图论及其应用

合集下载

图论及其应用

图论及其应用

图论及其应用简介图论是计算机科学中的一个重要分支,研究的对象是由边与顶点组成的图形结构以及与其相关的问题和算法。

图论的应用广泛,涵盖了计算机科学、网络科学、物理学、社会学、生物学等多个领域。

本文将介绍图论的基本概念、常用算法以及一些实际的应用案例。

图的基本概念图由顶点(Vertex)和边(Edge)组成,记作G=(V, E),其中V为顶点的集合,E为边的集合。

图可以分为有向图和无向图两种类型。

有向图有向图中的边具有方向性,即从一个顶点到另一个顶点的边有明确的起点和终点。

有向图可以表示一种有序的关系,比如A到B有一条边,但B到A可能没有边。

有向图的表示可以用邻接矩阵或邻接表来表示。

无向图无向图中的边没有方向性,任意两个顶点之间都有相互连接的边。

无向图可以表示一种无序的关系,比如A与B有一条边,那么B与A之间也有一条边。

无向图的表示通常使用邻接矩阵或邻接表。

常用图论算法图论中有许多经典的算法,其中一些常用的算法包括:深度优先搜索(DFS)深度优先搜索是一种用于遍历或搜索图的算法。

通过从起始顶点开始,沿着一条路径尽可能深入图中的顶点,直到无法再继续前进时,返回上一个顶点并尝试下一条路径的方式。

DFS可以用于判断图是否连通,寻找路径以及检测环等。

广度优先搜索(BFS)广度优先搜索也是一种用于遍历或搜索图的算法。

不同于深度优先搜索,广度优先搜索逐层遍历顶点,先访问离起始顶点最近的顶点,然后依次访问与起始顶点距离为2的顶点,以此类推。

BFS可以用于寻找最短路径、搜索最近的节点等。

最短路径算法最短路径算法用于计算图中两个顶点之间的最短路径。

其中最著名的算法是迪杰斯特拉算法(Dijkstra’s A lgorithm)和弗洛伊德算法(Floyd’s Algorithm)。

迪杰斯特拉算法适用于没有负权边的图,而弗洛伊德算法可以处理带有负权边的图。

最小生成树算法最小生成树算法用于找到一个连通图的最小的生成树。

其中最常用的算法是普里姆算法(Prim’s Algorithm)和克鲁斯卡尔算法(Kruskal’s Algorithm)。

图论思想在生活中的运用

图论思想在生活中的运用

图论思想在生活中的运用
图论思想在生活中的应用很多,例如:
1、交通出行:在城市的出行,经常会用到从一个地点到另一地点的最短路径,而解决此问题最好的方法就是使用图论,用最短路径算法来找到最优路线,比如驾车、打车、乘地铁等都会使用图论来算出最短路径。

2、网络传输:现在的互联网系统都是使用图论的方法来进行网络传输。

当多台计算机连接到网络时,都会形成一个图,通过图论,可以找到最佳的传输路径,以优化路径走向,从而提高网络的传输速度。

3、调度系统:调度系统中的人员调度及运输路线调度,也是依靠图论思想。

人员调度时,可以建立一个移动关系图,找到每一步最短路径,从而得到最佳的调动方案;而运输路线则可通过最短路线算法,计算出从一个点到另一点最短的路径,从而达到节约时间,提高工作效率的效果。

