(完整版)安徽省马鞍山市2017届九年级上册数学期末考试试卷
2017-2018学年安徽省马鞍山市和县九年级(上)期末数学试卷

2017-2018学年安徽省马鞍山市和县九年级(上)期末数学试卷一、选择题(本大题共10小题,共40.0分)1.下列图案中,既是轴对称图形又是中心对称图形的是()A. B.C. D.2.下列事件中是必然事件的是()A. 一个直角三角形的两锐角分别是40∘和60∘B. 抛掷一枚硬币,落地后正面朝上C. 当x是实数时,x2≥0D. 长为5cm、5cm、11cm的三条线段能围成一个三角形3.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A. 55∘B. 70∘C. 125∘D. 145∘4.某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x,则可列方程为()A. 48(1−x)2=36B. 48(1+x)2=36C. 36(1−x)2=48D. 36(1+x)2=485.如图,在平面直角坐标系中,⊙A经过原点O,并且分别与x轴、y轴交于B、C两点,已知B(8,0),C(0,6),则⊙A的半径为()A. 3B. 4C. 5D. 86.如图,⊙O是△ABC的外接圆,连接OB、OC,若OB=BC,则∠BAC等于()A. 60∘B. 45∘C. 30∘D. 20∘7. 若关于x 的一元二次方程kx 2-2x -1=0有两个不相等的实数根,则实数k 的取值范围是( )A. k >−1B. k <1且k ≠0C. k ≥−1且k ≠0D. k >−1且k ≠08. 将抛物线y =3x 2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A. y =3(x +2)2+3B. y =3(x −2)2+3C. y =3(x +2)2−3D. y =3(x −2)2−39. 袋中装有除颜色外完全相同的a 个白球、b 个红球、c 个蓝球,则任意摸一个球是蓝球的概率是( )A. b a +bB. c a +bC. b a +b +cD. ca +b +c 10. 在同一坐标系中,一次函数y =ax +1与二次函数y =x 2+a 的图象可能是( )A. B.C. D.二、填空题(本大题共4小题,共20.0分)11. 如图,如果从半径为5cm 的圆形纸片上剪去15圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高是______cm .12. 如图,Rt △ABC 中,∠C =90°,AC =8,BC =6,两等圆⊙A ,⊙B 外切,那么图中两个扇形(即阴影部分)的面积之和为______.13. 同时掷两枚质地均匀的骰子,求点数的和为6的概率______(结果精确到0.01).14. 对于实数a ,b ,定义运算“﹡”:a ﹡b = ab −b 2(a <b ).a 2−ab (a≥b ).例如4﹡2,因为4>2,所以4﹡2=42-4×2=8.若x 1,x 2是一元二次方程x 2-5x +6=0的两个根,则x 1﹡x 2=______. 三、解答题(本大题共8小题,共90.0分)15. 解方程 (3x -1)2=(x -1)2.16. 如图,点E 是△ABC 的内心,AE 的延长线和△ABC 的外接圆相交于点D .求证:DE =DB .17. 铜仁市某电解金属锰厂从今年1月起安装使用回收净化设备(安装时间不计),这样既改善了环境,又降低了原料成本,根据统计,在使用回收净化设备后的1至x 月的利润的月平均值w (万元)满足w =10x +90.(1)设使用回收净化设备后的1至x 月的利润和为y ,请写出y 与x 的函数关系式. (2)请问前多少个月的利润和等于1620万元?18. 张华和李明两人玩“剪刀、石头、布”的游戏,游戏规则为:剪刀胜布,布胜石头,石头胜剪刀.(1)请用列表法或树状图表示出所有可能出现的游戏结果;(2)求张华胜出的概率.19.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,-4),画出平移后对应的△A2B2C2;(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2;请直接写出旋转中心的坐标;(3)在x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.20.已知关于x的一元二次方程x2-(2k+1)x+k2+2k=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)是否存在实数k使得x1•x2-x12-x22≥0成立?若存在,请求出k的值;若不存在,请说明理由.21.如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD为⊙O的切线;(2)若BD的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)x+2分别交y轴、x轴于A、B两点,抛物线y=-x2+bx+c过22.如图,一次函数y=−12A、B两点.(1)求这个抛物线的解析式;(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D 的坐标.答案和解析1.【答案】B【解析】解:A、是轴对称图形,不是中心对称图形.故本选项错误;B、是轴对称图形,也是中心对称图形.故本选项正确;C、不是轴对称图形,是中心对称图形.故本选项错误;D、不是轴对称图形,是中心对称图形.故本选项错误.故选:B.根据轴对称图形与中心对称图形的概念求解.本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.【答案】C【解析】解:A、一个直角三角形的两锐角分别是40°和60°,是随机事件;B、抛掷一枚硬币,落地后正面朝上,是随机事件;C、当x是实数时,x2≥0,是必然事件;D、长为5cm、5cm、11cm的三条线段不能围成一个三角形,故D是不可能事件.故选:C.根据必然事件的概念(必然事件指在一定条件下一定发生的事件)可判断正确答案.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.【答案】C【解析】解:∵∠B=35°,∠C=90°,∴∠BAC=90°-∠B=90°-35°=55°,∵点C、A、B1在同一条直线上,∴∠BAB′=180°-∠BAC=180°-55°=125°,∴旋转角等于125°.故选:C.根据直角三角形两锐角互余求出∠BAC,然后求出∠BAB1,再根据旋转的性质对应边的夹角∠BAB1即为旋转角.本题考查了旋转的性质,直角三角形两锐角互余的性质,熟练掌握旋转的性质,明确对应边的夹角即为旋转角是解题的关键.4.【答案】D【解析】解:二月份的营业额为36(1+x),三月份的营业额为36(1+x)×(1+x)=36(1+x)2,即所列的方程为36(1+x)2=48,故选:D.三月份的营业额=一月份的营业额×(1+增长率)2,把相关数值代入即可.考查列一元二次方程;得到三月份的营业额的关系是解决本题的关键.5.【答案】C【解析】解:连接BC,∵∠BOC=90°,∴BC为圆A的直径,即BC过圆心A,在Rt△BOC中,OB=8,OC=6,根据勾股定理得:BC=10,则圆A的半径为5.故选:C.连接BC,由90度的圆周角所对的弦为直径,得到BC为圆A的直径,在直角三角形BOC中,由OB与OC的长,利用勾股定理求出BC的长,即可确定出圆A的半径.此题考查了圆周角定理,坐标与图形性质,以及勾股定理,熟练掌握圆周角定理是解本题的关键.6.【答案】C【解析】解:∵OB=BC=OC,∴△OBC是等边三角形,∴∠BOC=60°,∴∠BAC=∠BOC=30°.故选:C.由OB=BC,易得△OBC是等边三角形,继而求得∠BOC的度数,又由圆周角定理,即可求得∠BAC的度数.此题考查了等边三角形的性质与圆周角定理.此题比较简单,注意掌握数形结合思想的应用,注意在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用.7.【答案】D【解析】解:∵一元二次方程kx2-2x-1=0有两个不相等的实数根,∴△=b2-4ac=4+4k>0,且k≠0,解得:k>-1且k≠0.故选:D.根据方程有两个不相等的实数根,得到根的判别式的值大于0列出不等式,且二次项系数不为0,即可求出k的范围.此题考查了一元二次方程根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.8.【答案】A【解析】解:由“上加下减”的原则可知,将抛物线y=3x2向上平移3个单位所得抛物线的解析式为:y=3x2+3;由“左加右减”的原则可知,将抛物线y=3x2+3向左平移2个单位所得抛物线的解析式为:y=3(x+2)2+3.故选A.直接根据“上加下减,左加右减”的原则进行解答即可.本题考查的是二次函数的图象与几何变换,熟知二次函数图象平移的法则是解答此题的关键.9.【答案】D【解析】解:∵袋中装有除颜色外完全相同的a个白球、b个红球、c个蓝球,∴任意摸一个球是蓝球的概率是:.故选:D.直接利用概率公式计算得出答案.此题主要考查了概率公式的应用,正确应用公式是解题关键.10.【答案】C【解析】解:当a<0时,二次函数顶点在y轴负半轴,一次函数经过一、二、四象限;当a>0时,二次函数顶点在y轴正半轴,一次函数经过一、二、三象限.故选:C.根据一次函数和二次函数的解析式可得一次函数与y轴的交点为(0,1),二次函数的开口向上,据此判断二次函数的图象.此题主要考查了二次函数及一次函数的图象的性质,用到的知识点为:二次函数和一次函数的常数项是图象与y轴交点的纵坐标.11.【答案】3【解析】解:∵从半径为5cm的圆形纸片上剪去圆周的一个扇形,∴留下的扇形的弧长==8π,根据底面圆的周长等于扇形弧长,∴圆锥的底面半径r==4cm,∴圆锥的高为=3cm故答案为:3.因为圆锥的高,底面半径,母线构成直角三角形,则留下的扇形的弧长==8π,所以圆锥的底面半径r==4cm,利用勾股定理求圆锥的高即可;此题主要考查了主要考查了圆锥的性质,要知道(1)圆锥的高,底面半径,母线构成直角三角形,(2)此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.解此类题目要根据所构成的直角三角形的勾股定理作为等量关系求解.12.【答案】25π4【解析】解:∵∠C=90°,AC=8,BC=6,∴AB=10,∴扇形的半径为5,∴阴影部分的面积==π.故答案为:π.根据题意,可得阴影部分的面积等于圆心角为90°的扇形的面积.解决本题的关键是把两个阴影部分的面积整理为一个规则扇形的面积.13.【答案】0.14【解析】解:由列表可知共有36种等可能的结果数,其中点数之和等于6占5种,所以点数之和等于6概率=≈0.14,故答案为:0.14.利用列表展示所有36种等可能的结果数,其中点数相同占5种,然后根据概率的概念计算即可.本题考查了利用列表法求概率的方法:先利用列表法图展示所有等可能的结果数n,再找出其中某事件所占有的结果数m,然后根据概率的概念计算出这个事件的概率.14.【答案】3或-3【解析】解:∵x1,x2是一元二次方程x2-5x+6=0的两个根,∴(x-3)(x-2)=0,解得:x=3或2,①当x1=3,x2=2时,x1﹡x2=32-3×2=3;②当x1=2,x2=3时,x1﹡x2=3×2-32=-3.故答案为:3或-3.首先解方程x2-5x+6=0,再根据a﹡b=,求出x1﹡x2的值即可.此题主要考查了因式分解法解一元二次方程以及利用材料分析解决新问题,根据已知进行分类讨论是解题关键.15.【答案】解:(3x-1)2-(x-1)2=0,(3x-1+x-1)(3x-1-x+1)=0,2x(4x-2)=0,2x=0或4x-2=0,.解得:x1=0,x2=12【解析】首先移项,把右边化为零,然后再利用平方差分解因式可得(3x-1+x-1)(3x-1-x+1)=0,然后整理可得2x(4x-2)=0,进而可得一元一次方程2x=0或4x-2=0,再解即可.此题主要考查了因式分解法解一元二次方程,关键是掌握因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.16.【答案】证明:连接BE∵E是△ABC的内心∴∠BAD=∠CAD∠ABE=∠CBE又∵∠CBD=∠CAD∴∠BED=∠BAD+∠ABE=∠CAD+∠CBE∠DBE=∠CBD+∠CBE=∠CAD+∠CBE∴∠BED=∠DBE∴△BDE是等腰三角形∴DE=DB【解析】连接BE,由三角形的内心得出∠BAD=∠CAD,∠ABE=∠CBE,再由三角形的外角性质和圆周角定理得出∠DEB=∠DBE,即可得出结论.本题考查了三角形的外心与内心、等腰三角形的判定等知识;本题综合性强,根据圆周角定理得出角的数量关系是解题的关键.17.【答案】解:(1)y=w•x=(10x+90)x=10x2+90x(x为正整数),(2)设前x个月的利润和等于1620万元,10x2+90x=1620即:x 2+9x -162=0得x =−9± 7292x 1=9,x 2=-18(舍去),答:前9个月的利润和等于1620万元.【解析】(1)利用“总利润=月利润的平均值×月数”列出函数关系式即可;(2)根据总利润等于1620列出方程求解即可.本题考查了一元二次方程的应用及根据实际问题列出二次函数关系式的知识,解题的关键是弄清总利润与月平均利润和月数之间的关系.总共有种等可能结果.(2)∵张华胜出的可能性有3种,∴张华胜出的概率为39=13.【解析】(1)采用树状图法或者列表法解答即可;(2)列举出所有情况,看所求的情况占总情况的多少即可.此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.19.【答案】解:(1)如图所示:(2)如图所示:旋转中心的坐标为:(32,-1);(3)∵PO ∥AC ,∴A 2O A 2C =POAC , ∴46=PO3,∴OP =2,∴点P的坐标为(-2,0).【解析】(1)延长AC到A1,使得AC=A1C,延长BC到B1,使得BC=B1C,利用点A 的对应点A2的坐标为(0,-4),得出图象平移单位,即可得出△A2B2C2;(2)根据△△A1B1C绕某一点旋转可以得到△A2B2C2进而得出,旋转中心即可;(3)根据B点关于x轴对称点为A2,连接AA2,交x轴于点P,再利用相似三角形的性质求出P点坐标即可.此题主要考查了图形的平移与旋转和相似三角形的性质等知识,利用轴对称求最小值问题是考试重点,同学们应重点掌握.20.【答案】解:(1)∵原方程有两个实数根,∴[-(2k+1)]2-4(k2+2k)≥0,∴4k2+4k+1-4k2-8k≥0∴1-4k≥0,∴k≤1.4∴当k≤1时,原方程有两个实数根.4(2)假设存在实数k使得x1⋅x2−x12−x22≥0成立.∵x1,x2是原方程的两根,∴x1+x2=2k+1,x1⋅x2=k2+2k.由x1⋅x2−x12−x22≥0,得3x1⋅x2−(x1+x2)2≥0.∴3(k2+2k)-(2k+1)2≥0,整理得:-(k-1)2≥0,∴只有当k=1时,上式才能成立.,又∵由(1)知k≤14∴不存在实数k使得x1⋅x2−x12−x22≥0成立.【解析】(1)根据已知一元二次方程的根的情况,得到根的判别式△≥0,据此列出关于k的不等式[-(2k+1)]2-4(k2+2k)≥0,通过解该不等式即可求得k的取值范围;(2)假设存在实数k使得≥0成立.利用根与系数的关系可以求得,然后利用完全平方公式可以把已知不等式转化为含有两根之和、两根之积的形式≥0,通过解不等式可以求得k的值.本题综合考查了根的判别式和根与系数的关系,在解不等式时一定要注意数值的正负与不等号的变化关系.21.【答案】(1)证明:连接OD,∵BC是⊙O的切线,∴∠ABC=90°,∵CD=CB,∴∠CBD=∠CDB,∵OB=OD,∴∠OBD=∠ODB,∴∠ODC=∠ABC=90°,即OD⊥CD,∵点D在⊙O上,∴CD为⊙O的切线;(2)解:在Rt△OBF中,∵∠ABD=30°,OF=1,∴∠BOF=60°,OB=2,BF=3,∵OF⊥BD,∴BD=2BF=23,∠BOD=2∠BOF=120°,∴S阴影=S扇形OBD-S△BOD=120π×22360-12×23×1=43π-3.【解析】(1)首先连接OD,由BC是⊙O的切线,可得∠ABC=90°,又由CD=CB,OB=OD,易证得∠ODC=∠ABC=90°,即可证得CD为⊙O的切线;(2)在Rt△OBF中,∠ABD=30°,OF=1,可求得BD的长,∠BOD的度数,又由S阴影=S扇形OBD-S△BOD,即可求得答案.此题考查了切线的判定与性质、垂径定理以及扇形的面积.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.22.【答案】解:(1)∵y=−12x+2分别交y轴、x轴于A、B两点,∴A、B点的坐标为:A(0,2),B(4,0),将x=0,y=2代入y=-x2+bx+c得c=2,将x=4,y=0代入y=-x2+bx+c得0=-16+4b+2,解得b=72,∴抛物线解析式为:y=-x2+72x+2;(2)如答图1,设MN交x轴于点E,则E(t,0),BE=4-t.∵tan∠ABO=OAOB =24=12,∴ME=BE•tan∠ABO=(4-t)×12=2-12t.又N点在抛物线上,且x N=t,∴y N=-t2+72t+2,∴MN=y N-ME=-t2+72t+2-(2-12t)=-t2+4t,∴当t=2时,MN有最大值4;(3)由(2)可知,A(0,2),M(2,1),N(2,5).以A、M、N、D为顶点作平行四边形,D点的可能位置有三种情形,如答图2所示.(i)当D在y轴上时,设D的坐标为(0,a)由AD=MN,得|a-2|=4,解得a1=6,a2=-2,从而D为(0,6)或D(0,-2),(ii)当D不在y轴上时,由图可知D3为D1N与D2M的交点,易得D1N的方程为y=−12x+6,D2M的方程为y=32x-2,由两方程联立解得D为(4,4)故所求的D点坐标为(0,6),(0,-2)或(4,4).【解析】(1)首先求得A、B点的坐标,然后利用待定系数法求抛物线的解析式;(2)本问要点是求得线段MN的表达式,这个表达式是关于t的二次函数,利用二次函数的极值求线段MN的最大值;(3)本问要点是明确D点的可能位置有三种情形,如答图2所示,不要遗漏.其中D1、D2在y轴上,利用线段数量关系容易求得坐标;D3点在第一象限,是直线D1N和D2M的交点,利用直线解析式求得交点坐标.本题是二次函数综合题,考查了抛物线上点的坐标特征、二次函数的极值、待定系数法求函数解析式、平行四边形等重要知识点.难点在于第(3)问,点D的可能位置有三种情形,解题时容易遗漏而导致失分.作为中考压轴题,本题有一定的难度,解题时比较容易下手,区分度稍低.。
