-线性代数-矩阵的概念及基本运算
基础公共课复习资料-线性代数知识点汇总

第一章 矩阵矩阵的概念:n m A *(零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵) 矩阵的运算:加法(同型矩阵)---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==(一般AB=BA ,不满足消去律;由AB=0,不能得A=0或B=0) 转置:A A T T =)( TT T B A B A +=+)( T T kA kA =)( TT T A B AB =)( 方幂:2121k k k kA AA += 2121)(k k k k A A +=逆矩阵:设A 是N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的, 且B A=-1矩阵的逆矩阵满足的运算律:1、可逆矩阵A 的逆矩阵也是可逆的,且A A =--11)(2、可逆矩阵A 的数乘矩阵kA 也是可逆的,且111)(--=A kkA 3、可逆矩阵A 的转置TA 也是可逆的,且T T A A )()(11--=4、两个可逆矩阵A 与B 的乘积AB 也是可逆的,且111)(---=A B AB ,但是两个可逆矩阵A 与B 的和A+B 不一定可逆,即使可逆,但11)(--+≠+B A B A 。
A 为N 阶方阵,若|A|=0,则称A 为奇异矩阵,否则为非奇异矩阵。
5、若A 可逆,则11--=A A逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆; ③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的。
分块矩阵:加法,数乘,乘法都类似普通矩阵转置:每块转置并且每个子块也要转置注:把分出来的小块矩阵看成是元素初等变换:1、交换两行(列)2.、非零k 乘某一行(列)3、将某行(列)的K 倍加到另一行(列) 初等变换不改变矩阵的可逆性,初等矩阵都可逆 初等矩阵:单位矩阵经过一次初等变换得到的矩阵等价标准形矩阵⎪⎪⎭⎫⎝⎛=O O O I D r r第二章 行列式N 阶行列式的值:行列式中所有不同行、不同列的n 个元素的乘积的和n nn nj j j j j j j j j nij a a a a ...)1(21212121)..(∑-=τ行列式的性质:①行列式行列互换,其值不变。
线性代数:矩阵的基本运算及性质

0 0 ......k
数量矩 阵
等……
5
●矩阵的乘法
a11
设
A
i行
am1
c11
则
AB
C
cm1
a1t
b11
amt
B
mt
bt1
b1n j 列
btn tn
c1n
左矩阵
A的列数
右矩阵 B的行数
cmn
mn
其中 cij ai1b1 j ai2b2 j ... aitbtj
D (i k) ai1Ak1 ai2 Ak 2 ain Akn 0 (i k)
a1 j A1s a2 j A2s
anj s)
18
2、设有行列式 2 1 3 2 3322
(5)0A 0, A0 0
或 BA CA BC
7
若 A 是方阵,则乘积 AA......A 有意义,记作 Ak
称为 A 的 k 次幂。
性质 Ak Al Akl
Ak l Akl
●矩阵A的转置
a11
如果
A
am1
AT 或 At , A
a1n
a11
,则
AT
amn
a1n
am1
A为反对称矩阵
aij a ji
10
10 方阵的行列式
定义 n阶方阵A (aij )的行列式A(或det A)是 按如下规则确定的一个数:
