x ≤称内积空间的这个范数是由内积产生的范数,因此每一个内积空间是赋范空间.以后凡说到内积空间是赋范空间都是指范数是由内积产生的.我们称完备的内积空间为Hilbert 空间.例1.1.1 n R 是(实)Hilbert 空间.在定义n R 中定义()k nk k y x ηξ∑==1, {}{}().,n k k R y x ∈==ηξ不难验证,( , )是一个内积,且由这个内积产生的范数为2112⎪⎭⎫ ⎝⎛=∑=n k x ξ {}().n k R x ∈=ξ 因此n R 是Hilbert 空间.例1.1.2 ]2,L a b ⎡⎣是Hilbert 空间与2l 类似,由Holder 不等式,对任意]2,,x y L a b ⎡∈⎣,()()112222,(())(())b b b aa a x t y t dt x t dt y t dt ≤⎰⎰⎰ 在]2,L ab ⎡⎣上定义内积()()(),ba x y x t y t dt =⎰ 有这个内积产生的范数为 122(())b a x x t dt =⎰由此可知]2,L a b ⎡⎣是Hilbert 空间 定理1.1.2 设H 是内积空间,则内积()y x ,是x,y 的连续函数,即当()().,,,,y x y x y y x x n n n n →→→时,定理1.1.4 设X 是赋范空间,如果范数满足平行四边形法则,则可在X 中定义一个内积,使得由它产生的范数正是X 中原来的范数.2、Banach 空间定义2.1.1 设X 是域K(实数域或复数域)上的线性空间,函数:R X →∙: 满足条件:1) 对任意0,0;0,==≥∈x x x X x 当且仅当;2) 对任意(齐次性)及,,x a ax K a X x =∈∈; 3) 对任意(三角不等式),,y x y x X y x +≤+∈. 称 ∙是X 上的一个范数,X 上定义了范数 ∙称为赋范(线性)空间,记为() , ∙X ,有时简记为X .在一个赋范线性空间() , ∙X 中通过范数可以自然地定义一距离,(),,y x y x d -= .,X y x ∈ ()1.1.2事实上,由范数公理,对任意()(),当且仅当当且仅当且0,0,0,,0,,,,=-=-==≥-=∈y x y x y x d y x y x d X z y x ()()()+-≤-+-=-==-=-==z x y z z x y x y x d x y d x y y x y x d y x ,,,,,即()()y z d z x d y z ,,+=-.称赋范空间中这个距离是由范数诱导的距离.这样,赋范空间是一个距离空间,以后凡说赋范空间的距离如无特别说明都指的是由范数诱导的距离.因此,在第一张所讨论的涉及距离空间、拓扑空间的一般概念、性质(如完备性、可分性、紧性等)都可以移植到赋范空间中来.特别地,设{}n x 是赋范空间X 中的点列,X x ∈,如果()∞→→-n x x n 0,称{}n x 强(或按范)收敛于x ,记为()∞→→n x x n ,或x xn n =∞→lim .如果赋范空间是完备的称它为Banach 空间.例2.1.1 空间[],C a b 。

泛函分析期中课程论文(2012.11)

泛函分析期中课程论文(2012.11)

湛江师范学院2012 年-2013 学年度第 1 学期
期中考核题目及评分标准
考查科目:泛函分析授课对象:数科院09数本1-9班
任课教师:栾姝
考核形式:课程论文
具体要求:课程论文应包括以下两方面内容:一、总结《泛函分析》课程的知识体系;二、列举泛函分析中的某个知识点在其
他课程中的应用。

文中如涉及他人论文内容,要列出参考
文献。

题目自拟。

A4纸单面打印(标明院系、专业、班级、
姓名、学号) 字体:小四字数:不限
评分标准:100-90分:一、知识点总结详尽、准确,特别应注重每章
中各个知识点之间的区别和联系,要有自己的
独到之处。