九年级数学上期末试题及答案

九年级数学上期末试题及答案2017九年级数学上期末试题及答案2017九年级数学期末考试就要到了,们要对学过的数学知识一定要多加练习,这样才能进步。
以下是店铺为你整理的2017九年级数学上期末试题,希望对大家有帮助!2017九年级数学上期末试题一、选择题(每小题3分,共12分)1.我国经济快速发展,轿车进入百姓家庭,小明同学在街头观察出下列四种汽车标志,其中是中心对称图形的是( )A. B. C. D.2.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为( )A. B. C. D.3.如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,那么cosA的值等于( )A. B. C. D.4.如图,CD是⊙O的直径,弦AB⊥CD于E,连接BC、BD,下列结论中不一定正确的是( )A.AE=BEB. =C.OE=DED.∠DBC=90°5.将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A.y=3(x+2)2+3B.y=3(x﹣2)2+3C.y=3(x+2)2﹣3D.y=3(x﹣2)2﹣36.若ab>0,则一次函数y=ax+b与反比例函数y= 在同一坐标系数中的大致图象是( )A. B. C. D.二、填空题(每小题3分,共24分)7.方程x2=2x的根为.8.已知 =3,则 = .9.抛物线y=(x﹣1)2﹣3的顶点坐标是.10.如图,铁道路口的栏杆短臂长1m,长臂长16m,当短臂端点下降0.5m时,长臂端点升高为.(杆的宽度忽略不计)11.如图,在⊙O中,AB为直径,BC为弦,CD为切线,连接OC.若∠BCD=50°,则∠AOC的度数为.12.某校去年投资2万元购买实验器材,预计今明2年的投资总额为8万元.若该校这两年购买的实验器材的投资年平均增长率为x,则可列方程为.13.如图,在平面直角坐标系中,点A是函数y= (k<0,x<0)图象上的点,过点A与y轴垂直的直线交y轴于点B,点C、D在x轴上,且BC∥AD.若四边形ABCD的面积为3,则k值为.14.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①b2>4ac;②2a+b=0;③a+b+c=0;④若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1三、解答题(一)(每小题5分,共20分)15.计算:(π﹣3.14)0﹣| sin60°﹣4|+( )﹣1.16.解方程:x2﹣1=2(x+1).17.先化简:•(x ),然后x在﹣1,0,1,2四个数中选一个你认为合适的数代入求值.18.某学校为了了解九年级学生“一份中内跳绳次数”的情况,随机选取了3名女生和2名男生,从这5名学生中,选取2名同时跳绳,请你用列表或画树状图求恰好选中一男一女的概率是多少?四、解答题(二)(每小题7分,共28分)19.△ABC的顶点坐标为A(﹣2,3)、B(﹣3,1)、C(﹣1,2),以坐标原点O为旋转中心,顺时针旋转90°,得到△A′B′C′,点B′、C′分别是点B、C的对应点.(1)求过点B′的反比例函数解析式;(2)求线段CC′的长.20.如图,在▱ABCD中,点E在边BC上,点F在边AD的延长线上,且DF=BE=4,连接EF交CD于G.若 = ,求AD的长.21.如图,在平面直径坐标系中,反比例函数y= (x>0)的图象上有一点A(m,4),过点A作AB⊥x轴于点B,将点B向右平移2个单位长度得到点C,过点C作y轴的平行线交反比例函数的图象于点D,CD=(1)点D的横坐标为(用含m的式子表示);(2)求反比例函数的解析式.22.如图,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南安边点A处,测得河的北岸边点B在其北偏东45°方向,然后向西走60m到达C点,测得点B在点C的北偏东60°方向.回答下列问题:(1)∠CBA的度数为.(2)求出这段河的宽(结果精确到1m,备用数据≈1.41,≈1.73.五、解答题(三)(每小题10分,共20分)23.如图,AB是⊙O的直径,点C是⊙O上一点,连接AC,∠MAC=∠CAB,作CD⊥AM,垂足为D.(1)求证:CD是⊙O的切线;(2)若∠ACD=30°,AD=4,求图中阴影部分的面积.24.课本中有一个例题:有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?这个例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05m2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:(1)若AB为1m,求此时窗户的透光面积?(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.六、解答题(四)(每小题10分,共20分)25.正方形OABC的边长为4,对角线相交于点P,抛物线L经过O、P、A三点,点E是正方形内的抛物线上的动点.(1)建立适当的平面直角坐标系,①直接写出O、P、A三点坐标;②求抛物线L的解析式;(2)求△OAE与△OCE面积之和的最大值.26.已知:点P是平行四边形ABCD对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为E、F,点O为AC的中点.(1)当点P与点O重合时如图1,求证:OE=OF(2)直线BP绕点B逆时针方向旋转,当点P在对角线AC上时,且∠OFE=30°时,如图2,猜想线段CF、AE、OE之间有的数量关系?并给予证明.(3)当点P在对角线CA的延长线上时,且∠OFE=30°时,如图3,猜想线段CF、AE、OE之间有怎样的数量关系?直接写出结论即可. 2017九年级数学上期末试题答案与解析一、选择题(每小题3分,共12分)1.我国经济快速发展,轿车进入百姓家庭,小明同学在街头观察出下列四种汽车标志,其中是中心对称图形的是( )A. B. C. D.【考点】中心对称图形.【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选A.2.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为( )A. B. C. D.【考点】概率公式.【分析】直接得出偶数的个数,再利用概率公式求出答案.【解答】解:∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,∴朝上一面的数字是偶数的概率为: = .故选:C.3.如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,那么cosA的值等于( )A. B. C. D.【考点】锐角三角函数的定义;勾股定理.【分析】首先运用勾股定理求出斜边的长度,再利用锐角三角函数的定义求解.【解答】解:∵在Rt△ABC中,∠C=90°,AC=4,BC=3,∴AB= .∴cosA= ,故选:D.4.如图,CD是⊙O的直径,弦AB⊥CD于E,连接BC、BD,下列结论中不一定正确的是( )A.AE=BEB. =C.OE=DED.∠DBC=90°【考点】垂径定理;圆周角定理.【分析】根据垂径定理及圆周角定理对各选项进行逐一分析即可.【解答】解:∵CD是⊙O的直径,弦AB⊥CD于E,∴AE=BE, = ,故A、B正确;∵CD是⊙O的直径,∴∠DBC=90°,故D正确.故选C.5.将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A.y=3(x+2)2+3B.y=3(x﹣2)2+3C.y=3(x+2)2﹣3D.y=3(x﹣2)2﹣3【考点】二次函数图象与几何变换.【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,将抛物线y=3x2向上平移3个单位所得抛物线的解析式为:y=3x2+3;由“左加右减”的原则可知,将抛物线y=3x2+3向左平移2个单位所得抛物线的解析式为:y=3(x+2)2+3.故选A.6.若ab>0,则一次函数y=ax+b与反比例函数y= 在同一坐标系数中的大致图象是( )A. B. C. D.【考点】反比例函数的图象;一次函数的图象.【分析】根据ab>0,可得a、b同号,结合一次函数及反比例函数的特点进行判断即可.【解答】解:A、根据一次函数可判断a>0,b>0,根据反比例函数可判断ab>0,故符合题意,本选项正确;B、根据一次函数可判断a<0,b<0,根据反比例函数可判断ab<0,故不符合题意,本选项错误;C、根据一次函数可判断a<0,b>0,根据反比例函数可判断ab>0,故不符合题意,本选项错误;D、根据一次函数可判断a>0,b>0,根据反比例函数可判断ab<0,故不符合题意,本选项错误;故选A.二、填空题(每小题3分,共24分)7.方程x2=2x的根为x1=0,x2=2 .【考点】解一元二次方程﹣因式分解法.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x2=2x,x2﹣2x=0,x(x﹣2)=0,x=0,或x﹣2=0,x1=0,x2=2,故答案为:x1=0,x2=2.8.已知 =3,则 = 2 .【考点】比例的性质.【分析】根据比例的合比性质即可求解.【解答】解:∵ =3,∴ =3﹣1=2.故答案为:2.9.抛物线y=(x﹣1)2﹣3的顶点坐标是(1,﹣3) .【考点】二次函数的性质.【分析】根据抛物线y=a(x﹣h)2+k的顶点坐标是(h,k)直接写出即可.【解答】解:抛物线y=(x﹣1)2﹣3的顶点坐标是(1,﹣3).故答案为(1,﹣3).10.如图,铁道路口的栏杆短臂长1m,长臂长16m,当短臂端点下降0.5m时,长臂端点升高为8m .(杆的宽度忽略不计) 【考点】相似三角形的应用.【分析】由题意证△ABO∽△CDO,可得,即 = ,解之可得.【解答】解:如图,由题意知∠BAO=∠C=90°,∵∠AOB=∠COD,∴△ABO∽△CDO,∴ ,即 = ,解得:CD=8,故答案为:8m.11.如图,在⊙O中,AB为直径,BC为弦,CD为切线,连接OC.若∠BCD=50°,则∠AOC的度数为80°.【考点】切线的性质.【分析】根据切线的性质得出∠OCD=90°,进而得出∠OCB=40°,再利用圆心角等于圆周角的2倍解答即可.【解答】解:∵在⊙O中,AB为直径,BC为弦,CD为切线,∴∠OCD=90°,∵∠BCD=50°,∴∠OCB=40°,∴∠AOC=80°.故答案为:80°.12.某校去年投资2万元购买实验器材,预计今明2年的投资总额为8万元.若该校这两年购买的实验器材的投资年平均增长率为x,则可列方程为2(1+x)+2(1+x)2=8 .【考点】由实际问题抽象出一元二次方程.【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果该校这两年购买的实验器材的投资年平均增长率为x,根据题意可得出的方程.【解答】解:设该校这两年购买的实验器材的投资年平均增长率为x,今年的投资金额为:2(1+x);明年的投资金额为:2(1+x)2;所以根据题意可得出的方程:2(1+x)+2(1+x)2=8.故答案为:2(1+x)+2(1+x)2=8.13.如图,在平面直角坐标系中,点A是函数y= (k<0,x<0)图象上的点,过点A与y轴垂直的直线交y轴于点B,点C、D在x轴上,且BC∥AD.若四边形ABCD的面积为3,则k值为﹣3 .【考点】反比例函数系数k的几何意义.【分析】根据已知条件得到四边形ABCD是平行四边形,于是得到四边形AEOB的面积=AB•OE,由于S平行四边形ABCD=AB•CD=3,得到四边形AEOB的面积=3,即可得到结论.【解答】解:∵AB⊥y轴,∴AB∥CD,∵BC∥AD,∴四边形ABCD是平行四边形,∴四边形AEOB的面积=AB•OE,∵S平行四边形ABCD=AB•CD=3,∴四边形AEOB的面积=3,∴|k|=3,∵<0,∴k=﹣3,故答案为:﹣3.14.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①b2>4ac;②2a+b=0;③a+b+c=0;④若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1【考点】二次函数图象与系数的关系.【分析】①根据抛物线与x轴交点个数可判断;②根据抛物线对称轴可判断;③根据抛物线与x轴的另一个交点坐标可判断;④根据B、C 两点到对称轴的距离,可判断.【解答】解:由函数图象可知抛物线与x轴有2个交点,∴b2﹣4ac>0即b2>4ac,故①正确;∵对称轴为直线x=﹣1,∴﹣ =﹣1,即2a﹣b=0,故②错误;∵抛物线与x轴的交点A坐标为(﹣3,0)且对称轴为x=﹣1,∴抛物线与x轴的.另一交点为(1,0),∴将(1,0)代入解析式可得,a+b+c=0,故③正确;∵a<0,∴开口向下,∵|﹣ +1|= ,|﹣ +1= ,∴y1综上,正确的结论是:①③④,故答案为①③④.三、解答题(一)(每小题5分,共20分)15.计算:(π﹣3.14)0﹣| sin60°﹣4|+( )﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】本题涉及零指数幂、二次根式化简、绝对值、特殊角的三角函数值四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解::(π﹣3.14)0﹣| sin60°﹣4|+( )﹣1=1﹣|2 × ﹣4|+2=1﹣|﹣1|+2=2.16.解方程:x2﹣1=2(x+1).【考点】解一元二次方程﹣因式分解法.【分析】首先把x2﹣1化为(x+1)(x﹣1),然后提取公因式(x+1),进而求出方程的解.【解答】解:∵x2﹣1=2(x+1),∴(x+1)(x﹣1)=2(x+1),∴(x+1)(x﹣3)=0,∴x1=﹣1,x2=3.17.先化简:•(x ),然后x在﹣1,0,1,2四个数中选一个你认为合适的数代入求值.【考点】分式的化简求值.【分析】利用分解因式、完全平方公式以及通分法化简原分式,再分析给定的数据中使原分式有意义的x的值,将其代入化简后的算式中即可得出结论.【解答】解:原式= • • ,= • ,=x+1.∵在﹣1,0,1,2四个数中,使原式有意义的值只有2,∴当x=2时,原式=2+1=3.18.某学校为了了解九年级学生“一份中内跳绳次数”的情况,随机选取了3名女生和2名男生,从这5名学生中,选取2名同时跳绳,请你用列表或画树状图求恰好选中一男一女的概率是多少?【考点】列表法与树状图法.【分析】画树状图展示所有12种等可能的结果数,再找出选中一男一女的结果数,然后根据概率公式求解.【解答】解:画树状图为:共12种等可能的结果数,其中选中一男一女的结果数为12,所以恰好选中一男一女的概率= = .四、解答题(二)(每小题7分,共28分)19.△ABC的顶点坐标为A(﹣2,3)、B(﹣3,1)、C(﹣1,2),以坐标原点O为旋转中心,顺时针旋转90°,得到△A′B′C′,点B′、C′分别是点B、C的对应点.(1)求过点B′的反比例函数解析式;(2)求线段CC′的长.【考点】待定系数法求反比例函数解析式;坐标与图形变化﹣旋转.【分析】(1)据图形旋转方向以及旋转中心和旋转角度得出对应点,根据待定系数法,即可求出解.(2)根据勾股定理求得OC,然后根据旋转的旋转求得OC′,最后根据勾股定理即可求得.【解答】解:(1)如图所示:由图知B点的坐标为(﹣3,1),根据旋转中心O,旋转方向顺时针,旋转角度90°,点B的对应点B′的坐标为(1,3),设过点B′的反比例函数解析式为y= ,∴k=3×1=3,∴过点B′的反比例函数解析式为y= .