当n 1时, A a11 a11;
当n 1时, a11 a12 a1n
A
a21
a22
a2n
an1 an2 ann
(1)11 a11M11 (1)12 a12M12 (1)1n a1n M1n
线代矩阵知识点总结

线代矩阵知识点总结一、矩阵的定义与基本性质1. 矩阵的定义矩阵是一个二维数组,其中的元素具有特定的排列方式。
一般地,矩阵的元素用小写字母表示,而矩阵本身用大写字母表示。
例如,一个矩阵A可以表示为:A = [a11, a12, ..., a1n][a21, a22, ..., a2n]...[am1, am2, ..., amn]其中,a_ij表示矩阵A的第i行、第j列元素。
2. 矩阵的基本性质(1)相等性:两个矩阵A和B相等,当且仅当它们具有相同的维度,并且对应位置的元素相等。
(2)加法:两个矩阵A和B的加法定义为它们对应位置的元素相加,得到一个新的矩阵C。
即C = A + B。
(3)数量乘法:矩阵A的数量乘法定义为将A的每一个元素乘以一个标量k,得到一个新的矩阵B。
即B = kA。
(4)转置:矩阵A的转置是将A的行和列互换得到的新矩阵,记作A^T。
(5)逆矩阵:对于方阵A,如果存在另一个方阵B,使得AB = BA = I(单位矩阵),则称B是A的逆矩阵,记作A^-1。
二、矩阵的运算与性质1. 矩阵的加法设矩阵A和B是同样维度的矩阵,则它们的加法定义为将对应位置的元素相加得到一个新的矩阵C。
即C = A + B。
性质:(1)交换律:矩阵加法满足交换律,即A + B = B + A。
(2)结合律:矩阵加法满足结合律,即(A + B) + C = A + (B + C)。
(3)零元素:对于任意矩阵A,存在一个全为0的矩阵0,使得A + 0 = 0 + A = A。
2. 矩阵的数量乘法对于矩阵A和标量k,矩阵A的数量乘法定义为将A的每一个元素乘以k,得到一个新的矩阵B。
即B = kA。
性质:(1)分配律:矩阵的数量乘法满足分配律,即k(A + B) = kA + kB。
(2)结合律:矩阵的数量乘法满足结合律,即(k1k2)A = k1(k2A)。
(3)单位元素:对于任意矩阵A,存在一个标量1,使得1A = A。
线性代数中的矩阵运算

线性代数中的矩阵运算矩阵运算,在线性代数中是一个十分重要的概念,我们通常用矩阵来表示线性映射,这些矩阵之间的加、减、乘等运算,是我们学习矩阵的基础。
本文将从矩阵的定义、矩阵的加减、矩阵的乘法、矩阵的转置和逆等方面详细介绍矩阵运算。
一、矩阵的定义矩阵是一个由m行、n列元素排列成的矩形表格,其中每个元素都是一个数字(标量),通常用 A = [aij]表示。
其中,i表示行号,j表示列号, aij表示第i行、第j列的元素,矩阵的大小写成m×n表示,其中m表示行数,n表示列数。
二、矩阵的加减对于两个具有相同大小的矩阵A和B,它们的和C可以通过将每个对应的元素相加得到,即Ci,j = ai,j + bi,j,也可以用向量的形式表示C = A+B。
矩阵的差同理,Ci,j = ai,j - bi,j,用向量的形式表示C = A - B。
加减运算的性质:1.交换律:A + B = B + A,A - B ≠ B - A;2.结合律:(A + B) + C = A + (B + C), (A - B) - C ≠ A - (B - C);3.分配律:a(A + B) = aA + aB,(a + b)A= aA + bA。
三、矩阵的乘法对于两个矩阵A和B,只有满足A的列数等于B的行数时,A和B才能相乘。