二、要通过查阅参考文献,全面、
系统地总结泛函分析中某个知识点在其他课
程中的应用。

89-80分:一、知识点总结较为详尽、准确,基本体现各
个知识点之间的区别和联系,有自己的观点。

二、通过查阅参考文献,较为全面地总结了泛
函分析中某个知识点在其他课程中的应用。

79-70分:一、知识点总结基本全面、部分知识点内在联系
总结基本准确。

二、文中体现了泛函分析中某
个知识点在其他课程中的应用。

69-60分:一、知识点总结相对不够全面、部分知识点内在联
系总结基本准确。

二、文中有涉及到泛函分析
中某个知识点在其他课程中的应用。

59-0分:一、知识点总结不够全面、部分知识点内在联系总结
不够准确或者完全没有涉及,只是罗列课本中
的内容,没有自己的观点。

二、文中没有涉及
到泛函分析中某个知识点在其他课程中的应
用。

泛函分析线性赋范空间论文

泛函分析线性赋范空间论文

泛函分析线性赋范空间论文摘要:本论文主要围绕泛函分析线性赋范空间的基本理论进行研究,介绍了线性赋范空间的定义、性质、范畴和代数结构等方面。

对于赋范空间中的基本概念如范数、内积、对偶空间、共轭性等,进行详细阐述,并以此为基础,引入了Banach空间、Hilbert空间、算子空间等重要概念和定理。

论文最后还介绍了一些经典的应用和发展趋势。

通过本论文的研究,可以更好地理解和应用泛函分析线性赋范空间的基本理论。

关键词:泛函分析;线性赋范空间;范数;内积;对偶空间;共轭性;Banach空间;Hilbert空间;算子空间一、引言泛函分析是数学中的一个重要分支,它主要研究无限维向量空间及其上的函数或算子。

线性赋范空间是泛函分析中一个重要的概念,它是带有范数(norm)的线性空间,具有加法、数乘和范数这三个运算,是泛函分析的基础。

本论文旨在对于泛函分析线性赋范空间的基本理论进行系统的阐述和探讨。

二、线性赋范空间的定义与性质线性赋范空间是一个带有范数的线性空间,它的定义包括线性空间的定义和范数的定义。

线性赋范空间具有很多性质,如唯一的零元素、范数的非负性、齐次性、三角不等式等,这些性质为后续的研究提供了基础。

三、范数、内积、对偶空间和共轭性范数、内积、对偶空间和共轭性是赋范空间中的基本概念,范数是一种测量距离的方式,内积是一种度量夹角的方法,对偶空间是指所有从X到标量域的线性连续映射组成的空间,而共轭性则是指内积或对偶空间的一些特殊性质。

四、Banach空间、Hilbert空间、算子空间等Banach空间是指完备的赋范空间,Hilbert空间是一种特殊的Banach空间,具有良好的几何性质和完备性质,是应用广泛的空间之一。

在算子理论中,算子空间则是指线性映射所组成的空间,它也具有重要的应用和意义。

五、经典应用和发展趋势泛函分析线性赋范空间在数学和物理等领域都有着广泛的应用,如偏微分方程、量子力学、信号处理、数据挖掘等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈泛函分析
数学科学学院 张健 20111101710
2011级数学与应用数学汉班
摘 要 泛函分析是分析数学中最“年轻”的分支,它是古典分析观点的推广,它综合函数论、几何和代数的观点研究无穷维向量空间上的函数、算子、和极限理论。

它在二十世纪四十到五十年代就已经成为一门理论完备、内容丰富的数学学科了。

关键词 泛函分析、空间、度量、算子
泛函分析是20世纪30年代形成的数学分科,是从变分问题、积分方程和理论物理的研究中发展起来的。

它综合运用函数论、几何学、现代数学的观点来研究无限维向量空间上的函数、算子和极限理论。

它可以看作无限维向量空间的解析几何及数学分析。

主要内容有拓扑线性空间等。

泛函分析在数学物理方程、概率论、计算数学等分科中都有应用,也是研究具有无限个自由度的物理系统的数学工具。

泛函分析是研究拓扑线性空间到拓扑线性空间之间满足各种拓扑和代数条件的映射的分支学科。

.1度量空间和赋范线性空间
1.1度量空间
现代数学中一种基本的、重要的、最接近于欧几里得空间的抽象空间。

19世纪末叶,德国数学家.G 康托尔创立了集合论,为各种抽象空间的建立奠定了基础。

20世纪初期,法国数学家..R M -弗雷歇发现许多分析学的成果从更抽象的观点看来,都涉及函数间的距离关系,从而抽象出度量空间的概念。

度量空间中最符合我们对于现实直观理解的是三维欧氏空间。

这个空间中的欧几里德度量定义两点之间距离为连接这两点的直线的长度。

定义:设X 为一个集合,一个映射d :R X X →⨯。

若对于任何z y x ,,属于X ,有
()1(正定性)(),0,≥y x d 且(),0,=y x d 当且仅当y x =
()2(对称性)()()x y d y x d ,,=
()3(三角不等式)()()()z y d y x d z x d ,,,+≤
则称d 为集合X 的一个度量(或距离)。