(2)∵C(﹣1,2),∴OC= = ,∵△ABC以坐标原点O为旋转中心,顺时针旋转90°,∴OC′=OC= ,∴CC′= = .20.如图,在▱ABCD中,点E在边BC上,点F在边AD的延长线上,且DF=BE=4,连接EF交CD于G.若 = ,求AD的长.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据相似三角形的判定与性质,可得答案.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵DF∥EC,∴△DFG∽CEG,∴ = = ,∴CE=6,∴AD=BC=BE+CE=10.21.如图,在平面直径坐标系中,反比例函数y= (x>0)的图象上有一点A(m,4),过点A作AB⊥x轴于点B,将点B向右平移2个单位长度得到点C,过点C作y轴的平行线交反比例函数的图象于点D,CD=(1)点D的横坐标为m+2 (用含m的式子表示);(2)求反比例函数的解析式.【考点】待定系数法求反比例函数解析式;反比例函数图象上点的坐标特征;坐标与图形变化﹣平移.【分析】(1)由点A(m,4),过点A作AB⊥x轴于点B,将点B向右平移2个单位长度得到点C,可求得点C的坐标,又由过点C作y 轴的平行线交反比例函数的图象于点D,CD= ,即可表示出点D的横坐标;(2)由点D的坐标为:(m+2,),点A(m,4),即可得方程4m= (m+2),继而求得答案.【解答】解:(1)∵A(m,4),AB⊥x轴于点B,∴B的坐标为(m,0),∵将点B向右平移2个单位长度得到点C,∴点C的坐标为:(m+2,0),∵CD∥y轴,∴点D的横坐标为:m+2;故答案为:m+2;(2)∵CD∥y轴,CD= ,∴点D的坐标为:(m+2, ),∵A,D在反比例函数y= (x>0)的图象上,∴4m= (m+2),解得:m=1,∴点A的坐标为(1,4),∴k=4m=4,∴反比例函数的解析式为:y= .22.如图,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南安边点A处,测得河的北岸边点B在其北偏东45°方向,然后向西走60m到达C点,测得点B在点C的北偏东60°方向.回答下列问题:(1)∠CBA的度数为15°.(2)求出这段河的宽(结果精确到1m,备用数据≈1.41,≈1.73.【考点】解直角三角形的应用﹣方向角问题.【分析】(1)根据三角形的外角的性质、结合题意计算即可;(2)作BD⊥CA交CA的延长线于D,设BD=xm,根据正切的定义用x表示出CD、AD,根据题意列出方程,解方程即可.【解答】解:(1)由题意得,∠BAD=45°,∠BCA=30°,∴∠CBA=∠BAD﹣∠BCA=15°.故答案为15°;(2)作BD⊥CA交CA的延长线于D,设BD=xm,∵∠BCA=30°,∴CD= = x,∵∠BAD=45°,∴AD=BD=x,∵CD﹣AD=AC=60,∴ x﹣x=60,解得x=30( +1)≈82,答:这段河的宽约为82m.五、解答题(三)(每小题10分,共20分)23.如图,AB是⊙O的直径,点C是⊙O上一点,连接AC,∠MAC=∠CAB,作CD⊥AM,垂足为D.(1)求证:CD是⊙O的切线;(2)若∠ACD=30°,AD=4,求图中阴影部分的面积.【考点】切线的判定;扇形面积的计算.【分析】(1)先证明OC∥AM,由CD⊥AM,推出OC⊥CD即可解决问题.(2)根据S阴=S△ACD﹣(S扇形OAC﹣S△AOC)计算即可.【解答】解:(1)连接OC.∵OA=OC.∴∠OAC=∠OCA,∵∠MAC=∠OAC,∴∠MAC=∠OCA,∴OC∥AM,∵CD⊥AM,∴OC⊥CD,∴CD是⊙O的切线.(2)在RT△ACD中,∵∠ACD=30°,AD=4,∠ADC=90°,∴AC=2AD=8,CD= AD=4 ,∵∠MAC=∠OAC=60°,OA=OC,∴△AOC是等边三角形,∴S阴=S△ACD﹣(S扇形OAC﹣S△AOC)= ×4×4 ﹣( ﹣×82)=24 ﹣π.24.课本中有一个例题:有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?这个例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05m2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:(1)若AB为1m,求此时窗户的透光面积?(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.【考点】二次函数的应用.【分析】(1)根据矩形和正方形的周长进行解答即可;(2)设AB为xcm,利用二次函数的最值解答即可.【解答】解:(1)由已知可得:AD= ,则S=1× m2,(2)设AB=xm,则AD=3﹣ m,∵ ,∴ ,设窗户面积为S,由已知得:,当x= m时,且x= m在的范围内,,∴与课本中的例题比较,现在窗户透光面积的最大值变大.六、解答题(四)(每小题10分,共20分)25.正方形OABC的边长为4,对角线相交于点P,抛物线L经过O、P、A三点,点E是正方形内的抛物线上的动点.(1)建立适当的平面直角坐标系,①直接写出O、P、A三点坐标;②求抛物线L的解析式;(2)求△OAE与△OCE面积之和的最大值.【考点】二次函数综合题.【分析】(1)以O点为原点,线段OA所在的直线为x轴,线段OC 所在的直线为y轴建立直角坐标系.①根据正方形的边长结合正方形的性质即可得出点O、P、A三点的坐标;②设抛物线L的解析式为y=ax2+bx+c,结合点O、P、A的坐标利用待定系数法即可求出抛物线的解析式;(2)由点E为正方形内的抛物线上的动点,设出点E的坐标,结合三角形的面积公式找出S△OAE+SOCEm的函数解析式,根据二次函数的性质即可得出结论.【解答】解:(1)以O点为原点,线段OA所在的直线为x轴,线段OC所在的直线为y轴建立直角坐标系,如图所示.①∵正方形OABC的边长为4,对角线相交于点P,∴点O的坐标为(0,0),点A的坐标为(4,0),点P的坐标为(2,2).②设抛物线L的解析式为y=ax2+bx+c,∵抛物线L经过O、P、A三点,∴有,解得:,∴抛物线L的解析式为y=﹣ +2x.(2)∵点E是正方形内的抛物线上的动点,∴设点E的坐标为(m,﹣ +2m)(0∴S△OAE+SOCE= OA•yE+ OC•xE=﹣m2+4m+2m=﹣(m﹣3)2+9,∴当m=3时,△OAE与△OCE面积之和最大,最大值为9.26.已知:点P是平行四边形ABCD对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为E、F,点O为AC的中点.(1)当点P与点O重合时如图1,求证:OE=OF(2)直线BP绕点B逆时针方向旋转,当点P在对角线AC上时,且∠OFE=30°时,如图2,猜想线段CF、AE、OE之间有怎样的数量关系?并给予证明.(3)当点P在对角线CA的延长线上时,且∠OFE=30°时,如图3,猜想线段CF、AE、OE之间有怎样的数量关系?直接写出结论即可.【考点】四边形综合题.【分析】(1)由△AOE≌△COF即可得出结论.(2)图2中的结论为:CF=OE+AE,延长EO交CF于点G,只要证明△EOA≌△GOC,△OFG是等边三角形,即可解决问题.(3)图3中的结论为:CF=OE﹣AE,延长EO交FC的延长线于点G,证明方法类似.【解答】解:(1)∵AE⊥PB,CF⊥BP,∴∠AEO=∠CFO=90°,在△AEO和△CFO中,,∴△AOE≌△COF(AAS),∴OE=OF.(2)图2中的结论为:CF=OE+AE.图3中的结论为:CF=OE﹣AE.选图2中的结论证明如下:延长EO交CF于点G,∵AE⊥BP,CF⊥BP,∴AE∥CF,∴∠EAO=∠GCO,在△EOA和△GOC中,,∴△EOA≌△GOC(ASA),∴EO=GO,AE=CG,在Rt△EFG中,∵EO=OG,∴OE=OF=GO,∵∠OFE=30°,∴∠OFG=90°﹣30°=60°,∴△OFG是等边三角形,∴OF=GF,∵OE=OF,∴OE=FG,∵CF=FG+CG,∴CF=OE+AE.选图3的结论证明如下:延长EO交FC的延长线于点G,∵AE⊥BP,CF⊥BP,∴AE∥CF,∴∠AEO=∠G,在△AOE和△COG中,,∴△AOE≌△COG(AAS),∴OE=OG,AE=CG,在R t△EFG中,∵OE=OG,∴OE=OF=OG,∵∠OFE=30°,∴∠OFG=90°﹣30°=60°,∴△OFG是等边三角形,∴OF=FG,∵OE=OF,∴OE=FG,∵CF=FG﹣CG,∴CF=OE﹣AE.。
2017年初三数学上期末试卷

2017年初三数学上期末试卷加油!脚踏实地,心无旁骛,珍惜分分秒秒。
紧跟老师,夯实基础。
辛苦一月,收益一生,相信自己,你是最棒的。
祝你九年级数学期末考试取得好成绩,期待你的成功!小编整理了关于2017年初三数学上期末试卷,希望对大家有帮助!2017年初三数学上期末试题一、选择题(每小题3分,共21分)1.一元二次方程x(x﹣1)=0的解是( )A.x=0B.x=1C.x=0或x=﹣1D.x=0或x=12.如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为( )A.30°B.45°C.90°D.135°3.如图,在半径为5的⊙O中,如果弦AB的长为8,那么它的弦心距OC等于( )A.2B.3C.4D.64.已知反比例函数y= ,下列结论不正确的是( )A.图象经过点(1,1)B.图象在第一、三象限C.当x>1时,0D.当x<0时,y随着x的增大而增大5.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是 .如果再往盒中放进6颗黑色棋子,取得白色棋子的概率是,则原来盒中有白色棋子( )A.8颗B.6颗C.4颗D.2颗6.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD 于点F,则EF:FC等于( )A.3:2B.3:1C.1:1D.1:27.二次函数y=x2+bx的图象如图,对称轴为直线x=1,若关于x 的一元二次方程x2+bx﹣t=0(t为实数)在﹣1A.t≥﹣1B.﹣1≤t<3C.﹣1≤t<8D.3二、填空题(每小题3分,共24分)8.已知关于x的方程x2+mx﹣6=0的一个根为2,则m= ,另一个根是.9.张华同学的身高为1.6米,某一时刻他在阳光下的影长为2米,与他邻近的一棵树的影长为6米,则这棵树的高为米.10.如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°.连接AC,则∠A的度数是°.11.如图,已知二次函数y=x2+bx+c的图象经过点(﹣1,0),(1,﹣2),当y随x的增大而增大时,x的取值范围是.12.如图,已知正方形ABCD的边长为12cm,E为CD边上一点,DE=5cm.以点A为中心,将△ADE按顺时针方向旋转得△ABF,则点E 所经过的路径长为cm.13.如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为.14.从3,0,﹣1,﹣2,﹣3这五个数中,随机抽取一个数,作为函数y=(5﹣m2)x和关于x的方程(m+1)x2+mx+1=0中m的值,恰好使所得函数的图象经过第一、三象限,且方程有实数根的概率为.15.如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x﹣m)2+n的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为﹣3,则点D的横坐标最大值为.三、解答下列各题(共75分)16.解方程:(1)x2﹣4x+4=5(2)y2+3y+1=0.17.如图,AB,AC分别是半⊙O的直径和弦,OD⊥AC于点D,过点A作半⊙O的切线AP,AP与OD的延长线交于点P.连接PC并延长与AB的延长线交于点F.(1)求证:PC是半⊙O的切线;(2)若∠CAB=30°,AB=10,求线段BF的长.18.在平面直角坐标系中,△ABC的顶点坐标是A(﹣7,1),B(1,1),C(1,7).线段DE的端点坐标是D(7,﹣1),E(﹣1,﹣7).(1)试说明如何平移线段AC,使其与线段ED重合;(2)将△ABC绕坐标原点O逆时针旋转,使AC的对应边为DE,请直接写出点B的对应点F的坐标;(3)画出(2)中的△DEF,并和△ABC同时绕坐标原点O逆时针旋转90°,画出旋转后的图形.19.如图,在平面直角坐标系中,边长为2的正方形ABCD关于y 轴对称,边AD在x轴上,点B在第四象限,直线BD与反比例函数y= 的图象交于点B、E.(1)求反比例函数及直线BD的解析式;(2)求点E的坐标.20.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种可能性大小相同,现有两辆汽车经过这个十字路口.(1)试用树状图或列表法中的一种列举出这辆汽车行驶方向所有可能的结果;(2)求至少有一辆汽车向左转的概率.21.如图,AB是⊙O的直径,BC是⊙O的切线,D是⊙O上的一点,且AD∥CO.(1)求证:△ABD≌△OBC;(2)若AB=2,BC= ,求AD的长.22.一个圆形喷水池的中心竖立一根高为2.25m顶端装有喷头的水管,喷头喷出的水柱呈抛物线形.当水柱与池中心的水平距离为1m时,水柱达到最高处,高度为3m.(1)求水柱落地处与池中心的距离;(2)如果要将水柱的最大高度再增加1m,水柱的最高处与池中心的水平距离以及落地处与池中心的距离仍保持不变,那么水管的高度应是多少?23.已知关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1,x2.(1)求k的取值范围;(2)若|x1+x2|=x1x2﹣1,求k的值.24.如图,二次函数y= x2+c的图象经过点D(﹣,),与x轴交于A,B两点.(1)求c的值;(2)如图①,设点C为该二次函数的图象在x轴上方的一点,直线AC将四边形ABCD的面积二等分,试证明线段BD被直线AC平分,并求此时直线AC的函数解析式;(3)设点P,Q为该二次函数的图象在x轴上方的两个动点,试猜想:是否存在这样的点P,Q,使△AQP≌△ABP?如果存在,请举例验证你的猜想;如果不存在,请说明理由(图②供选用).。
2017九年级上学期数学期末试卷(2)

2017九年级上学期数学期末试卷(2)2017九年级上学期数学期末试卷参考答案一、选择题(本大题有12小题,在下面的每小题的四个选项中,有且只有一个符合题意,把符合题意的选项代号填在题后括号内,每小题3分,共36分.)1.若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为( )A.﹣2B.2C.4D.﹣3【考点】根与系数的关系.【分析】根据一元二次方程根与系数的关系,利用两根和,两根积,即可求出a的值和另一根.【解答】解:设一元二次方程的另一根为x1,则根据一元二次方程根与系数的关系,得﹣1+x1=﹣3,解得:x1=﹣2.故选A.【点评】本题考查了一元二次方程根与系数的关系,方程ax2+bx+c=0的两根为x1,x2,则x1+x2=﹣,x1•x2= .2.一元二次方程x2﹣8x﹣1=0配方后可变形为( )A.(x+4)2=17B.(x+4)2=15C.(x﹣4)2=17D.(x﹣4)2=15【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程利用配方法求出解即可.【解答】解:方程变形得:x2﹣8x=1,配方得:x2﹣8x+16=17,即(x﹣4)2=17,故选C【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.3.下列几何图形中,既是轴对称图形,又是中心对称图形的是( )A.等腰三角形B.正三角形C.平行四边形D.正方形【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、既是轴对称图形,又是中心对称图形.故正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.已知⊙O的半径为5,直线l是⊙O的切线,则点O到直线l的距离是( )A.2.5B.3C.5D.10【考点】切线的性质.【分析】根据直线与圆的位置关系可直接得到点O到直线l的距离是5.【解答】解:∵直线l与半径为r的⊙O相切,∴点O到直线l的距离等于圆的半径,即点O到直线l的距离为5.故选C.【点评】本题考查了切线的性质以及直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d,直线l和⊙O相交⇔dr.5.如图,△ABC内接于⊙O,∠OBC=42°,则∠A的度数为( )A.84°B.96°C.116°D.132°【考点】圆内接四边形的性质;圆周角定理.【分析】连接OC,在优弧上取点D,连接BD、CD,根据等腰三角形的性质和三角形内角和定理求出∠BOC,根据圆周角定理求出∠BDC,根据圆内接四边形的性质计算即可.【解答】解:连接OC,在优弧上取点D,连接BD、CD,∵OB=OC,∴∠OCB=∠OBC=42°,∴∠BOC=96°,∴∠BDC= ∠BOC=48°,∴∠A=180°﹣∠BDC=132°,故选:D.