设A为m行n列的矩阵,B是一个n行p列的矩阵,它们相乘得到的结果C是一个m行p列的矩阵。
在矩阵乘法中,相乘的行列数相等的两个矩阵必须一一对应进行相乘,并将所有乘积相加。
矩阵乘法的表达式:Cij = ∑ akj ᠖ bj i,其中k=1,2,,....,nC = AB,A的第i行乘以B的第j列,它们的乘积之和就是C的第i行第j列元素。
用向量的形式表示C = A×B。
在矩阵乘法中,乘法不具备交换律,即AB ≠ BA。
(只有在A、B中至少有一个为单位矩阵时,AB=BA)矩阵乘法的性质:1.结合律:A(BC) = (AB)C;2.分配律:A(B+C) = AB + AC;3.结合律:(aA)B = A(aB) = a(AB);4.单位矩阵: AI = IA = A;5.逆矩阵:存在矩阵B满足AB=I,则称矩阵A可逆,矩阵B 就是矩阵A的逆矩阵(A的行列式必须不等于零)。
线性代数矩阵运算与特征值分解重点复习

线性代数矩阵运算与特征值分解重点复习线性代数是数学中的一个重要分支,研究了向量空间和线性映射的结构、性质和运算法则。
在线性代数中,矩阵运算和特征值分解是两个重要的概念和技巧。
本文将以复习的形式来介绍线性代数中的矩阵运算和特征值分解。
一、矩阵运算1. 矩阵的定义和基本运算- 矩阵是由数域上的元素组成的一个长方形的数组。
- 矩阵的基本运算包括加法、减法、数乘和乘法等。
2. 矩阵的转置和共轭转置- 矩阵的转置是将矩阵的行与列对调得到的新矩阵。
- 对于复数矩阵,还可以进行共轭转置,即将矩阵中的元素取复共轭得到的新矩阵。
3. 矩阵的逆和行列式- 逆矩阵是对于方阵A,存在一个矩阵B,使得AB=BA=I,其中I 是单位矩阵。
- 行列式是一个标量,用于判断矩阵是否可逆。
二、特征值和特征向量1. 特征值和特征向量的定义- 对于一个矩阵A和一个非零向量v,如果存在一个标量λ,使得Av=λv,那么v就是A的一个特征向量,λ就是A的对应特征值。
2. 特征值和特征向量的性质- 特征值和特征向量具有以下性质:- A的特征值的个数等于A的阶数。
- 特征向量的长度可以归一化,使得其模长为1.- 如果v是A的特征向量,那么对于任意非零标量c,cv也是A的特征向量。
3. 特征值分解- 特征值分解是将一个可对角化的矩阵表示为特征值和特征向量的形式。
- 设A是一个n阶方阵,如果存在一个非奇异矩阵P,使得P^-1AP=D,其中D是一个对角矩阵,那么称D的对角元素为A的特征值,P的列向量为A的特征向量。
4. 特征值分解的应用- 特征值分解在多个领域和问题中有广泛的应用,如主成分分析、图像压缩、物理系统的模态分析等。
总结:线性代数中的矩阵运算和特征值分解是重要的概念和技巧。
矩阵运算包括基本运算、转置和共轭转置、逆和行列式等,而特征值和特征向量的概念则提供了解析矩阵性质和变换的重要工具。
特征值分解是一种重要的矩阵分解形式,可以用于研究和求解各种问题。
线性代数(复旦大学出版社)第二章 矩阵

第二章矩阵第一节矩阵的概念1、分类:行矩阵:只有一行的矩阵列矩阵:只有一列的矩阵零矩阵O:元素全为零的矩阵单位阵E:主对角线上元素为1,其他元素为0的方阵数量阵(纯量阵):λE对角阵:不在主对角线上的元素都为0的方阵上(下)三角阵:主对角线上以下(上)的元素全为0的方阵2、两矩阵同型:两个矩阵行数且列数都相等两矩阵相等:两矩阵同型,且对应元素相等。
记做A=B。
3、不同型的零矩阵是不相等的第二节矩阵的运算设A,B,C为m×n矩阵,λ, μ为数一、加法:只有同型矩阵才能进行加法运算(1)交换律:A+B=B+A(2)结合律:(A+B)+C=A+(B+C)(3)A+O=A二、减法:A-B=A+(-B) -B称为B的负矩阵三、乘法:1、只有当第一个矩阵(左矩阵)的列数等于第二个矩阵(行矩阵)的行数时,两个矩阵才能相乘。