4、信息检索:在海量数据的环境下检索合适的信息,也是利用图论来解决的。

例如搜索引擎,会建立一个链接关系图,根据各页面间的链接关系来确定最优的信息检索结果。

图论及其应用

图论及其应用
χ(G)表示。若χ(G)=k,就称G是k-点可 色图。
顶点染色
定理:对于任何一个图χ(G)≤ω(G)。 ω(G)为图G的团数,用来描述χ(G)的下 界,其中ω(G)=max{k|Kk属于G}。
顶点染色
给定图G=(V,E)的一个k-点染色。用Vi表示G中染以 第i色的顶点集合(i=1,2,…,k),则每个Vi都是G 的独立集。因而G的每一个K-点染色对应V(G)的一个划 分[V1,V2,…,Vk],其中每一个Vi是一个独立集。反之 ,给出V(G)的这样一个划分(V1,V2,…,Vk),其中每 一个Vi均是独立集(1≤i≤k),则相应得到G的一个k点染色,称V(G)的这样一个划分为G的一个色划分,每 一个Vi称为色类。因此,G的色数χ(G)就是使这种划 分成为可能最小自然数k。
推论:若G是p(G) 3且g(G) 3的平图,则 q(G) g(G) ( p(G) 2)。 g(G) 2
平面图的性质
推论:任何一个简单平面图G,有 q(G)≤3p(G)-6
推论:设G是简单平面图,则δ(G)≥6.
定理:仅存在5种正多面体,即正四面体、正 方体、正八面体、正十二面体和正二十面体。
定理:每一个平面的色数不超过5
边染色
定义:无环图G的一个正常染色k-边染色(简 称k-边染色)是指一个映射φ:E(G)→{1,2, …,k},使对G中任意两条相邻的边e1和e2,有 φ(e1)≠φ(e2)。若G有一个正常k-边染色,则 称G是k-边染色的。G的边色数是指G为k-边染 色的最小整数k的值,记为
χ'(G)。若χ'(G)=k,则称G是k-边可色的。
边染色
设G有一个正常k-边染色,置Ei为G中所有染 以第i种颜色的边的全体,则E1,E2,…,Ek 是G的k个边不相交的对集,并且