【点评】本题考查的是圆周角定理、圆内接四边形的性质,掌握圆内接四边形的对角互补是解题的关键.6.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为( )A.1B.2C.3D.4【考点】平行线分线段成比例.【分析】根据平行线分线段成比例可得,代入计算即可解答.【解答】解:∵DE∥BC,∴ ,即,解得:EC=2,故选:B.【点评】本题主要考查平行线分线段成比例,掌握平行线分线段所得线段对应成比例是解题的关键.7.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是( )A.∠ABP=∠CB.∠APB=∠ABCC. =D. =【考点】相似三角形的判定.【分析】分别利用相似三角形的判定方法判断得出即可.【解答】解:A、当∠ABP=∠C时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;B、当∠APB=∠ABC时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;C、当 = 时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;D、无法得到△ABP∽△ACB,故此选项正确.故选:D.【点评】此题主要考查了相似三角形的判定,正确把握判定方法是解题关键.8.一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是( )A.至少有1个球是黑球B.至少有1个球是白球C.至少有2个球是黑球D.至少有2个球是白球【考点】随机事件.【分析】由于只有2个白球,则从中任意摸出3个球中至少有1个球是黑球,于是根据必然事件的定义可判断A选项正确.【解答】解:一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,至少有1个球是黑球是必然事件;至少有1个球是白球、至少有2个球是黑球和至少有2个球是白球都是随机事件.故选A.【点评】本题考查了随机事件:在一定条件下,可能发生也可能不发生的事件,称为随机事件.事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,9.若点A(3,﹣4)、B(﹣2,m)在同一个反比例函数的图象上,则m的值为( )A.6B.﹣6C.12D.﹣12【考点】反比例函数图象上点的坐标特征.【分析】反比例函数的解析式为y= ,把A(3,﹣4)代入求出k=﹣12,得出解析式,把B的坐标代入解析式即可.【解答】解:设反比例函数的解析式为y= ,把A(3,﹣4)代入得:k=﹣12,即y=﹣,把B(﹣2,m)代入得:m=﹣ =6,故选A.【点评】本题考查了反比例函数图象上点的坐标特征的应用,解此题的关键是求出反比例函数的解析式,难度适中.10.如图,已知关于x的函数y=k(x﹣1)和y= (k≠0),它们在同一坐标系内的图象大致是( )A. B. C. D.【考点】反比例函数的图象;一次函数的图象.【分析】首先根据反比例函数图象所经过的象限判断出k的符号;然后由k的符号判定一次函数图象所经过的象限,图象一致的选项即为正确选项.【解答】解:A、反比例函数y= (k≠0)的图象经过第一、三象限,则k>0.所以一次函数y=kx﹣k的图象经过第一、三象限,且与y轴交于负半轴.故本选项错误;B、反比例函数y= (k≠0)的图象经过第二、四象限,则k<0.所以一次函数y=kx﹣k的图象经过第二、四象限,且与y轴交于正半轴.故本选项正确;C、反比例函数y= (k≠0)的图象经过第一、三象限,则k>0.所以一次函数y=kx﹣k的图象经过第一、三象限,且与y轴交于负半轴.故本选项错误;D、反比例函数y= (k≠0)的图象经过第二、四象限,则k<0.所以一次函数y=kx﹣k的图象经过第一、三象限,且与y轴交于正半轴.故本选项错误;故选:B.【点评】本题考查反比例函数与一次函数的图象特点:①反比例函数y= 的图象是双曲线;②当k>0时,它的两个分支分别位于第一、三象限;③当k<0时,它的两个分支分别位于第二、四象限.11.若抛物线y=(x﹣m)2+(m﹣1)的顶点在第四象限,则m的取值范围( )A.00 C.m<1 D.m>1【考点】二次函数的性质.【分析】根据顶点式得出点的坐标,再由第四象限点的符号得出m的取值范围.【解答】解:∵抛物线y=(x﹣m)2+(m﹣1)的顶点(m,m﹣1)在第四象限,∴ ,解得0故选A.【点评】本题考查了二次函数的性质,以及求抛物线的顶点坐标的方法,掌握每个象限内点的符号是解题的关键.12.对于二次函数y=﹣x2+4x,有下列四个结论:①它的对称轴是直线x=2;②设y1=﹣x12+4x1,y2=﹣x22+4x2,则当x2>x1时,有y2>y1;③它的图象与x轴的两个交点是(0,0)和(4,0);④当00.其中正确的结论的个数为( )A.1B.2C.3D.4【考点】二次函数的性质.【分析】利用配方法求出二次函数对称轴,再求出图象与x轴交点坐标,进而结合二次函数性质得出答案.【解答】解:y=﹣x2+4x=﹣(x﹣2)2+4,故①它的对称轴是直线x=2,正确;②∵直线x=2两旁部分增减性不一样,∴设y1=﹣x12+4x1,y2=﹣x22+4x2,则当x2>x1时,有y2>y1或y2③当y=0,则x(﹣x+4)=0,解得:x1=0,x2=4,故它的图象与x轴的两个交点是(0,0)和(4,0),正确;④∵a=﹣1<0,∴抛物线开口向下,∵它的图象与x轴的两个交点是(0,0)和(4,0),∴当00,正确.故选:C.【点评】此题主要考查了二次函数的性质以及一元二次方程的解法,得出抛物线的对称轴和其交点坐标是解题关键.二、填空题(本题有6个小题,每小题3分,计15)13.方程x2=5的解是x=± .【考点】解一元二次方程-直接开平方法.【分析】利用直接开平方法求解即可.【解答】解:x2=5,直接开平方得,x=± ,故答案为x=± .【点评】本题考查了用直接开平方法解一元二次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.14.二次函数y=﹣x2+2x+7的最大值为8 .【考点】二次函数的最值.【专题】计算题.【分析】先利用配方法把一般式配成顶点式,然后根据二次函数的性质求解.【解答】解:原式=﹣x2+2x+7=﹣(x﹣1)2+8,因为抛物线开口向下,所以当x=1时,y有最大值8.故答案为8.【点评】本题考查了二次函数的最值:二次函数y=ax2+bx+c,当a>0时,抛物线在对称轴左侧,y随x的增大而减少;在对称轴右侧,y随x的增大而增大,因为图象有最低点,所以函数有最小值,当x=﹣时,y= ;(2)当a<0时,抛物线在对称轴左侧,y随x的增大而增大;在对称轴右侧,y随x的增大而减少,因为图象有最高点,所以函数有最大值,当x=﹣时,y= .15.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为.【考点】概率公式.【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用黄灯亮的时间除以三种灯亮的总时间,求出抬头看信号灯时,是绿灯的概率为多少即可.【解答】解:抬头看信号灯时,是绿灯的概率为 .故答案为: .【点评】此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:(1)随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.(2)P(必然事件)=1.(3)P(不可能事件)=0.16.如图,已知C,D是以AB为直径的半圆周上的两点,O是圆心,半径OA=2,∠COD=120°,则图中阴影部分的面积等于π.【考点】扇形面积的计算.【分析】图中阴影部分的面积=半圆的面积﹣圆心角是120°的扇形的面积,根据扇形面积的计算公式计算即可求解.【解答】解:图中阴影部分的面积= π×22﹣=2π﹣π= π.答:图中阴影部分的面积等于π.故答案为:π.【点评】本题考查了扇形面积的计算,求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.17.在平面直角坐标系中,O为坐标原点,设点P(1,t)在反比例函数y= 的图象上,过点P作直线l与x轴平行,点Q在直线l上,满足QP=OP.若反比例函数y= 的图象经过点Q,则k= 2+2 或2﹣2 .【考点】反比例函数图象上点的坐标特征;勾股定理.【专题】分类讨论.【分析】把P点代入y= 求得P的坐标,进而求得OP的长,即可求得Q的坐标,从而求得k的值.【解答】解:∵点P(1,t)在反比例函数y= 的图象上,∴t= =2,∴P(1.2),∴OP= = ,∵过点P作直线l与x轴平行,点Q在直线l上,满足QP=OP.∴Q(1+ ,2)或(1﹣,2)∵反比例函数y= 的图象经过点Q,∴2= 或2= ,解得k=2+2 或2﹣2故答案为2+2 或2﹣2 .【点评】本题考查了反比例函数图象上点的坐标特征,勾股定理的应用,求得Q点的坐标是解题的关键.三、解答题:共69分.18.已知:关于x的方程x2﹣2mx+m2﹣1=0.(1)不解方程:判断方程根的情况;(2)若方程有一个根为﹣3,求m的值.【考点】根的判别式;一元二次方程的解.【分析】(1)首先找出方程中a=1,b=﹣2m,c=m2﹣1,然后求△=b2﹣4ac的值即可;(2)把x=﹣3代入方程中列出m的一元二次方程并求出m的值即可.【解答】解:(1)∵关于x的方程x2﹣2mx+m2﹣1=0,∴a=1,b=﹣2m,c=m2﹣1,∴△=b2﹣4ac=(﹣2m)2﹣4×1×(m2﹣1)=4>0,∴方程x2﹣2mx+m2﹣1=0有两个不相等的实数根;(2)∵方程x2﹣2mx+m2﹣1=0的一根为﹣3,∴9+6m+m2﹣1=0,即m2+6m+8=0,∴m=﹣4或﹣2.【点评】本题主要考查了根的判别式以及一元二次方程解的知识,解答本题的关键是熟练掌握根的判别式的意义以及因式分解法解方程的知识.19.某种植物的主干长出若干个数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是111,每个支干长出的小分支是多少?【考点】一元二次方程的应用.【分析】由题意设每个支干长出的小分支的数目是x个,每个小分支又长出x个分支,则又长出x2个分支,则共有x2+x+1个分支,即可列方程求得x的值.【解答】解:设主干长出x个支干,由题意得1+x+x•x=111,即x2+x﹣110=0,解得:x1=10,x2=﹣11(舍去)答:每个支干长出的小分支是10.【点评】此题主要考查了一元二次方程的应用,解题时,要根据题意分别表示主干、支干、小分支的数目,列方程求解,注意能够熟练运用因式分解法解方程.20.如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)判断△ABC的形状:△ABC是等边三角形;(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论.【考点】圆周角定理;全等三角形的判定与性质.【分析】(1)利用圆周角定理可得∠BAC=∠CPB,∠ABC=∠APC,而∠APC=∠CPB=60°,所以∠BAC=∠ABC=60°,从而可判断△ABC的形状;(2)在PC上截取PD=AP,则△APD是等边三角形,然后证明△APB≌△ADC,证明BP=CD,即可证得.【解答】证明:(1)△ABC是等边三角形.证明如下:在⊙O中,∵∠BAC与∠CPB是对的圆周角,∠ABC与∠APC是所对的圆周角,∴∠BAC=∠CPB,∠ABC=∠APC,又∵∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC为等边三角形;故答案为:△ABC是等边三角形;(2)在PC上截取PD=AP,如图1,又∵∠APC=60°,∴△APD是等边三角形,∴AD=AP=PD,∠ADP=60°,即∠ADC=120°.又∵∠APB=∠APC+∠BPC=120°,∴∠ADC=∠APB,在△APB和△ADC中,,∴△APB≌△ADC(AAS),∴BP=CD,又∵PD=AP,∴CP=BP+AP.【点评】本题考查了圆周角定理、等边三角形的判定、三角形的全等的判定与性质,正确作出辅助线,证明△APB≌△ADC是关键.21.一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为 .(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表或树状图灯方法求出两次摸到的球是1个红球和1个白球的概率.【考点】列表法与树状图法.【专题】计算题.【分析】(1)设红球的个数为x个,根据概率公式得到 = ,然后解方程即可;(2)先画树状图展示所有12种等可能结果,再找出两次摸到的球是1个红球1个白球的结果数,然后根据概率公式计算.【解答】解:(1)设红球的个数为x个,根据题意得 = ,解得x=1(检验合适),所以布袋里红球有1个;(2)画树状图如下:共有12种等可能结果,其中两次摸到的球是1个红球1个白球的结果数为4种,所以两次摸到的球都是白球的概率= = .【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.22.已知反比例函数y= 的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x轴对称,若△OAB的面积为10,求m的值.【考点】反比例函数的性质;反比例函数图象上点的坐标特征;关于x轴、y轴对称的点的坐标.【分析】(1)根据反比例函数的图象是双曲线.当k>0时,则图象在一、三象限,且双曲线是关于原点对称的;(2)由对称性得到△OAC的面积为5.设A(x、 ),则利用三角形的面积公式得到关于m的方程,借助于方程来求m的值.【解答】解:(1)根据反比例函数的图象关于原点对称知,该函数图象的另一支在第三象限,且m﹣3>0,则m>3;(2)∵点B与点A关于x轴对称,若△OAB的面积为10,∴△OAC的面积为5.设A(x, ),则x• =5,解得:m=13.【点评】本题考查了反比例函数的性质、图象,反比例函数图象上点的坐标特征等知识点.根据题意得到△OAC的面积是解题的关键.23.四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.(1)求证:△ADE≌△ABF;(2)填空:△ABF可以由△ADE绕旋转中心 A 点,按顺时针方向旋转90 度得到;(3)若BC=8,DE=6,求△AEF的面积.【考点】旋转的性质;全等三角形的判定与性质;正方形的性质.【专题】证明题.【分析】(1)根据正方形的性质得AD=AB,∠D=∠ABC=90°,然后利用“SAS”易证得△ADE≌△ABF;(2)由于△ADE≌△ABF得∠BAF=∠DAE,则∠BAF+∠BAE=90°,即∠FAE=90°,根据旋转的定义可得到△ABF可以由△ADE绕旋转中心A 点,按顺时针方向旋转90 度得到;(3)先利用勾股定理可计算出AE=10,再根据△ABF可以由△ADE 绕旋转中心 A点,按顺时针方向旋转90 度得到AE=AF,∠EAF=90°,然后根据直角三角形的面积公式计算即可.【解答】(1)证明:∵四边形ABCD是正方形,∴AD=AB,∠D=∠ABC=90°,而F是CB的延长线上的点,∴∠ABF=90°,在△ADE和△ABF中,∴△ADE≌△ABF(SAS);(2)解:∵△ADE≌△ABF,∴∠BAF=∠DAE,而∠DAE+∠EAB=90°,∴∠BAF+∠EAB=90°,即∠FAE=90°,∴△ABF可以由△ADE绕旋转中心A点,按顺时针方向旋转90 度得到;故答案为A、90;(3)解:∵BC=8,∴AD=8,在Rt△ADE中,DE=6,AD=8,∴AE= =10,∵△ABF可以由△ADE绕旋转中心A点,按顺时针方向旋转90 度得到,∴AE=AF,∠EAF=90°,∴△AEF的面积= AE2= ×100=50(平方单位).【点评】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了全等三角形的判定与性质以及勾股定理.24.某服装店销售一种内衣,每件进价为40元.经过市场调查,一周的销售量y件与销售单价x元/件的关系如表:销售单价x(元/件) … 55 60 70 75 …一周的销售量y(件) … 450 400 300 250 …(1)试求出y与x的之间的函数关系式;(2)设一周的销售利润为S元,请求出S与x的函数关系式,并确定当销售单价的什么范围内变化时,一周的销售利润随着销售单价的增大而增大?(3)服装店决定将一周的销售内衣的利润全部捐给福利院,在服装店购进该内衣的贷款不超过8000元情况下,请求出该服装店最大捐款数额是多少元?【考点】二次函数的应用.【分析】(1)设y=kx+b,把点的坐标代入解析式,求出k、b的值,即可得出函数解析式;(2)根据利润=(售价﹣进价)×销售量,列出函数关系式,继而确定销售利润随着销售单价的增大而增大的销售单价的范围;(3)根据购进该商品的贷款不超过8000元,求出进货量,然后求最大销售额即可.