简记为:(m×s)(s×n)=(m×n)例: A为2×3矩阵,B为3×2矩阵,则AB=C为2×2矩阵2、数与矩阵:(1)(λμ)A=λ(μA)=μ(λA)(2)(λ+μ)A=λA+μA(3)λ(A+B)=λA+λ B(4)1*A=A, (-1)*A=-A矩阵与矩阵:(1)结合律:(AB)C=A(BC)(2)分配律:A(B+C)=AB+AC(B+C)A=BA+CA(3)λ(AB)=(λA)B=A(λB)(4)EA=AE=A(5)A k A l=A k+l(6)(A k)l=A kl3、矩阵乘法不满足交换律,即(AB)C≠(AC)B另外:(1)一般有AB≠BA (A与B可交换时,等式成立)(2)AB=O,不能推出A=O或B=O(3)AB=AC,A≠O,不能推出B=C(4)(AB)k≠A k B k(A与B可交换时,等式成立)4、可交换的:对于两个n阶方阵A,B,有AB=BA,则称A与B是可交换的。
纯量阵与任意同行方阵都是可交换的。
矩阵的基本概念与运算

矩阵的基本概念与运算矩阵是线性代数学科中的基础工具,这是因为矩阵可以用来表示线性变换和线性方程组。
对于矩阵的基本概念与运算,我们需要从以下几个方面来分析。
一、矩阵的基本概念1、定义与记法矩阵是一个由m行n列元素排成的矩形阵列,常用大写字母表示,如A、B、C等。
其中,阵列中的m表示矩阵的行数,n则表示矩阵的列数。
因此,一个m行n列的矩阵可以写成:$A_{m×n}=\begin{bmatrix}a_{11}&a_{12}&\cdots&a_{1n}\\a_{21}&a_{22}&\cdots&a_{2n}\\\vdots&\vdots&\ddots&\vdots\\a_{m1}&a_{m2}& \cdots&a_{mn}\\\end{bmatrix}$其中,$a_{ij}$ 表示矩阵 A 中第 i 行第 j 列的元素。
2、矩阵的类型按照元素类型可以将矩阵分为实矩阵、复矩阵和布尔矩阵等。
按照矩阵的形状,矩阵可以分为方矩阵、长方矩阵和列矩阵等。
二、矩阵的基本运算1、矩阵的加法假设有两个矩阵 $A_{m×n}$ 和 $B_{m×n}$,它们对应位置相加的结果记作 $C=A+B$,则:$C_{ij}=A_{ij}+B_{ij}$2、矩阵的数乘假设有一个矩阵 $A_{m×n}$ 和一个数 $\lambda$,则它们的乘积记作 $B=\lambda A$,则:$B_{ij}=\lambda A_{ij}$3、矩阵的乘法假设有两个矩阵 $A_{m×n}$ 和 $B_{n×p}$,它们的乘积记作$C=AB$,则:$C_{ij}=\sum_{k=1}^n A_{ik}B_{kj}$矩阵乘法需要满足结合律,但不满足交换律,也就是说,$AB$ 与 $BA$ 不一定相等。
矩阵的基本运算与应用知识点总结

矩阵的基本运算与应用知识点总结矩阵是线性代数中的重要概念,具有广泛的应用。
它不仅在数学领域有重要作用,还在物理学、统计学、计算机科学等领域得到广泛应用。
本文将对矩阵的基本运算和应用进行总结。
一、矩阵的定义与表示矩阵是一个由m行和n列元素排列成的矩形数组。
一个m×n矩阵的大小通常表示为m×n。
矩阵中的元素可以是实数、复数或其他数域中的元素。
矩阵常用大写字母表示,如A、B。
二、矩阵的基本运算1. 矩阵的加法矩阵的加法规则是对应元素相加,要求两个矩阵的行数和列数相等。
设A、B是同型矩阵,则它们的和A+B也是同型矩阵,其定义为:(A+B)ij = Aij + Bij。