图论及其应用习题答案

图论及其应用习题答案

图论及其应用习题答案图论及其应用习题答案图论是数学的一个分支,研究的是图的性质和图之间的关系。

图是由节点和边组成的,节点表示对象,边表示对象之间的关系。

图论在计算机科学、电子工程、物理学等领域有着广泛的应用。

下面是一些图论习题的解答,希望对读者有所帮助。

1. 问题:给定一个无向图G,求图中的最大连通子图的节点数。

解答:最大连通子图的节点数等于图中的连通分量个数。

连通分量是指在图中,任意两个节点之间存在路径相连。

我们可以使用深度优先搜索(DFS)或广度优先搜索(BFS)来遍历图,统计连通分量的个数。

2. 问题:给定一个有向图G,判断是否存在从节点A到节点B的路径。

解答:我们可以使用深度优先搜索(DFS)或广度优先搜索(BFS)来遍历图,查找从节点A到节点B的路径。

如果能够找到一条路径,则存在从节点A到节点B的路径;否则,不存在。

3. 问题:给定一个有向图G,判断是否存在环。

解答:我们可以使用深度优先搜索(DFS)或广度优先搜索(BFS)来遍历图,同时记录遍历过程中的访问状态。

如果在搜索过程中遇到已经访问过的节点,则存在环;否则,不存在。

4. 问题:给定一个加权无向图G,求图中的最小生成树。

解答:最小生成树是指在无向图中,选择一部分边,使得这些边连接了图中的所有节点,并且总权重最小。

我们可以使用Prim算法或Kruskal算法来求解最小生成树。

5. 问题:给定一个有向图G,求图中的拓扑排序。

解答:拓扑排序是指将有向图中的节点线性排序,使得对于任意一条有向边(u, v),节点u在排序中出现在节点v之前。

我们可以使用深度优先搜索(DFS)或广度优先搜索(BFS)来遍历图,同时记录节点的访问顺序,得到拓扑排序。

6. 问题:给定一个加权有向图G和两个节点A、B,求从节点A到节点B的最短路径。

解答:我们可以使用Dijkstra算法或Bellman-Ford算法来求解从节点A到节点B的最短路径。

这些算法会根据边的权重来计算最短路径。

数学中的图论及其应用

数学中的图论及其应用

数学中的图论及其应用图论是一门数学基础理论,用来描述事物之间的关联。

图论主要研究节点之间的连接关系和路径问题。

它的研究对象是图,图是由节点和边组成的,边表示节点之间的连接关系,节点表示事物。

图论是一种十分实用的数学工具,它是计算机科学、物理学、化学、生物学、管理学等领域的重要工具,也是人工智能和网络科学等领域的基础。

一、图论的基本概念1.1 图图是由节点和边组成的,表示事物之间的关系。

节点是图中的基本元素,用点或圆圈表示;边是连接节点的元素,用线或箭头表示。

1.2 有向图和无向图有向图是指边有方向的图,每一条边用有向箭头表示;无向图是指边没有方向的图,每一条边用线表示。

1.3 节点的度和邻居节点节点的度是指与节点相连的边的数量,具有相同度的节点称为同阶节点;邻居节点是指与节点相连的节点。

1.4 遍历和路径遍历是指从起点出发访问图中所有节点的过程;路径是指跨越边连接的节点序列,路径长是指路径中边的数量。

二、图论的应用2.1 网络科学网络科学是研究节点和边之间的关系,以及节点和边之间的动态演化的学科。

网络科学中的图模型是节点和边的结合体,其应用包括社会网络、生物网络和物理网络等。

社会网络是指人们之间的社交网络,它描述了人与人之间的关系。

社交网络可以用图模型表示,节点表示人,边表示人与人之间的互动关系,例如朋友关系、家庭关系等。

生物网络是指由生物分子构成的网络,例如蛋白质相互作用网络、代谢网络等。

在生物网络中,节点可以表示蛋白质或基因,边可以表示蛋白质或基因之间相互作用的联系,这些联系可以进一步探究生物进化和疾病发生的机理。

物理网络是指由物理粒子构成的网络,例如网络电子、量子态等。

在物理网络中,节点可以表示量子比特或电子,边可以表示色散力或超导电性等物理现象。

2.2 计算机科学图论在计算机科学中的应用非常广泛,例如数据结构、算法设计和网络安全等方面。

图论在计算机科学中的经典应用包括最短路径算法、最小生成树算法等。

图论及其应用

图论及其应用

Prim算法及思想
• • • • • 首先我们将V分成两部分U,S U∩S=∅ U∪S=V 一开始S中只有任意以个节点 每次我们枚举每条U,S之间的边权最小的边S中 这条边的端点 删除并加入U • 我们可以每次更新S中点的这个值不需要每次枚 举边复杂度O(n^2) • 如果使用堆优化可以做到O(nlogn+nlogm)
tarjan算法
tarjan算法
拓扑排序
• 每次选择一个入度为0的点加入队列,然后 删掉这个点的所有出度
小试身手
• APIO2009 atm • 有一个城市有若干条有向道路 • 一个小偷从一个点出发想偷这个城ATM机, 他从一个点出发,最后偷完之后需要到一 个酒吧庆祝,给定道路情况,每个路口atm 的钱数和有没有酒吧,求最多能偷多少钱。 • n<=100000
小试身手
对于n<=1000我们依然可以直接暴力建出图 来进行Dijsktra算法但是对于n<=10000的测 试点,所有边一共有10^10条,我们无法存下 来但是我们发现,只有x坐标相邻和y坐标相 邻的边才有意义(为什么?),然后就可以建出 图来用堆优化的Dij或者spfa过掉
小试身手
• 给你一个n个点的图,小Q有q个询问,每次 询问任意两点之间的最短路 • n<=200,q<=4000000
Байду номын сангаас
最短路算法
• 如果我们需要知道所有的点对之间的最短 路,可以使用floyed的传递闭包方法。 • floyed算法思想: • 我们每次选择一个中间点,然后枚举起点 和终点,用通过中间点的最短路径更新起 点和终点之间的最短路径时间复杂度O(n^3)
floyed代码实现
• 代码非常简单 • 注意枚举顺序