【解答】解:(1)设y=kx+b,由题意得,,解得:,则函数关系式为:y=﹣10x+1000,(x≥50)(2)由题意得,S=(x﹣40)y=(x﹣40)(﹣10x+1000)=﹣10x2+1400x﹣40000=﹣10(x﹣70)2+9000,∵﹣10<0,∴函数图象开口向下,对称轴为直线x=70,∴当40(3)∵购进该商品的货款不超过8000元,∴y的最大值为 =200(件).由(1)知y随x的增大而减小,∴x的最小值为:x=80,由(2)知当x≥70时,S随x的增大而减小,∴当x=80时,销售利润最大,此时S=8000,即该商家最大捐款数额是8000元.【点评】本题考查了二次函数的应用,难度一般,解答本题的关键是将实际问题转化为求函数最值问题,从而来解决实际问题.25.如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交 AB于点F.(1)求证:AE为⊙O的切线.(2)当BC=8,AC=12时,求⊙O的半径.(3)在(2)的条件下,求线段BG的长.【考点】圆的综合题.【专题】证明题.【分析】(1)连接OM.利用角平分线的性质和平行线的性质得到AE⊥OM后即可证得AE是⊙O的切线;(2)设⊙O的半径为R,根据OM∥BE,得到△OMA∽△BEA,利用平行线的性质得到 = ,即可解得R=3,从而求得⊙O的半径为3;(3)过点O作OH⊥BG于点H,则BG=2BH,根据∠OME=∠MEH=∠EHO=90°,得到四边形OMEH是矩形,从而得到HE=OM=3和BH=1,证得结论BG=2BH=2.【解答】(1)证明:连接OM.∵AC=AB,AE平分∠BAC,∴AE⊥BC,CE=BE= BC=4,∵OB=OM,∴∠OBM=∠OMB,∵BM平分∠ABC,∴∠OBM=∠CBM,∴∠OMB=∠CBM,∴OM∥BC又∵AE⊥BC,∴AE⊥OM,∴AE是⊙O的切线;(2)设⊙O的半径为R,∵OM∥BE,∴△OMA∽△BEA,∴ = 即 = ,解得R=3,∴⊙O的半径为3;(3)过点O作OH⊥BG于点H,则BG=2BH,∵∠OME=∠MEH=∠EHO=90°,∴四边形OMEH是矩形,∴HE=OM=3,∴BH=1,∴BG=2BH=2.【点评】本题考查了圆的综合知识,题目中还运用到了切线的判定与性质、相似三角形的判定与性质,综合性较强,难度较大.26.在平面直角坐标系中,抛物线y=﹣ x2+bx+c与x轴交于点A,B,与y轴交于点C,直线y=x+4经过A,C两点.(1)求抛物线的解析式;(2)在AC上方的抛物线上有一动点P.①如图1,当点P运动到某位置时,以AP,AO为邻边的平行四边形第四个顶点恰好也在抛物线上,求出此时点P的坐标;②如图2,过点O,P的直线y=kx交AC于点E,若PE:OE=3:8,求k的值.【考点】二次函数综合题.【专题】压轴题.【分析】(1)由直线的解析式y=x+4易求点A和点C的坐标,把A和C的坐标分别代入y=﹣x2+bx+c求出b和c的值即可得到抛物线的解析式;(2)①若以AP,AO为邻边的平行四边形的第四个顶点Q恰好也在抛物线上,则PQ∥AO,再根据抛物线的对称轴可求出点P的横坐标,由(1)中的抛物线解析式,进而可求出其纵坐标,问题得解;②过P点作PF∥OC交AC于点F,因为PF∥OC,所以△PEF∽△OEC,由相似三角形的性质:对应边的比值相等可求出PF的长,进而可设点点F(x,x+4),利用,可求出x的值,解方程求出x的值可得点P的坐标,代入直线y=kx即可求出k的值.【解答】解:(1)∵直线y=x+4经过A,C两点,∴A点坐标是(﹣4,0),点C坐标是(0,4),又∵抛物线过A,C两点,∴ ,解得:,∴抛物线的解析式为 .(2)①如图1∵ ,∴抛物线的对称轴是直线x=﹣1.∵以AP,AO为邻边的平行四边形的第四个顶点Q恰好也在抛物线上,∴PQ∥AO,PQ=AO=4.∵P,Q都在抛物线上,∴P,Q关于直线x=﹣1对称,∴P点的横坐标是﹣3,∴当x=﹣3时,,∴P点的坐标是 ;②过P点作PF∥OC交AC于点F,∵PF∥OC,∴△PEF∽△OEC,∴ .又∵ ,∴ ,设点F(x,x+4),∴ ,化简得:x2+4x+3=0,解得:x1=﹣1,x2=﹣3.当x=﹣1时, ;当x=﹣3时,,即P点坐标是或 .又∵点P在直线y=kx上,∴ .【点评】本题是二次函数综合题,考查了待定系数法求函数解析式,平行四边形的判定和性质,相似三角形的判定和性质,解一元二次方程,题目综合性较强,难度不大,是一道很好的中考题.。
2017届九年级数学上学期期末考试试题 (2)

2016~2017学年度第一学期期末检测九年级数学试卷(考试时间120分钟 满分120分)一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有..一个. 1.二次函数2(1)3y x =--的最小值是(A) 2 (B) 1 (D) -2 (D ) -3 2.下列事件中,是必然事件的是(A) 明天太阳从东方升起; (B) 射击运动员射击一次,命中靶心;(C) 随意翻到一本书的某页,这页的页码是奇数; (D) 经过有交通信号灯的路口,遇到红灯.3.一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是(A) 23(B) 12 (C) 25(D) 13 4.如图,在△ABC 中,DE ∥BC ,DE 分别交AB ,AC 于点D ,E ,若AD :DB =1:2,则△ADE 与△ABC 的面积之比是(A) 1:3 (B) 1:4 (C) 1:9 (D) 1:165. 已知点A (1,a )与点B (3,b )都在反比例函数12y x=-的图象上,则a 与b 之间的关系是 (A) a >b (B) a <b (C) a ≥b (D) a =b6. 已知圆锥的底面半径为2cm ,母线长为3cm ,则它的侧面展开图的面积为(A) 18πcm 2 (B) 12πcm 2 (C) 6πcm 2 (D) 3πcm 27. 已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A)与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.则用电阻R 表示电流I 的函数表达式为(A) 3I R = (B) I R=-6 (C) 3I R=-(D) I R=68.如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的半径为5,AC =8.则cos B 的值是 (A) 43(B)35(C)3 (D) 49.《九章算术》是我国古代内容极为丰富的数学名著,书中有这样一个问题:“今有勾八步,股十五步,问勾中容圆,径几何?”其意思是:“如图,今有直角三角形, 勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能 容纳的圆形(内切圆)直径是多少?”此问题中,该内切圆的直径是 (A) 5步 (B) 6步 (C) 8步 (D)10步 10. 已知二次函数y 1=ax 2+bx +c (a ≠0)和一次函数y 2=kx +n (k ≠0)的图象如图所示, 下面有四个推断: ①二次函数y 1有最大值②二次函数y 1的图象关于直线1x =-对称 ③当2x =-时,二次函数y 1的值大于0④过动点P (m ,0)且垂直于x 轴的直线与y 1,y 2的图象的交点分别 为C ,D ,当点C 位于点D 上方时,m 的取值范围是m <-3或m >-1. 其中正确的是 (A)①③(B)①④(C)②③(D)②④二、填空题(本题共18分,每小题3分)11. 将二次函数y =x 2-2x -5化为y=a (x-h )2+k 的形式为y= .12.抛物线22y x x m =-+与x 轴有两个公共点,请写出一个符合条件的表达式为 . 13. 如图,若点P 在反比例函数3(0)y x x=-<的图象上,过点P 作PM ⊥x 轴于点M ,PN ⊥y 轴于点N ,则矩形PMON 的面积为 .14.某农科所在相同条件下做某种作物种子发芽率的试验,结果如下表所示:则该作物种子发芽的概率约为.15. 如图,△ABC中,D、E分别是AB、AC边上一点,连接DE.请你添加一个条件,使△ADE∽△ABC,则你添加的这一个条件可以是(写出一个即可).16.阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:小明的作法如下:老师说:“小明的作法正确.”请回答:(1)点O为△ABC外接圆圆心(即OA=OB=OC)的依据是;(2)∠APB=∠ACB的依据是.三、解答题(本题共72分,第17-26题每小题5分,第27题7分,第28题7分,第29题8分)17.计算:o o o++2sin45tan602cos3018.如图,△ABC中,点D在边AB上,满足∠ACD =∠ABC,若AC AD = 1,求DB的长.19.已知二次函数2(0)y ax bx c a =++≠中,函数y 与自变量x 的部分对应值如下表:(1)求二次函数的表达式,并写出这个二次函数图象的顶点坐标; (2)求出该函数图象与x 轴的交点坐标.20. 如图,在平面直角坐标系xOy 中,△ABC 的三个顶点分别为A (2,6),B (4,2), C (6,2). (1)以原点O 为位似中心,将△ABC 缩小为原来的12,得到△DEF . 请在第一象限内, 画出△DEF .(2)在(1)的条件下,点A 的对应点D 的坐标为 ,点B 的对应点E 的坐标为 .21. 如图是一个隧道的横截面,它的形状是以点O 为圆心的圆的一部分.如果M 是⊙O 中弦CD 的中点,EM 经过圆心O 交⊙O 于点E ,CD =10,EM =25.求⊙O 的半径.22. 如图,在Rt △ABC 中,∠C =90°,点D 是BC 边的中点,CD =2,tan B =34.(1)求AD 和AB 的长; (2)求sin ∠BAD 的值.23. 已知一次函数21y x =-+的图象与y 轴交于点A , 点B (-1,n )是该函数图象与反比例函数)(0≠=k xky 图象在第二象限内的交点.(1)求点B 的坐标及k 的值;(2)试在x 轴上确定点C ,使AC AB =,直接写出点C 的坐标.24.如图,用一段长为40m 的篱笆围成一个一边靠墙的矩形花圃ABCD ,墙长28m.设AB 长为x m ,矩形的面积为y m 2.(1)写出y 与x 的函数关系式;(2)当AB 长为多少米时,所围成的花圃面积最大?最大值是多少? (3)当花圃的面积为150m 2时,AB 长为多少米?25.如图,AB 是⊙O 的直径,C ,D 是⊙O 上两点,且 BC= CD ,过点C 的直线CF ⊥AD 于点F ,交AB 的延长线于点E ,连接AC . (1)求证:EF 是⊙O 的切线;(2)连接FO ,若sin E =12,⊙O 的半径为r ,请写出求线段FO 长的思路.26.某“数学兴趣小组”根据学习函数的经验,对函数y = -x 2+2x +1的图象和性质进行了探究,探究过程如下,请补充完整:(1)自变量x 的取值范围是全体实数,x 与y 的几组对应数值如下表:其中m = ;(2)如下图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(3)根据函数图象,写出: ①该函数的一条性质 ;②直线y =kx +b 经过点(-1,2),若关于x 的方程-x 2+2x +1=kx +b 有4个互不相等的实数根,则b 的取值范围是 .27.在平面直角坐标系xOy 中,直线y =14-x +n 经过点A (-4, 2),分别与x ,y 轴交于点B ,C ,抛物线y = x 2-2mx +m 2-n 的顶点为D . (1) 求点B ,C 的坐标;(2) ①直接写出抛物线顶点D 的坐标(用含m 的式子表示);②若抛物线y = x 2-2mx +m 2-n 与线段BC 有公共点,求m 的取值范围.28.在Rt △ABC 中,∠ACB =90°,O 为AB 边上的一点,且tan B =21,点D 为AC 边上的动点(不与点A ,C 重合),将线段OD 绕点O 顺时针旋转90°,交BC 于点E .(1)如图1,若O 为AB 边中点, D 为AC 边中点,则OE OD 的值为 ;(2)若O 为AB 边中点, D 不是AC 边的中点,①请根据题意将图2补全;②小军通过观察、实验,提出猜想:点D 在AC 边上运动的过程中,(1)中OE OD的值不变.小军把这个猜想与同学们进行交流,通过讨论,形成了求OE OD 的值的几种想法:想法1:过点O 作OF ⊥AB 交BC 于点F ,要求OE OD的值,需证明△OEF ∽△ODA .想法2:分别取AC ,BC 的中点H ,G ,连接OH ,OG ,要求OE OD的值,需证明△OGE ∽△OHD .想法3:连接OC ,DE ,要求OE OD的值,需证C ,D ,O ,E 四点共圆.......请你参考上面的想法,帮助小军写出求OE OD的值的过程 (一种方法即可);(3)若1BO BA n =(n ≥2且n 为正整数),则OE OD的值为 (用含n 的式子表示).29.在平面直角坐标系xOy 中, C 的半径为r (r >1),P 是圆内与圆心C 不重合的点,C 的“完美点”的定义如下:若直线..CP 与 C 交于点A ,B ,满足2PA PB -=,则称点P 为 C 的“完美点”,下图为 C 及其“完美点”P 的示意图.(1) 当O 的半径为2时,①在点M (32,0),N (0,1),1()2T -中, O 的“完美点”是 ;② 若O 的“完美点”P 在直线y =上,求PO 的长及点P 的坐标;(2) C 的圆心在直线1y =+上,半径为2,若y 轴上存在 C 的“完美点”,求圆心C 的纵坐标t 的取值范围.北京市朝阳区2016~2017学年度第一学期期末检测 九年级数学试卷参考答案及评分标准一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共72分,第17-26题每小题5分,第27题7分,第28题7分,第29题8分)17. 解:2sin 45tan602cos30︒+︒+︒-22=-=18.解:∵,ACD ABC ∠=∠A A ∠=∠, ∴△ACD ∽△ABC . ∴AC ADAB AC=.=. ∴3AB =.∴2DB =.19.解:(1) 由题意,得c = -3.将点(2, 5),(-1,-4)代入,得4235,3 4.a b a b +-=⎧⎨--=-⎩ 解得1,2.a b =⎧⎨=⎩∴223y x x =+- . 顶点坐标为(-1,-4). (2) (-3,0),(1,0).20.解:(1) 如图.(2) D (1,3),E (2,1). 21.解:如图,连接OC ,∵M 是弦CD 的中点,EM 过圆心O , ∴EM ⊥CD . ∴CM =MD . ∵CD =10, ∴CM =5.设OC =x ,则OM =25-x ,在Rt △COM 中,根据勾股定理,得 52+(25-x )2=x 2. 解得 x =13 .∴⊙O 的半径为13 .22. 解: (1) ∵D 是BC 的中点,CD =2, ∴BD =DC =2,BC =4.在Rt △ACB 中, 由 tan B =34AC CB =, ∴344AC =. ∴AC =3.∴AD ,AB =5 . (2) 过点D 作DE ⊥AB 于E ,∴∠C =∠DEB =90°.又∠B =∠B ,∴△DEB ∽△ACB . ∴DEDBAC AB =. ∴235DE =. ∴65DE =.∴sin BAD ∠=23. 解:(1) ∵点B (-1,n )在直线21y x =-+上,∴21 3.n =+=∴B (-1,3).∵点B (-1,3)在反比例函数x ky =的图象上,∴3k =-.(2) ()2,C -0或()2,0.24. 解:(1) 2240y x x =-+.(402)x x -(或写成)(2) 由题意,得0402028x x -≤⎧⎨⎩>,<.∴6≤x <20 .由题意,得 ()2210200y x =--+.∴当x =10时,y 有最大值,y 的最大值为200.∴当AB 长为10m 时,花圃面积最大,最大面积为200m 2.(3) 令y =150,则 2240150x x -+=.∴ 125,15x x == .∵6≤x <20,∴x =15.∴当AB 长为15m 时,面积为150m 2.25. (1) 证明:如图,连接OC ,∵OC=OA,∴∠1 =∠2.∵ BC= CD,∴∠1 =∠3.∴∠2 =∠3.∴OC∥AF.∵CF⊥AD,∴∠CFA=90°.∴∠OCF=90°.∴OC⊥EF.∵OC为⊙O的半径,∴EF是⊙O的切线.(2) 解:求解思路如下:①在Rt△AEF和Rt△OEC中,由sin E=12,可得△AEF,△OEC都为含30°的直角三角形;②由∠1 =∠3,可知△ACF为含30°的直角三角形;③由⊙O的半径为r,可求OE,AE的长,从而可求CF的长;④在Rt△COF中,由勾股定理可求OF的长.26. 解:(1) m= 1.(2)如图.(3)①答案不唯一.如:函数图象关于y轴对称.②1<b<2.27. 解: (1) 把A(-4,2)代入y=14x+n中,得n=1. ∴B(4,0),C(0,1).(2) ①D (m ,-1).②将点(0,1)代入2221y x mx m =-+-中,得211m =-.解得12m m == 将点(4,0)代入2221y x mx m =-+-中,得 201681m m =-+-.解得 125,3m m ==.∴5m ≤≤ .28.