2. 矩阵的减法矩阵的减法与加法类似,也是对应元素相减。
两个矩阵相减要求行数和列数相等。
设A、B是同型矩阵,则它们的差A-B也是同型矩阵,其定义为:(A-B)ij = Aij - Bij。
3. 矩阵的数乘矩阵的数乘是将矩阵的每个元素都乘以一个实数或复数称为数乘。
设A为一个矩阵,k为实数或复数,则数乘后的矩阵kA,其中矩阵kA 的每个元素均为k乘以A相应元素的积。
4. 矩阵的乘法矩阵的乘法不同于数乘,它是指矩阵之间的乘法运算。
设A为m×n 矩阵,B为n×p矩阵,那么它们的乘积AB为m×p矩阵,其定义为:(AB)ij = ΣAikBkj,其中k的范围是1到n。
三、矩阵的应用1. 线性方程组的求解矩阵在线性方程组的求解中发挥着重要作用。
通过矩阵的系数矩阵和常数矩阵,可以将线性方程组转化为矩阵乘法的形式,进而用矩阵运算求解方程组的解。
2. 特征值与特征向量矩阵的特征值与特征向量是矩阵在线性代数中的重要概念。
特征值表示了矩阵的某个线性变换的影响程度,而特征向量表示了在该变换下不变的方向。
3. 矩阵的转置矩阵的转置是指将矩阵的行与列对换得到的新矩阵。
转置后的矩阵在一些应用中具有特殊的性质,并且在计算中常常用到。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a11 a 21 a m1
a12 a 22 am 2
a1n a2n a mn
一、矩阵的定义
a11 a 21 a m1
其中 , 横向排列的
a12 a 22 am 2
线 性
a1n a2n a mn
线 性
一、矩阵的定义
起来;同时有两个下标,这不同于 级数的单下标。
代
数
指的是 m×n 个数 a (i 1,2,, m; j 1,2,, n ) ,排 ij 列成的 m 行 n 列 ( 横称行,纵称列 ) 的矩形阵列(表), 我们称之为维是 m×n 的矩阵,简称为 m×n 矩阵,简 记为 [aij ]mn。其表示形式(通式)为:
例2
(田忌赛马问题,即对策论或竞赛论问题)
线 性
代
数
典故:战国时期,齐国国王有一天与他的一 员大将—田忌进行赌马,他决定给田忌上、中、 下三个等级的赛马各一匹,自己也拿上、中、下 三个等级的赛马各一匹。已知同级别(均为上或 中或下)的赛马参加比赛,齐王获胜,但是不同 级别的赛马比赛,高等级的赛马一定赢低等级的 赛马(如田忌的上等马一定胜齐王的中、下等马; 田忌的中等马一定胜齐王的下等马)。每次比赛 败者付给胜者100金。结果是齐王每次都输给田 忌100金。下面我们来求齐王的赢得矩阵。
代
数
个领域中就其应用的广泛性而言是第一的,尤
其是在工程技术方面已成为不可缺少的工具。
下面我们就开始线性代数的学习。
第一章
矩 阵(Matrix)
§1.1矩阵的基本概念
例 某电视机厂生产三种型号的35厘米(14英寸)彩电TC-1、TC-
线 性
2、TC-3,它们的主要零部件是:S1(显像管)、S2(电路板)、S3(扬声 器)、S4(机壳),而这些零部件的主要原材料为:M1(铜)、M2(玻 璃)、M3 (塑料)。生产不同型号的彩电所需零部件的数量以及生产 不同的零部件所需原材料的数量在下列两表中给出:
代
数
展是顺理成章的,并不象有的科学的发展具有传奇色彩。
例如:拓扑学是人们在讨论七桥问题这个游戏中产生的; 解析几何据说是笛卡尔在一个梦中发现的;而概率论是源 于赌博场。
序
言
线性代数是在十九世纪首先由英国的犹太
线 性
人西尔维斯特和凯来开始研究的,后来由美国
的皮尔斯父子和狄克生等人发扬光大。线性代
数虽然是近世代数的一个分支,但在代数的各
序