称偶对()X d ,为一个度量空间,或者称X 为一个对于度量d 而言的度量空间。

2.1赋范线性空间
泛函分析研究的主要是实数域或复数域上的完备赋范线性空间。

这类空间被称为巴拿赫空间,巴拿赫空间中最重要的特例被称为希尔伯特空间。

1.2.1希尔伯特空间
希尔伯特空间可以利用以下结论完全分类,即对于任意两个希尔伯特空间,
若其基的基数相等,则它们必彼此同构。

对于有限维希尔伯特空间而言,其上的连续线性算子即是线性代数中所研究的线性变换。

对于无穷维希尔伯特空间而言,其上的任何态射均可以分解为可数维度(基的基数为50)上的态射,所以泛函分析主要研究可数维度上的希尔伯特空间及其态射。

2.2.1巴拿赫空间
巴拿赫空间理论(Banach )space 是1920年由波兰数学家巴拿赫()Banach S .一手创立的,数学分析中常用的许多空间都是巴拿赫空间及其推广,它们有许多重要的应用。

大多数巴拿赫空间是无穷维空间,可看成通常向量空间的无穷维推广。

巴拿赫空间是一种赋有“长度”的线性空间,泛函分析研究的基本对象之一。

数学分析各个分支的发展为巴拿赫空间理论的诞生提供了许多丰富而生动的素材。

从魏尔斯特拉斯研究以来,人们早已十分关心闭区间[]b a ,上的连续函数以及它们的一致收敛性。

甚至到19世纪末, .G 阿斯科利就得到闭区间[]b a ,上一族连续函数之列紧性的判断准则﹐后来十分成功地用于常微分方程和复变函数的结论中。

.2线性算子
出现在各个数学领域中具有线性性质的运算(例如线性代数中的线性变换;微分方程论、积分方程论中大量出现的微分、积分运算、积分变换等)的抽象概括。

它是线性泛函分析研究的重要对象。

关于线性算子的理论不仅在数学的许多分支中有很好的应用,同时也是量子物理的数学基础之一。

中国物理学界习惯上把算子称为算符。

.12线性算子与线性泛函
设Y X ,是两个(实数或复数域上的)线性空间,T 是X 到Y 的映射。

T 的定义域和值域分别记为()T D ,()T R 。

如果对任何数βα,和1x 、()T D x ∈2满足()T D x x ∈+21βα,并且
()()()2121x T x T x x T βαβα+=+
则称T 是以()T D 为定义域的X 到Y 的线性算子。

特别当()X T D =,Y 是实数域或复数域时,就称T 是X 上的线性泛函。

例1
设[]1,0C X =[]上连续可微函数全体)(
1,0,[]1,0B Y =[]上有界函数全体)(1,0, 定义
()()t x dt
d t Tx =)
(,
则称T 是X 到Y 的线性算子。

例2
设[]
b a C X ,=[]上的连续函数全体)(b a ,,()s t K ,是[][]b a b a ,,⨯上的二元连续函数,
定义
()()()ds s x s t K t Tx b
a ⎰=,)(, 则称T 是X 到Y 的线性算子。

例3
设[]b a C X ,=,则()dt t x x T b
a ⎰=1,()02t x x T =(0t 是[]
b a ,中取定的一个点)都是X 上的线性泛函。

.22线性算子的运算
设1T 、2T 是X 到Y 的线性算子,它们的定义域分别是)1(T D 、)2(T D 。

对任一数α,规定1T α表示以)1(T D 为定义域,对任何)1(T D x ∈,()x T x T 11)(αα=的算子;
规定21T T +表示以()21(T D T D )
为定义域,对任何()21(T D T D x )∈,x T x T x T T 2121)(+=+的算子。

易知1T α(称1T 的α倍), 21T T + (称1T 与2T 的和)仍是线性算子。

又设3T 是以)3(T D 为定义域的Y 到Z 的线性算子,规定13T T ⋅(也记作13T T )表示以()(){}131,T D X T D x T x D ∈∈=为定义域而对任何()()x T T x T T D x 1313,=⋅∈的算子。

易知13T T ⋅(称3T 与1T 的积)也是线性算子。

.3泛函分析与数学分析的区别
泛函分析的特点是它不但把古典分析的基本概念和方法一般化了,而且还把这些概念和方法几何化了。

比如,不同类型的函数可以看作是“函数空间”的点或矢量,这样最后得到了“抽象空间”这个一般的概念。

它既包含了以前讨论过的几何对象,也包括了不同的函数空间
数学中的分析分支是专门研究实数与复数及其函数的数学分支。

它的发展由微积分开始,并扩展到函数的连续性、可微分及可积分等各种特性。

这些特性,有助我们应用在对物理世界的研究,研究及发现自然界的规律。

相关文档
最新文档