解:(1) 12.(2) ①如图.②法1:如图,过点O 作OF ⊥AB 交BC 于点F , ∵∠DOE =90°,∴∠AOD +∠DOF =∠DOF +∠FOE =90°.∴∠AOD =∠FOE .∵∠ACB =90°,∴∠A +∠B =∠OFE +∠B =90°.∴∠A =∠OFE .∴△OEF ∽△ODA .∴OE OFOD OA =.∵O 为AB 边中点,∴OA =OB .在Rt △FOB 中,tan B =21, ∴12OFOB =. ∴1.2OFOA =∴12OE OD =.法2:如图,分别取AC ,BC 的中点H ,G ,连接OH ,OG ,∵O 为AB 边中点,∴OH ∥BC ,OH =12BC ,OG ∥AC .∵∠ACB =90°,∴∠OHD =∠OGE =90°.∴∠HOG =90°.∵∠DOE =90°,∴∠HOD +∠DOG =∠DOG +∠GOE =90°.∴∠HOD =∠GOE .∴△OGE ∽△OHD . ∴OEOGOD OH =.∵tan B =21, ∴1.2OGGB =∵OH =GB , ∴1.2OG OH = ∴12OEOD =.法3:如图,连接OC ,DE ,∵∠ACB =90°,∠DOE =90°,∴DE 的中点到点C ,D ,O ,E 的距离相等.∴C ,D ,O ,E 四点共圆.∴∠ODE =∠OCE .∵O 为AB 边中点,∴OC =OB .∴∠B =∠OCE .∴∠ODE =∠B .∵tan B =21, ∴12OE OD =. (3) 122n -.29. 解:(1) ①N ,T . ②如图,根据题意,2PA PB -=,∴∣OP +2-(2- OP )∣=2.∴OP =1.若点P 在第一象限内,作PQ ⊥x 轴于点Q ,∵点P 在直线y =上,OP =1,∴OQ =12,PQ∴P (12).若点P 在第三象限内,根据对称性可知其坐标为(-12,综上所述,PO 的长为1,,点P 的坐标为(12或(-12,).(2)对于 C 的任意一个“完美点”P 都有2PA PB -=, 即2(2)2CP CP +-=-.可得CP =1.对于任意的点P ,满足CP =1,都有2(2)2CP CP +-=-, 即2PA PB -=,故此时点P 为 C 的“完美点”.因此, C 的“完美点”的集合是以点C 为圆心,1为半径的圆.设直线1y =+与y 轴交于点D ,如图,当 C 移动到与 y 轴相切且切点在点D 的下方时,t 的值最小.设切点为E ,连接CE ,可得DEt的最小值为1当 C移动到与y轴相切且切点在点D的上方时,t的值最大.同理可得t的最大值为1综上所述,t的取值范围为1t ≤1。
2017九年级数学上册期末试卷

九年级数学上册期末试卷2017九年级数学上册期末试卷九年级是初中升入高中的关键时期,要认真对待每一次的考试。
下面YJBYS小编为大家整理了2017九年级数学上册期末试卷,希望能帮到大家!2017九年级数学上册期末试卷一、选择题 (每小题3分,共24分)1.方程x2﹣4 = 0的解是【】A.x = ±2B.x = ±4C.x = 2D. x =﹣22.下列图形中,不是中心对称图形的是【】A. B. C. D.3.下列说法中正确的是【】A.“任意画出一个等边三角形,它是轴对称图形”是随机事件B.“任意画出一个平行四边形,它是中心对称图形”是必然事件C.“概率为0.0001的事件” ”是不可能事件D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次4.已知关于x的一元二次方程(a﹣1)x2﹣2x+1= 0有两个不相等的实数根,则a的取值范围是【】A.a>2B.a <2C. a <2且a ≠ lD.a <﹣25.三角板ABC中,∠ACB=90°,∠B=30°,AC=2 ,三角板绕直角顶点C逆时针旋转,当点A的对应点A′ 落在AB边的起始位置上时即停止转动,则B点转过的路径长为【】A.2πB.C.D.3π6.一个不透明的口袋里有4张形状完全相同的卡片,分别写有数字1,2,3,4,口袋外有两张卡片,分别写有数字2,3,现随机从口袋里取出一张卡片,求这张卡片与口袋外的两张卡片上的数能构成三角形的概率是【】A. 1B.C.D.7.如图,A、B、C、D四个点均在⊙O上,∠AOD=50°,AO∥DC,则∠B的度数为【】A.50°B.55°C.60°D.65°8.如图,在边长为6的等边三角形ABC中,E是对称轴AD上的一个动点,连接CE,将线段CE绕点C逆时针旋转60°得到FC,连接DF.则在点E运动过程中,DF的最小值是【】A.6B.3C.2D.1.5二、填空题( 每小题3分,共21分)9.抛物线y = x2+2x+3的顶点坐标是.10.m是方程2x2+3x﹣1= 0的根,则式子4m2+6m+2016的值为.11.如图,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,则它的对称轴为直线.12.在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r,扇形的半径为R,扇形的圆心角等于90°,则r与R之间的关系是r = .13.在一个不透明的盒子中装有n个规格相同的乒乓球,其中有2个黄色球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到黄色球的频率稳定于0.2,那么可以推算出n大约是.14.矩形ABCD中,AD = 8,半径为5的⊙O与BC相切,且经过A、D两点,则AB = .15.如图,在△ABC中,∠ACB=90°,AC=2,BC=4,E为边AB的中点,点D是BC边上的动点,把△ACD沿AD翻折,点C落在C′处,若△AC′E是直角三角形,则CD的长为.三、解答题:(本大题共8个小题,满分75分)16.(8分)先化简,再求值:17.(9分)已知关于x的方程x2+ax+a﹣2=0.(1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.18.(9分)如图所示,A B是⊙O的直径,∠B=30°,弦BC=6,∠ACB的平分线交⊙O于点D,连接AD.(1)求直径AB的长;(2)求图中阴影部分的面积.(结果保留π)19.(9分)如图所示,可以自由转动的转盘被3等分,指针落在每个扇形内的机会均等.(1)现随机转动转盘一次,停止后,指针指向1的概率为;(2)小明和小华利用这个转盘做游戏,若采用下列游戏规则,你认为对双方公平吗?请用列表或画树状图的方法说明理由.20.(9分)如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,O 是AB上一点,以O为圆心,OA为半径的⊙O经过点D.(1)求证:BC是⊙O的切线;(2)若BD=5,DC=3,求AC的长.21.(10分)某商店代销一批季节性服装,每套代销成本40元,第一个月每套销售定价为52元时,可售出180套;应市场变化需上调第一个月的销售价,预计销售定价每增加1元,销售量将减少10套.(1)若设第二个月的销售定价每套增加x元,填写表格:时间第一个月第二个月销售定价(元)销售量(套)(2)若商店预计要在第二个月的销售中获利2000元,则第二个月销售定价每套多少元?(3)若要使第二个月利润达到最大,应定价为多少元?此时第二个月的最大利润是多少?22.(10分)已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B、C重合).以AD为边做正方形ADEF,连接CF.(1)如图①,当点D在线段BC上时,求证:CF+CD=BC;(2)如图②,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF、BC、CD三条线段之间的.关系;(3)如图③,当点D在线段BC的反向延长线上时,且点A、F分别在直线BC的两侧,其他条件不变;①请直接写出CF、BC、CD三条线段之间的关系;②若正方形ADEF的边长为,对角线AE、DF相交于点O,连接OC.求OC的长度.23.(11分)如图①,抛物线与x轴交于点A( ,0),B(3,0),与y 轴交于点C,连接BC.(1)求抛物线的表达式;(2)抛物线上是否存在点M,使得△MBC的面积与△OBC的面积相等,若存在,请直接写出点M的坐标;若不存在,请说明理由;(3)点D(2,m)在第一象限的抛物线上,连接BD.在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P 的坐标;如果不存在,请说明理由.2017九年级数学上册期末试卷参考答案及评分标准一、选择题(每题3分共24分)题号 1 2 3 4 5 6 7 8答案 A C B C A B D D二、填空题9.(- 1,2) 10.2018 11.x =2 12. R 13.10 14.2或8 15.2或三、解答题16.解:原式= ……………………3分== ……………………5分∵ ,∴ ……………………7分∴原式= . ……………………8分17.解:(1)把x=1代入方程x2+ax+a﹣2=0,解得:a= ,…… ………………2分∴原方程即是,解此方程得:,∴a= ,方程的另一根为; ……………………5分(2)证明:∵ ,不论a取何实数,≥0,∴ ,即 >0,∴不论a取何实数,该方程都有两个不相等的实数根. ……………………9分18.解:(1)∵AB是⊙O的直径,∴∠ACB=90°,∵∠B=30°,∴AB=2AC,设AC的长为x,则AB=2x,在Rt△ACB中,,∴解得x= ,∴AB= . ……………………5分(2)连接OD.∵CD平分∠ACB,∴∠ACD=45°,∴∠AOD=90°,AO= AB= ,∴S△AOD =S 扇AOD =∴S阴影= ……………………9分19.解:(1)根据题意得:随机转动转盘一次,停止后,指针指向1的概率为; ……………………3分(2)列表得:1 2 31 (1,1) (2,1) (3,1)2 (1,2) (2,2) (3,2)3 (1,3) (2,3) (3,3)所有等可能的情况有9种,其中两数之积为偶数的情况有5种,之积为奇数的情况有4种,……………………7分∴P(小明获胜)= ,P(小华获胜)= ,∵ > ,∴该游戏不公平. ……………………9分20.(1)证明:连接OD;∵AD是∠BAC的平分线,∴∠1=∠3.∵OA=OD,∴∠1=∠2.∴∠2=∠3.∴OD∥AC.∴∠ODB=∠ACB=90°.∴OD⊥BC.∴BC是⊙O切线. ……………………4分(2)解:过点D作DE⊥AB,∵AD是∠BAC的平分线,∴CD=DE=3.在Rt△BDE中,∠BED=90°,由勾股定理得:,在Rt△AED和Rt△ACD中,,∴Rt△AED ≌ Rt△ACD∴AC=AE,设AC=x,则AE=x,AB=x+4,在Rt△ABC中,即,解得x=6,∴AC=6. ……………………9分21.解:(1)若设第二个月的销售定价每套增加x元,由题意可得,时间第一个月第二个月销售定价(元) 52 52+x销售量(套) 180 180﹣10x………… …………4分(2)若设第二个月的销售定价每套增加x元,根据题意得:(52+x﹣40)(180﹣10x)=2000,解得:x1=﹣2(舍去),x2=8,当x=8时,52+x=52+8=60.答:第二个月销售定价每套应为60元. ……………………7分(3)设第二个月利润为y元.由题意得到:y=(52+x﹣40)(180﹣10x)=﹣10x2+60x+2160=﹣10(x﹣3)2+2250∴当x=3时,y取得最大值,此时y=2250,∴52+x=52+3=55,即要使第二个月利润达到最大,应定价为55元,此时第二个月的最大利润是2250元. ……………………10分22.证明:(1)∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°-∠DAC,∠CAF=90°-∠DAC,∴∠BAD=∠CAF,则在△BAD和△CAF中,∴△BAD ≌ △CAF(SAS),∴BD=CF,∵BD+CD=BC,∴CF+CD=BC;…………………… 4分(2)CF CD=BC …………………… 5分(3)①CD CF =BC. …………………… 6分②∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=A F,∠DAF=90°,∵∠BAD=90°-∠BAF,∠CAF=90°-∠BAF,∴∠BAD=∠CAF,则在△BAD和△CAF中,∴△BAD ≌ △CAF(SAS),∴∠ABD=∠ACF,∵∠ABC=45°,∠ABD=135°,∴∠ACF=∠ABD=135°,∴∠FCD=90°,∴△FCD是直角三角形.∵正方形ADEF的边长为且对角线AE、DF相交于点O,∴DF= AD=4,O为DF中点.∴OC= DF=2. ……………………10分23.解:(1)∵抛物线与x轴交于点A( ,0),B(3,0),,解得,∴抛物线的表达式为.……………………3分(2)存在.M1 ( , ),M2( , )……………………5分(3)存在.如图,设BP交轴y于点G.∵点D(2,m)在第一象限的抛物线上,∴当x=2时,m= .∴点D的坐标为(2,3).把x=0代入,得y=3.∴点C的坐标为(0,3).∴CD∥x轴,CD = 2.∵点B(3,0),∴OB = OC = 3∴∠OBC=∠OCB=45°.∴∠DCB=∠OBC=∠OCB=45°,又∵∠PBC=∠ DBC,BC=BC,∴△CGB ≌ △CDB(ASA),∴CG=CD=2.∴OG=OC CG=1,∴点G的坐标为(0,1).设直线BP的解析式为y=kx+1,将B(3,0)代入,得3k+1=0,解得k= .∴直线BP的解析式为y= x+1. ……………………9分令 x+1= .解得, .∵点P是抛物线对称轴x= =1左侧的一点,即x<1,∴x= .把x= 代入抛物线中,解得y=∴当点P的坐标为( ,)时,满足∠PBC=∠DBC (11)分。
2016-2017年安徽省马鞍山市和县初三上学期期末数学试卷及答案

2016-2017学年安徽省马鞍山市和县初三上学期期末数学试卷一、选择题(本题共10个小题,每小题4分,共40分)1.(4分)下列方程中,关于x的一元二次方程是()A.x2+x+y=0B.x2﹣3x+1=0C.(x+3)2=x3+2x D.x2+=22.(4分)下列语句正确的个数是()①过平面上三点可以作一个圆;②平分弦的直径垂直于弦;③在同圆或等圆中,相等的弦所对的圆周角相等;④三角形的内心到三角形各边的距离相等.A.1个B.2个C.3个D.4个3.(4分)下列图形中,是中心对称但不是轴对称图形的为()A.B.C.D.4.(4分)如图,在方格纸上建立的平面直角坐标系中,将△ABO绕点O按顺时针方向旋转90°,得△A′B′O′,则点A′的坐标为()A.(3,1)B.(3,2)C.(2,3)D.(1,3)5.(4分)用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2B.(x+2)2=2C.(x﹣2)2=﹣2D.(x﹣2)2=6 6.(4分)把抛物线y=(x+1)2向下平移2个单位,再向右平移1个单位,所得到的抛物线是()A.y=(x+2)2+2B.y=(x+2)2﹣2C.y=x2+2D.y=x2﹣2 7.(4分)如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m,另一边减少了3m,剩余一块面积为20m2的矩形空地,则原正方形空地的边长是()A.7m B.8m C.9m D.10m8.(4分)如图,AB是⊙O的直径,弦CD交AB于点E,且E为OB的中点,∠CDB=30°,CD=4,则阴影部分的面积为()A.πB.4πC.πD.π9.(4分)一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.B.C.D.10.(4分)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2,其中正确结论是()A.②④B.①④C.①③D.②③二、填空题(每小题5分,共20分)11.(5分)在x2□2xy□y2的空格□中,分别填上“+”或“﹣”,在所得的代数式中,能构成完全平方式的概率是.12.(5分)如图,PA、PB切⊙O于A、B两点,若∠APB=60°,⊙O的半径为3,则阴影部分的面积为.13.(5分)如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x﹣m)2+n的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为﹣3,则点D的横坐标最大值为.14.(5分)如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC 绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边=6+3.其中正确的结论是.形AOBO′三、解答题(每小题8分,共24分)15.(8分)解方程:(1)2x2﹣4x﹣1=0(2)3(x﹣2)2=x(x﹣2)16.(8分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C,平移ABC,若A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2,请直接写出旋转中心的坐标.17.