言
伽罗瓦的一生充满忧伤和苦恼,景况比阿贝尔还差。
他在事业上不断受挫,他上交给科学院的论文,没有得到
线 性
当时时任科学院院长的数学家—柯西的及时评价,连手稿 都被丢失。最后一次甚至得到数学家 —泊松的草率评语-
“一个不可理解的”。他于21岁在一次决斗中死去。
后人在整理和总结他们的论文中,建立了近世代数。 线性代数作为近世代数这个主干上的一个重要分支,其发
代
数
列。因此 a 位于 [aij ]mn 的第i 行j 列,称之为矩阵 ij [aij ]mn 的(i,j )-元。
· · ,ain 是的 [aij ]mn 第 i ai1, ai 2 ,· a 2 j ,· 行;纵向排列的 a1 j , · · ,amj 是 [aij ]mn 的第j
另外,为了书写的方便,常常在不致于引起混淆的情 况下,用大写黑斜体字母 A 、 B 、 C 或 A1 、 A2 、 A3 等表示
,即A= [aij ]m n
二、矩阵的要素
从上面的定义,我们可以看出:要确定一个矩阵, 我们必须知道它的维(m×n)和每一个矩阵元( )。
线 性
例如: 1 16 31 A= 2 12 24 3 11 27 矩阵A的维为:3×3 矩阵A的每一个元分别为:a11=1; a12=16; a13=31; a21=2; a22=12; a23=24;
代
数
三、实际问题的矩阵表达
例1
某县有三个乡镇,县里决定建立一个有线电视网。
通过勘察测算,获得一组有关建设费用的预算数据:
线 性
代
数
我们也可以用矩阵的形式给出有关建设费用的预算数据:
0 2 3.5 3
2 0 1 2
3 .5 3 1 2 0 1 .5 1 .5 0
加”即为2+5=7),再将横加后所得的结果乘以 70,再加上66?为什么?
答:因为1~10这十个数乘以9再
“横加”后都是9。
课后作业: 试写出一个 5×5 维的矩阵,其矩阵元满足
线 性
a11=2,
aij=i+j
(i=1或j=1)
aij=a(i-1)j+ai(j-1) (i>1,j>1)
代
数
a31=3; a32=11; a33=27。
试问: 6 3 1 3 3 2 B= 8 4 3 C= 4 7 分别是否为矩阵? 9 5 2 3 6 1 为什么? 线
性
课堂作业:试写出一个5×4维的矩阵A,其中矩阵 元满足公式aij=2i-j。 1 3 5 7 9 0 2 4 6 8 -1 1 3 5 7 -2 0 2 4 6
解:对于田忌和齐王而言,各有三匹马,因此他们布阵
线 性
的方式均各有6(P33)种可能,即 (上、中、下),(中、下、上),(中、上、下), (上、下、中),(下、上、中),(下、中、上)。 共六种。那么齐王的赢得矩阵应为:(6×6 维的矩阵) 田忌策略 3 1 1
注意观察数据通元的表 达式,养成善于观察的 好习惯。显然行之间是 公差为2的等差数列; 列之间是公差为-1的等 差数列。
代
数
A=
下面给出一个注 意观察的例子, 看看有无规律。
例:请每位同学在0到9这十个基本数字中任选一 个,先用你选的这个数加上1,再乘以3,再乘以
线 3,然后将所得的结果进行“横加”(如:25“横 性
代
数
TC-1
TC-2
1 4
TC-3
1 5
S1 M1 M2 M3
2 14 1
S2
4 0 2
S3
4 0 1
S4
0 4 10
S1
S2
1 3
S3
S4
2
1
4
1
6
1
4行×3列
3行×4列
§1.1矩阵的基本概念
基于上述这种数据成行成列排布的现象,1850年犹 太人西尔维斯特(Sylvester,1814~1897)首次提出了 “矩阵”这个词。 注:这里是用方括号把一组数括