图论及其应用

图论及其应用

一个最小边割集。
连通度
定义:如果0<k≤λ(G),则称G是k-边连通图。
定理:图G是k-边连通图当且仅当对E(G)的任 意一个子集E1,若|E1|≤k-1,则G\E1仍是连通 图。
连通度
定理:对p 简单图G,有
(1) (G) (G),(G) (G); (2) (G) p 1,等号成立当且仅当G Kp; (3)(G) p 1,等号成立当且仅当G Kp; (4)对G的任意一个顶点u, (G) 1 (G u); (5)对G的任意一条边e,(G) 1 (G e) (G).
(v0-vk)路P,且E(P) E(W ) 。
若P是一条路,x与y为顶点,用
表示这条路。
当G为简单图时,W=v0e1v1e2v2···vk-1ekvk,可简写为 W=v0v1v2···vk-1vk。
路和圈
对于图G中两个给定的顶点u和v,若存在(u-v)路,则 必存在长度最短的(u-v)路P0,称P0的长度为u,v的 距离,记为dG(u,v)或d(u,v)。
Байду номын сангаас
连通图
定理:设D是连通的有向图,则D是强连通的当 且仅当D的每一条弧都含在某一有向圈中。
连通度
定义:设连通图G=(V,E)不是完全图,V1是V(G)的一个
非空真子集,若G\V1非连通,则称V1是G的点割集。若点 割集V1含有k个顶点,也称V1是G的k-点割集。
定义:图G是p 阶连通图,令
(G)
表示n个点的回路。
有向图D的有向途径是指交替地出现点和弧的一个有限非空序列
W=v0a1v1a2v2···akvk ,对于i=1,2,···,k,弧ai的起点是vi1,终点是vi,简称W是一条(v0-vk)有向途径。在严格有向图中, 可用v0v1···vk表示有向途径。

图论及其应用—典型图

图论及其应用—典型图
定理4.3.1:若G是Hamilton图,则对V(G)的每 一个非空真子集S,均有w(G\S)≤|S|(必要条 件)
4.3Hamilton图
定理4.3.2:设G是p(G)≥3的图,如果G中任意 两个不相邻的顶点u和v,均有 dG(u)+dG(v)≥p(G), 则G是若G是Hamilton图。
推论4.3.3:若G是具有p(≥3)个顶点的简单图, 且每个顶点的度至少是p/2,则G是Hamilton图 。
定理5.2.5:对k≥1,2k-正则图G有2-因子。 注:若H是G的k-正则生成子图,则称H是G的 k-因子。
5.3二分图最大对集算法
匈牙利算法。
k
w(C)定 义 为 w(ei)。 i 1
w(C)包 含 两 部 分 权 和 ,
一 部 分 是 w(C),即 每 条 边 的 和 ; eE (G)
另 外 一 部 分 是 重 复 走 的街 道E E(G),即 w(e)。 eE
因 此 , 对 于G的 人 一 个 环 游C, w(C) w(C), eE (G )
图论及其应用—典型图
4.1Euler环游 4.2中国邮路问题 4.3Hamilton图 4.4旅行售货员问题 5.1对集 5.2二分图的对集 5.3二分图最大对集算法
4.1Euler环游
定义4.1.1:经过G的每条边的迹称为G的Euler迹,如
果这条迹是闭的,则称这条迹为G的Euler环游。 一般情况下,我们把不是Euler环游的迹称为G的Euler 通路,而把含有Euler环游的图称为Euler图。
推论4.3.9:设图G的度序列为(d1,d2,…,dp) ,d1≤d2≤…≤dp,p≥3。若对任何k,1≤k<(p-1)/2 ,均有dk>k,若p为奇数,更有d(p+1)/2>(p-1)/2, 则G是Hamilton图。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图和子图 图和简单图图 G = (V, E), 其中 V = {νv v v ,......,,21} V ---顶点集, ν---顶点数E = {e e e 12,,......,ε}E ---边集, ε---边数例。

左图中, V={a, b,......,f}, E={p,q, ae, af,......,ce, cf} 注意, 左图仅仅是图G 的几何实现(代表), 它们有无穷多个。