(8分)如图所示,⊙O的直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=60°,求弦CD的长.四、(每小题10分,共20分)18.(10分)如图,抛物线y=x2+bx+c经过A(﹣1,0),B(4,5)两点,解答下列问题:(1)求抛物线的解析式(2)若抛物线的顶点为D,对称轴所在直线交x 轴于点E,连接AD,点F为AD中点,求出线段EF的长.19.(10分)为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y(件)与销售单价x(元)满足一次函数关系:y=﹣10x+1200.(1)求出利润S(元)与销售单价x(元)之间的关系式(利润=销售额﹣成本);(2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?五、列方程解应用题(本题满分10分)20.(10分)在“全民阅读”活动中,某中学对全校学生中坚持每天半小时阅读的人数进行了调查,2012年全校坚持每天半小时阅读有1000名学生,2013年全校坚持每天半小时阅读人数比2012年增加10%,2014年全校坚持每天半小时阅读人数比2013年增加340人.(1)求2014年全校坚持每天半小时阅读学生人数;(2)求从2012年到2014年全校坚持每天半小时阅读的人数的平均增长率.六、证明题(本题满分10分)21.(10分)已知:如图所示,在Rt△ABC中,∠C=90°,点O在AB上,以O 为圆心,OA长为半径的圆与AC,AB分别交于点D,E,且∠CBD=∠A,求证:BD与⊙O相切.七、(本题满分12分)22.(12分)如图,在平面直角坐标系中,点B的坐标是(2,2),将线段OB 绕点O顺时针旋转120°,点B的对应点是点B.(1)①求点B绕点O旋转到点B1所经过的路程长;②在图中画出,并直接写出点B1的坐标是;(2)有7个球除了编号不同外,其他均相同,李南和王易设计了如下的一个规则:→装入不透明的甲袋→装入不透明的乙袋,李南从甲袋中,王易从乙袋中,各自随机地摸出一个球(不放回),把李南摸出的球的编号作为横坐标x,把王易摸出的球的编号作为纵坐标y,用列表法或画树状图法表示出(x,y)的所有可能出现的结果;(3)李南和王易各取一次小球所确定的点(x,y)落在上的概率是.八、(本题满分14分)23.(14分)在Rt△ABC中,∠A=90°,AC=AB=6,D,E分别是AB,AC的中点,若等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1,设旋转角为α(0<α≤180°),记直线BD1与CE1的交点为P.(1)如图1,当α=90°时,线段BD1的长等于,线段CE1的长等于;(直接填写结果)(2)如图2,当α=135°时,求证:BD1=CE1,且BD1⊥CE1;(3)①设BC的中点为M,则线段PM的长为;②点P到AB所在直线的距离的最大值为.(直接填写结果)2016-2017学年安徽省马鞍山市和县初三上学期期末数学试卷参考答案与试题解析一、选择题(本题共10个小题,每小题4分,共40分)1.(4分)下列方程中,关于x的一元二次方程是()A.x2+x+y=0B.x2﹣3x+1=0C.(x+3)2=x3+2x D.x2+=2【解答】解:A、不是一元二次方程,故此选项错误;B、是一元二次方程,故此选项正确;C、不是一元二次方程,故此选项错误;D、不是一元二次方程,故此选项错误;故选:B.2.(4分)下列语句正确的个数是()①过平面上三点可以作一个圆;②平分弦的直径垂直于弦;③在同圆或等圆中,相等的弦所对的圆周角相等;④三角形的内心到三角形各边的距离相等.A.1个B.2个C.3个D.4个【解答】解:①过平面上不在同一直线上的三点可以作一个圆,错误;②平分弦(不是直径)的直径垂直于弦,故错误;③在同圆或等圆中,相等的弦所对的圆周角相等,错误;④三角形的内心到三角形各边的距离相等,正确,正确的有1个,故选:A.3.(4分)下列图形中,是中心对称但不是轴对称图形的为()A.B.C.D.【解答】解:A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误;故选:C.4.(4分)如图,在方格纸上建立的平面直角坐标系中,将△ABO绕点O按顺时针方向旋转90°,得△A′B′O′,则点A′的坐标为()A.(3,1)B.(3,2)C.(2,3)D.(1,3)【解答】解:如图,点A′的坐标为(1,3).故选D.5.(4分)用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2B.(x+2)2=2C.(x﹣2)2=﹣2D.(x﹣2)2=6【解答】解:把方程x2﹣4x+2=0的常数项移到等号的右边,得到x2﹣4x=﹣2,方程两边同时加上一次项系数一半的平方,得到x2﹣4x+4=﹣2+4,配方得(x﹣2)2=2.故选:A.6.(4分)把抛物线y=(x+1)2向下平移2个单位,再向右平移1个单位,所得到的抛物线是()A.y=(x+2)2+2B.y=(x+2)2﹣2C.y=x2+2D.y=x2﹣2【解答】解:抛物线y=(x+1)2的顶点坐标为(﹣1,0),∵向下平移2个单位,∴纵坐标变为﹣2,∵向右平移1个单位,∴横坐标变为﹣1+1=0,∴平移后的抛物线顶点坐标为(0,﹣2),∴所得到的抛物线是y=x2﹣2.故选:D.7.(4分)如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m,另一边减少了3m,剩余一块面积为20m2的矩形空地,则原正方形空地的边长是()A.7m B.8m C.9m D.10m【解答】解:设原正方形的边长为xm,依题意有(x﹣3)(x﹣2)=20,解得:x1=7,x2=﹣2(不合题意,舍去)即:原正方形的边长7m.故选:A.8.(4分)如图,AB是⊙O的直径,弦CD交AB于点E,且E为OB的中点,∠CDB=30°,CD=4,则阴影部分的面积为()A.πB.4πC.πD.π【解答】解:连结BC.∵∠COB=2∠CDB=60°,又∵OB=OC,∴△OBC是等边三角形.∵E为OB的中点,∴CD⊥AB,∴∠OCE=30°,CE=DE,∴OE=OC=OB=2,OC=4.S阴影==.故选:D.9.(4分)一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.B.C.D.【解答】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:=.故选:C.10.(4分)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2,其中正确结论是()A.②④B.①④C.①③D.②③【解答】解:∵抛物线的开口方向向下,∴a<0;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,故①正确由图象可知:对称轴x=﹣=﹣1,∴2a﹣b=0,故②错误;∵抛物线与y轴的交点在y轴的正半轴上,∴c>0由图象可知:当x=1时y=0,∴a+b+c=0;故③错误;由图象可知:若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2,故④正确.故选:B.二、填空题(每小题5分,共20分)11.(5分)在x2□2xy□y2的空格□中,分别填上“+”或“﹣”,在所得的代数式中,能构成完全平方式的概率是50%.【解答】解:能有的共有4种情况,能构成平方式的有两种情况.==50%.故能构成完全平方式的概率是50%.故答案为:50%.12.(5分)如图,PA、PB切⊙O于A、B两点,若∠APB=60°,⊙O的半径为3,则阴影部分的面积为9﹣3π.【解答】解:连接OA,OB,OP.根据切线长定理得∠APO=30°,∴OP=2OA=6,AP=OP•cos30°=3,∠AOP=60°.∴四边形的面积=2S=2××3×3=9;扇形的面积是=3π,△AOP∴阴影部分的面积是9﹣3π.13.(5分)如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x﹣m)2+n的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为﹣3,则点D的横坐标最大值为8.【解答】解:当点C横坐标为﹣3时,抛物线顶点为A(1,4),对称轴为x=1,此时D点横坐标为5,则CD=8;当抛物线顶点为B(4,4)时,抛物线对称轴为x=4,故C(0,0),D(8,0);由于此时D点横坐标最大,故点D的横坐标最大值为8;故答案为:8.14.(5分)如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边=6+3.其中正确的结论是①②③.形AOBO′【解答】解:连接OO′,如图∵线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,∴BO′=BO=4,∠OBO′=60°,∵△ABC为等边三角形,∴BA=BC,∠ABC=60°,∴△BO′A可以由△BOC绕点B逆时针旋转60°得到,则①正确;∵BO′=BO=4,∠OBO′=60°,∴△BOO′为等边三角形,∴∠BOO′=60°,OO′=OB=4,所以②正确;∵△BO′A可以由△BOC绕点B逆时针旋转60°得到,∴AO′=OC=5,在△AOO′中,∵OA=3,OO′=4,AO′=5,∴OA2+OO′2=AO′2,∴△AOO′为直角三角形,∠AOO′=90°,∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,所以③正确;S四边形AOBO′=S△AOO′+S△BOO′=×3×4+×42=6+4,所以④错误.故答案为①②③.三、解答题(每小题8分,共24分)15.(8分)解方程:(1)2x2﹣4x﹣1=0(2)3(x﹣2)2=x(x﹣2)【解答】解:(1)△=(﹣4)2﹣4×2×(﹣1)=24,x==所以x1=,x2=;(2)3(x﹣2)2﹣x(x﹣2)=0,(x﹣2)(3x﹣6﹣x)=0,x﹣2=0或3x﹣6﹣x=0,所以x1=2,x2=3.16.(8分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C,平移ABC,若A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2,请直接写出旋转中心的坐标.【解答】解:(1)△A1B1C1如图所示,△A2B2C2如图所示;(2)如图,旋转中心为(,﹣1);17.(8分)如图所示,⊙O的直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=60°,求弦CD的长.【解答】解:作OF⊥CD于点F,连接OD.∵AE=2,EB=6,∴AB=AE+BE=8,半径长是4.∵在直角△OEF中,OE=OA﹣AE=4﹣2=2,sin∠DEB=,∴OF=OE•sin∠DEB=2×=.在直角△ODF中,∵DF==,∴CD=2DF=2.四、(每小题10分,共20分)18.(10分)如图,抛物线y=x2+bx+c经过A(﹣1,0),B(4,5)两点,解答下列问题:(1)求抛物线的解析式(2)若抛物线的顶点为D,对称轴所在直线交x 轴于点E,连接AD,点F为AD 中点,求出线段EF的长.【解答】解:(1)∵抛物线y=x2+bx+c经过点A(﹣1,0),B(4,5)两点,∴,解得,∴抛物线的解析式为y=x2﹣2x﹣3;(2)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点D的坐标为(1,﹣4),∴AD==2,∵DE⊥x轴,点F为AD 中点,∴EF=AD=×2=.19.(10分)为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y(件)与销售单价x(元)满足一次函数关系:y=﹣10x+1200.(1)求出利润S(元)与销售单价x(元)之间的关系式(利润=销售额﹣成本);(2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?【解答】解:(1)S=y(x﹣40)=(x﹣40)(﹣10x+1200)=﹣10x2+1600x﹣48000;(2)S=﹣10x2+1600x﹣48000=﹣10(x﹣80)2+16000,则当销售单价定为80元时,工厂每天获得的利润最大,最大利润是16000元.五、列方程解应用题(本题满分10分)20.(10分)在“全民阅读”活动中,某中学对全校学生中坚持每天半小时阅读的人数进行了调查,2012年全校坚持每天半小时阅读有1000名学生,2013年全校坚持每天半小时阅读人数比2012年增加10%,2014年全校坚持每天半小时阅读人数比2013年增加340人.(1)求2014年全校坚持每天半小时阅读学生人数;(2)求从2012年到2014年全校坚持每天半小时阅读的人数的平均增长率.【解答】解:(1)由题意,得2013年全校学生人数为:1000×(1+10%)=1100人,∴2014年全校学生人数为:1100+340=1440人;(2)设从2012年到2014年全校坚持每天半小时阅读的人数的平均增长率为x,根据题意得:1000(1+x)2=1440,解得:x=0.2=20%或x=﹣2.2(舍去).答:从2012年到2014年全校坚持每天半小时阅读的人数的平均增长率为20%.六、证明题(本题满分10分)21.(10分)已知:如图所示,在Rt△ABC中,∠C=90°,点O在AB上,以O 为圆心,OA长为半径的圆与AC,AB分别交于点D,E,且∠CBD=∠A,求证:BD与⊙O相切.【解答】证明:连接OD,∵OA=OD,∴∠ODA=∠A=∠CBD,∵∠C=90°,∴∠ODA+∠BDC=∠CBD+∠BDC=90°,∴∠ODB=90°,即OD⊥BD,∴BD与⊙O相切.七、(本题满分12分)22.(12分)如图,在平面直角坐标系中,点B的坐标是(2,2),将线段OB 绕点O顺时针旋转120°,点B的对应点是点B.(1)①求点B绕点O旋转到点B1所经过的路程长;②在图中画出,并直接写出点B1的坐标是(0,﹣4);(2)有7个球除了编号不同外,其他均相同,李南和王易设计了如下的一个规则:→装入不透明的甲袋→装入不透明的乙袋,李南从甲袋中,王易从乙袋中,各自随机地摸出一个球(不放回),把李南摸出的球的编号作为横坐标x,把王易摸出的球的编号作为纵坐标y,用列表法或画树状图法表示出(x,y)的所有可能出现的结果;(3)李南和王易各取一次小球所确定的点(x,y)落在上的概率是.【解答】解:(1)①作BH⊥x轴于点H,∵点B的坐标是(2,2),∴BH=2,OH=2,∴OB==4,∴B绕点O旋转到点B1所经过的路程长==;②如图,为所作,点B1的坐标是(0,﹣4);(2)画树状图为:共有12种等可能的结果数;(3)点(x,y)落在上的结果数为2,所以点(x,y)落在上的概率==.故答案为(0,﹣4),.八、(本题满分14分)23.(14分)在Rt△ABC中,∠A=90°,AC=AB=6,D,E分别是AB,AC的中点,若等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1,设旋转角为α(0<α≤180°),记直线BD1与CE1的交点为P.(1)如图1,当α=90°时,线段BD1的长等于3,线段CE1的长等于3;(直接填写结果)(2)如图2,当α=135°时,求证:BD1=CE1,且BD1⊥CE1;(3)①设BC的中点为M,则线段PM的长为3;②点P到AB所在直线的距离的最大值为.(直接填写结果)【解答】解:(1)∵∠CAB=90°,AC=AB=6,D,E分别是边AB,AC的中点,∴AE=AD=3,∵等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1,设旋转角为α(0<α≤180°),第21页(共23页)∴当α=90°时,AE1=3,∠E1AE=90°,∴BD1==3,E1C==3;故答案为:3,3;(2)证明:当α=135°时,如图2,∵Rt△AD1E是由Rt△ADE绕点A逆时针旋转135°得到,∴AD1=AE1,∠D1AB=∠E1AC=135°,在△D1AB和△E1AC中∵,∴△D1AB≌△E1AC(SAS),∴BD1=CE1,且∠D1BA=∠E1CA,记直线BD1与AC交于点F,∴∠BFA=∠CFP,∴∠CPF=∠FAB=90°,∴BD1⊥CE1;(3)解:①如图2,∵∠CPB=∠CAB=90°,BC的中点为M,∴PM=BC,∴PM==3,故答案为:3;②如图3,作PG⊥AB,交AB所在直线于点G,∵D1,E1在以A为圆心,AD为半径的圆上,当BD1所在直线与⊙A相切时,直线BD1与CE1的交点P到直线AB的距离最大,此时四边形AD1PE1是正方形,PD1=3,则BD1==3,故∠ABP=30°,则PB=3+3,故点P到AB所在直线的距离的最大值为:PG=.故答案为:.第22页(共23页)第23页(共23页)。
2016-2017学年安徽省马鞍山市和县九年级(上)期末数学试卷-答案