真正的 图G 是上面所给出式子,它与顶点的位置、边的形状等无关。

不过今后对两者将经常不加以区别。

称 边 ad 与顶点 a (及d) 相关联。

也称 顶点 b(及 f) 与边 bf 相关联。

称顶点a 与e 相邻。

称有公共端点的一些边彼此相邻,例如p 与af 。

环(loop ,selfloop ):如边 l 。

棱(link ):如边ae 。

重边:如边p 及边q 。

简单图:(simple graph )无环,无重边 平凡图:仅有一个顶点的图(可有多条环)。

一条边的端点:它的两个顶点。

记号:νε()(),()().G V G G E G ==。

习题1.1.1 若G 为简单图,则εν≤⎛⎝ ⎫⎭⎪2 。

1.1.2 n ( ≥ 4 )个人中,若每4人中一定有一人认识其他3人,则一定有一 人认识其他n-1人。

同构在下图中, 图G 恒等于图H , 记为 G = H ⇔ V (G)=V(H), E(G)=E(H)。

图G 同构于图F ⇔ V(G)与V(F), E(G)与E(F)之间各存在一一对应关系,且这二对应关系保持关联关系。

记为 G ≅F 。

注 往往将同构慨念引伸到非标号图中,以表达两个图在结构上是否相同。

de f G = (V, E)y z w cG =(V , E )w cyz H =(V ’, E ’)’a ’c ’y ’e ’z ’F =(V ’’, E ’’)注 判定两个图是否同构是NP-hard 问题。

完全图(complete graph) Kn空图(empty g.) ⇔ E = ∅ 。

V’ ( ⊆ V) 为独立集 ⇔ V’中任二顶点都互不相邻。

二部图(偶图,bipartite g.) G = (X, Y ; E) ⇔存在 V(G) 的一个 2-划分 (X, Y), 使X 与Y 都是独立集。

完全二部图 Km,n ⇔ 二部图G = (X, Y),其中X 和Y 之间的每对顶点都相邻,且 |X | = m, |Y | = n 。

类似地可定义,完全三部图(例如 Km,n,p ),完全 n-部 图等。

例。

用标号法判定二部图。

习题1.2.1 G ≅ H ⇒ ν(G) = ν(H) , ε(G) = ε(H) 。

并证明其逆命题不成立。

1..2.2 证明下面两个图不同构:1.2.3 证明下面两个图是同构的:1.2.4 证明两个简单图G 和H 同构 ⇔ 存在一一映射 f : V(G) →V(H) ,使得 uv ∈ E(G)当且仅当f(u)f(v) ∈ E(H) 。

1.2.5 证明:(a).ε(K m,n ) = mn ;(b). 对简单二部图有 ε ≤ ν2/4 .1.2.6 记T m,n 为这样的一个完全m-部图:其顶点数为n ,每个部分的顶点数为[n/m]或{n/m}个。

证明:(a). ε(T m,n ) = n k m k -⎛⎝ ⎫⎭⎪+-+⎛⎝ ⎫⎭⎪2112() 其中 k =[n/m] .(b)*. 对任意的n 顶点完全m-部图G ,一定有 ε(G)≤ ε(T m,n ),且仅当G ≅ T m,n 时等式才成立。

1.2.7 所谓k-方体是这样的图:其顶点是由0与1组成的有序k-元组,其二顶点相邻当且仅当它们恰有一个坐标不同。

证明k-方体有个顶点,k*2 k-1条边,且是一偶图。

1.2.8 简单图G 的补图G c 是指和G 有相同顶点集V 的一个简单图,在G c中两个顶点相邻当且二部图K 1K 3K 5K 3,3K 1,5K 2,2,2仅当它们在G 不相邻。

(a). 画出K c n 和 K c m,n 。

(b). 如果G ≅ G c 则称简单图G 为自补的。

证明:若G 是自补的,则 ν ≡ 0, 1 (mod 4)关联矩阵M(G)与邻接矩阵A(G)M(G)=[m i,j ]ν*ε, A(G)=[a i,j ]ν*ν ,其中 m i,j = 顶点v i 与边e j 的关联次数= 0, 1, 2. a i,j = 连接顶点v i 与 v j 的边数 。