2016-2017学年安徽省马鞍山市和县九年级(上)期末数学试卷【答案】1. B2. A3. C4. D5. A6. D7. A8. D9. C10. B11.12.13. 814.15. 解:,所以,;,,或,所以,.16. 解:如图所示,如图所示;如图,旋转中心为,;17. 解:作于点F,连接OD.,,,半径长是4.在直角中,,,.在直角中,,.18. 解:抛物线经过点,,,两点,,解得,抛物线的解析式为;,顶点D的坐标为,,,轴,点F为AD中点,.19. 解:;,则当销售单价定为80元时,工厂每天获得的利润最大,最大利润是16000元.20. 解:由题意,得2013年全校学生人数为:人,年全校学生人数为:人;设从2012年到2014年全校坚持每天半小时阅读的人数的平均增长率为x,根据题意得:,解得:或舍去.答:从2012年到2014年全校坚持每天半小时阅读的人数的平均增长率为.21. 证明:连接OD,,,,,,即,与相切.22. ,;23. ;;;【解析】1. 解:A、不是一元二次方程,故此选项错误;B、是一元二次方程,故此选项正确;C、不是一元二次方程,故此选项错误;D、不是一元二次方程,故此选项错误;故选:B.根据一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程进行分析.此题主要考查了一元二次方程定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.2. 解:过平面上不在同一直线上的三点可以作一个圆,错误;平分弦不是直径的直径垂直于弦,故错误;在同圆或等圆中,相等的弦所对的圆周角相等,错误;三角形的内心到三角形各边的距离相等,正确,正确的有1个,故选A.利用确定圆的条件、垂径定理、圆周角定理及三角形的内心的性质分别判断后即可确定正确的选项;本题考查了确定圆的条件、垂径定理、圆周角定理及三角形的内心的性质等知识,解题的关键是能够了解有关的定义及定理,难度不大.3. 解:A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误;故选C.根据轴对称图形及中心对称图形的定义,结合所给图形进行判断即可.本题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合,难度适中.4. 解:如图,点的坐标为,.故选D.根据网格结构找出点A、B旋转后的对应点、的位置,然后与点O顺次连接即可,再根据平面直角坐标系写出点的坐标.本题考查了坐标与图形变化旋转,熟练掌握网格结构作出旋转后的三角形,利用数形结合的思想求解更简便.5. 解:把方程的常数项移到等号的右边,得到,方程两边同时加上一次项系数一半的平方,得到,配方得.故选:A.在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数的一半的平方.配方法的一般步骤:把常数项移到等号的右边;把二次项的系数化为1;等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.6. 解:抛物线的顶点坐标为,,向下平移2个单位,纵坐标变为,向右平移1个单位,横坐标变为,平移后的抛物线顶点坐标为,,所得到的抛物线是.故选D.先写出平移前的抛物线的顶点坐标,然后根据向下平移纵坐标减,向右平移横坐标加求出平移后的抛物线的顶点坐标,再利用顶点式解析式写出即可.本题考查了二次函数图象与几何变换,利用顶点的变化确定函数图象的变化求解更加简便,且容易理解.7. 解:设原正方形的边长为xm,依题意有,解得:,不合题意,舍去即:原正方形的边长7m.故选:A.本题可设原正方形的边长为xm,则剩余的空地长为,宽为根据长方形的面积公式方程可列出,进而可求出原正方形的边长.本题考查了一元二次方程的应用学生应熟记长方形的面积公式另外求得剩余的空地的长和宽是解决本题的关键.8. 解:连结BC.,又,是等边三角形.为OB的中点,,,,,..阴影故选D.首先证明,则可以证得 ≌ ,则阴影半圆扇形,利用扇形的面积公式即可求解.本题考查了扇形的面积公式,证明 ≌ ,得到阴影半圆扇形是本题的关键.9. 解:画树状图得:共有12种等可能的结果,两次都摸到白球的有2种情况,两次都摸到白球的概率是:.故答案为:C.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到白球的情况,再利用概率公式即可求得答案.本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件用到的知识点为:概率所求情况数与总情况数之比.10. 解:抛物线的开口方向向下,;抛物线与x轴有两个交点,,即,故正确由图象可知:对称轴,,故错误;抛物线与y轴的交点在y轴的正半轴上,由图象可知:当时,;故错误;由图象可知:若点,、,为函数图象上的两点,则,故正确.故选B由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.此题考查二次函数的性质,解答本题关键是掌握二次函数系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.11. 解:能有的共有4种情况,能构成平方式的有两种情况..故能构成完全平方式的概率是.故答案为:.能构成完全平方式的情况有,;,两种情况,共有的情况为,;,;,;,共四种情况.本题考查完全平方式的概念,求出构成完全平方式有几种情况,能填几种情况,从而可求出概率.12. 解:连接,,.根据切线长定理得,,,.四边形的面积;扇形的面积是,阴影部分的面积是.阴影部分的面积等于四边形OAPB的面积减去扇形AOB的面积.此题综合运用了切线长定理、切线的性质定理以及的直角三角形的性质关键是熟练运用扇形的面积计算公式,能够把四边形的面积转化为三角形的面积计算.13. 解:当点C横坐标为时,抛物线顶点为,,对称轴为,此时D点横坐标为5,则;当抛物线顶点为,时,抛物线对称轴为,且,故,,,;由于此时D点横坐标最大,故点D的横坐标最大值为8;故答案为:8.当C点横坐标最小时,抛物线顶点必为,,根据此时抛物线的对称轴,可判断出CD间的距离;当D点横坐标最大时,抛物线顶点为,,再根据此时抛物线的对称轴及CD的长,可判断出D点横坐标最大值.本题主要考查了二次函数的性质,用待定系数法求二次函数的解析式,用直接开平方法解一元二次方程等知识点,理解题意并根据已知求二次函数的解析式是解此题的关键,此题是一个比较典型的题目.14. 解:连接,如图线段BO以点B为旋转中心逆时针旋转得到线段,,,为等边三角形,,,可以由绕点B逆时针旋转得到,则正确;,,为等边三角形,,,所以正确;可以由绕点B逆时针旋转得到,,在中,,,,,为直角三角形,,,所以正确;,所以错误.四边形故答案为.连接,如图,先利用旋转的性质得,,再利用为等边三角形得到,,则根据旋转的定义可判断可以由绕点B逆时针旋转得到;接着证明为等边三角形得到,;根据旋转的性质得到,利用勾股定理的逆定理证明为直角三角形,,于是得到;最后利用四边形可计算出四边形.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等也考查了等边三角形的性质和勾股定理的逆定理.15. 利用求根公式法解方程;先移项得到,然后利用因式分解法解方程.本题考查了解一元二次方程因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了数学转化思想也考查了公式法解一元二次方程.16. 根据网格结构找出点A、B、C旋转后的对应点、、的位置,然后顺次连接即可;找出平移后的对应点、、的位置,然后顺次连接即可;根据旋转的定义结合图形,连接两对对应点,交点即为旋转中心.本题考查了利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.17. 作于点F,连接OD,直角中利用三角函数即可求得OF的长,然后在直角中利用勾股定理即可求得DF的长,然后根据垂径定理可以得到,从而求解.本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.18. 把点A、B的坐标代入抛物线解析式,利用待定系数法求解即可;根据抛物线解析式求出顶点D的坐标,再根据两点间的距离公式求出AD的长度,然后根据直角三角形斜边上的中线等于斜边的一半即可得解.本题考查了待定系数法求二次函数解析式,两点间的距离公式,二次函数的性质,以及直角三角形斜边上的中线等于斜边的一半的性质,先求出b、c的值得到函数解析式是解题的关键.19. 根据“总利润单件的利润销售量”列出二次函数关系式即可;将得到的二次函数配方后即可确定最大利润.此题主要考查了二次函数的性质在实际生活中的应用,最大销售利润的问题常利函数的增减性来解答,要注意应该在自变量的取值范围内求最大值或最小值.20. 根据题意,先求出2013年全校的学生人数就可以求出2014年的学生人数;根据增长后的量增长前的量增长率设平均每年的增长率是x,列出方程求解即可.本题是一道数学应用题中的增长率问题的实际问题,考查了列一元二次方程解实际问题的运用及一元二次方程的解法的运用,解答中对结果验根是否符合题意是解答的关键.21. 连接OD,结合条件可证得,可得,则可证得结论.本题主要考查切线的判定,掌握切线的判定方法是解题的关键,即有切点时连接圆心和切点,证明垂直,无切点时,作距离证明距离等于半径.22. 解:作轴于点H,点B的坐标是,,,,,绕点O旋转到点所经过的路程长;如图,为所作,点的坐标是,;画树状图为:共有12种等可能的结果数;点,落在上的结果数为2,所以点,落在上的概率.故答案为,,.先利用勾股定理计算出OB,然后根据弧长公式计算点B绕点O旋转到点所经过的路程长;由得,则线段OB绕点O顺时针旋转,点B的对应点是点在y轴的负半轴上,于是可得到,再写出点的坐标;利用树状图展示所有12种等可能的结果数;计算各点到原点的距离可判断点,落在上的结果数为2,然后根据概率公式求解.本题考查了作图旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形也考查了弧长公式和树状图法.23. 解:,,,分别是边,的中点,,等腰绕点A逆时针旋转,得到等腰,设旋转角为,当时,,,,;故答案为:,;证明:当时,如图2,是由绕点A逆时针旋转得到,,,在和中,≌ ,,且,记直线与AC交于点F,,,;解:如图,,的中点为M,,,故答案为:;如图3,作,交AB所在直线于点G,,在以A为圆心,AD为半径的圆上,当所在直线与相切时,直线与的交点P到直线AB的距离最大,此时四边形是正方形,,则,故,则,故点P到AB所在直线的距离的最大值为:.故答案为:.利用等腰直角三角形的性质结合勾股定理分别得出的长和的长;根据旋转的性质得出,,进而求出 ≌ ,即可得出答案;直接利用直角三角形的性质得出得出答案即可;首先作,交AB所在直线于点G,则,在以A为圆心,AD为半径的圆上,当所在直线与相切时,直线与的交点P到直线AB的距离最大,此时四边形是正方形,进而求出PG的长.此题主要考查了几何变换以及等腰腰直角三角形的性质和勾股定理以及切线的性质等知识,根据题意得出PG的最长时P点的位置是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安徽省马鞍山市2017届九年级上册数学期末
考试试卷
一、单选题
• 1. 在平面直角坐标系中,将二次函数 y=2x2
的图象向上平移2个单位,所得图象的表达式为()
A、y=2x2?2
B、y=2x2+2
C、y=2(x?2)2
D、y=2(x+2)2
• 2. 三角形在方格纸中的位置如图所示,则的值是()
A、43
B、- 34
C、35
D、45
• 3.
如图,在长为8cm、宽为4cm的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下的矩形面积是()
A、2 cm2
B、4 cm2
C、8 cm2
D、16 cm2
• 4. 一个直角三角形的两直角边长分别为 x , y ,其面积为2,则表示 y 与 x 之间关系的图象大致为()
A、 B、 C、 D、
不符合题意
• 5. 如图,已知等边△ABC 的边长为2, DE 是它的中位线.给出3个结论:
⑴ DE=1 ;
⑵△CDE∽△CAB ;
⑶△CDE 的面积与△CAB 的面积之比为1∶4.其中正确的有()
A、0个
B、1个
C、2个
D、3个
•
x …-1 0 1 3 …
y …-3 1 3 1 …
则下列判断中正确的是()
A、拋物线开口向上
B、拋物线与 y 轴交于负半轴
C、当 x=4 时, y>0
D、方程
ax2+bx+c=0 的正根在3与4之间
•7. 如图,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4 m .如果在坡度为0.75的山坡上种树,也要求株距为4 m
,那么相邻两树间的坡面距离为()
A、5 m
B、6 m
C、7 m
D、8 m
•8. 如图,△ABC 与△EDF ,其中 BC = DF , AC=EF ,∠ACB=65°,
△ABC 的面
∠EFD=115°.记积为 S1 ,△EDF 的面积为 S2
,则下列结论正确的是()
A、S1>S2
B、S1<S2
C、S1=S2
D、无法确定
•9. 如图,在等边△ABC 中, D , E , F 分别是 BC , AC , AB 上的点,DE⊥AC , EF⊥AB , FD⊥BC ,则△DEF 的面积与△ABC 的面积之比等于()
A、1∶3
B、2∶3
C、3 ∶2
D、3 ∶3
•10. 如图,一次函数 y1=?x 与二次函数 y2=ax2+bx+c 的图象相交于 P , Q 两点,则函数 y=ax2+(b+1)x+c 的图象可能为()
A、 B、 C、 D、
二、填空题
•11. 若a5=b3=c4≠0,则 a+b+cb= .
•12.
一根竹竿的高2米,影长为1.5米,同一时刻,某住宅楼的影长是30米,则此楼的高度为.
•13. 函数 y=?x2?4x+6 的最大值是.
•14. 计算: sin45°?cos30° = .
•15. 如图,已知△ABO 顶点 A(?3,6) ,以原点 O 为位似中心,把△ABO 缩小到原来的 13 ,则与点 A 对应的点 A' 的坐标是.
•16. 如图,锐角△ABC 中, BC=6 , S△ABC=12 , M、N 分别在边 AB、AC 上,且 MN ∥ BC ,以 MN 为边向下作矩形 MPQN ,设 MN=x ,矩形 MPQN
的面积为 y(y>0),则 y 关于 x 的函数表达式为.
•17. 如图,点P是△ABC 内一点,过点P分别作直线平行于△ABC 的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是1,9和49.则△ABC的面积是.
•18. 已知二次函数y=ax2+bx+c ( a≠0 )的图象如上图所示,给出4个结论:
① b2?4ac>0 ;② abc<0 ;③ 8a+c>0 ;④ 9a+3b+c<0 .其中正确的是
(把正确结论的序号都填上).
三、解答题
•19. 已知二次函数图象的顶点为 A(1 , ?4) ,且过点 B(3 , 0)
.求该二次函数的表达式.
•20. 如图,已知 A(-4,2),B(n,-4) 是反比例函数 y=mx 的图象与一次函数y=kx+b 的图象的两个交点.
(1)、求此反比例函数和一次函数的表达式;
(2)、根据图象写出不等式 kx+b>mx 的解集.
•21. 如图,△ABC 是等边三角形,点 D , B , C , E 在同一条直线上,且∠DAE=120°.
(1)、请直接写出图中相似的三角形;
(2)、探究 DB , BC , EC 之间的关系,并说明理由.
•22. 如图,某人在 B 处仰望山顶 A ,测得仰角∠B=31°
,再往山的方向(水平方向)前进 80m 至 C 处仰望山顶,测得仰角
∠ACE=39°.求这座山的高度(人的身高忽略不计). (参考数据:tan31o ≈ 35 ,sin31o ≈ 12 ,tan39o ≈ 911 ,sin39o ≈ 711 )
•23. 某汽车经销商购进 A , B 两种型号的低排量汽车,其中 A
型汽车的进货单价比 B 型汽车的进货单价多2万元,经销商花50万元购进 A 型汽车的数量与花40万元购进 B 型汽车的数量相等.销售中发现 A
型汽车的每周销量 yA (台)与售价 x (万元/台)满足函数关系式 yA=﹣x+20 ,
B 型汽车的每周销量 yB (台)与售价 x (万元/台)满足函数关系式 yB=﹣x+14
.
(1)、求 A , B 两种型号的汽车的进货单价;
(2)、已知 A 型汽车的售价比 B 型汽车的售价高2万元/台,设 B 型汽车售价为
t 万元/台.每周销售这两种车的总利润为 W 万元,求 W 与 t 的函数关系式,
A , B
两种型号的汽车售价各为多少时,每周销售这两种车的总利润最大?最大总利润是多少万元?
•24. 如图1,△ABC 与△EFD 为等腰直角三角形, AC 与 DE 重合,AB=AC=EF=9 ,∠BAC=∠DEF=90°.固定△ABC ,将△EFD 绕点 A 顺时针旋转,当 DF 边与 AB
边重合时,旋转终止.现不考虑旋转开始和结束时重合的情况,设 DE , DF (或它们的延长线)分别交 BC (或它们的延长线)于点 G , H ,如图2.
(1)、证明:△AGC∽△HAB ;
(2)、当 CG 为何值时,△AGH 是等腰三角形?。