例。

e e e e e e e M G v v v v 1234567123411001011110000001100101120()=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥v v v v A G v v v v 12341234021120101101111()=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥子图子图(subgraph) H ⊆ G ⇔ V(H) ⊆ V(G) , E(H) ⊆ E(G) 。

真子图 H ⊂ G 。

母图(super graph )。

生成子图(spanning subg.) ⇔ H ⊆ G 且V(H) = V(G) 。

生成母图。

基础简单图 (underlying simple g.)。

导出子图(induced subg.)G[V’], (非空V’⊆ V ) ⇔ 以V’为顶点集,以G 中两端都在V’上的边全体为边集构成的G 的子图。

边导出子图 G[E’] 非空E’ ⊆ E ⇔ 以E’为边集,以E’中所有边的端点为顶点集的的子图。

例。

e 34e 534G = (V , E)G [{c, d, e}]G[{f, c]}以上两种子图,其实,对应于取子图的两种基本运算。

下面是取子图的另两种基本运算:G - V’ ⇔ 去掉V’及与V’相关联的一切边所得的剩余子图。

⇔ 即 G[V \ V’]G - E’ ⇔ 从中去掉E’ 后所得的生成子图例。

G - {b, d, g}, ( = G[E \ {b, d, g}] ) G - {b, c, d, g}, ( ≠ G[E \ {b, c, d, g}] ) G - {a, e, f, g}. ( ≠ G[E \ {a, e, f, g}] )注意 G[E \ E’] 与G - E’ 虽有相同的边集,但两者不一定相等 : 后者一定是生成子图,而前者则不然。

上述四种运算是最基本取子图运算,今后老要遇到,一定要认真掌握好。

关于子图的一些定义还有: G + E’ ⇔ 往G 上加新边集E’ 所得的(G 的母)图。

为简单计,今后将 G ± {e} 简计为 G ± e ; G - {v} 简计为 G - v 。

设 G 1, G 2 ⊆ G ,称G 1与G 2为 不相交的(disjiont ) ⇔ V(G 1) ⋂ V(G 2) = ∅ ( ∴ E(G 1) ⋂ E(G 2) = ∅ )边不相交 (edge-distjiont )⇔ E(G 1) ⋂ E(G 2 ) = ∅ 。

( 但这时G 1与G 2仍可能为相交的)。

并图 G 1⋃G 2 , 当不相交时可简记为 G 1+G 2. 交图 G 1⋂G 2 .习题1.4.1 证明:完全图的每个导出子图是完全图;偶图的每个导出子图是偶图。

1.4.2 设G 为一 完全图,1< n < ν-1。

证明:若 ν ≥ 4,且G 中每个n 顶点的导出子图均有相同的边数,则 G ≅ K ν或 K c ν 。

顶点的度顶点 v 的 度 d G (v) = G 中与顶点v 相关联边数。

(每一环记为2) 最大、最小度 ∆,δ 。

(∆(G) , δ(G) ) 定理1.1 (hand shaking lemma) 任一图中,d v v V()∈∑=2ε.系1.1 任一 图中,度为奇数顶点的个数为偶数。

例。

任一多面体中,边数为奇数的外表面的数目为偶数。

证明。

作一图,使其顶点对应于多面体的面,并使其中二顶点相邻当且仅当对应的两个面相邻。

...... #G =(V , E )G [{u ,w,x ,y }]G [{u ,w,x }]k-正则图 (k-regular g.) ⇔ d(v) = k, ∀v ∈ V . 习题1.5.1 证明:δ ≤ 2ε/ν ≤ ∆ 。

1.5.2 若 k-正则偶图(k > 0)的2-划分为 (X, Y),则|X | = |Y |。

1.5.3 在人数 >1的人群中,总有二人在该人群中有相同的朋友数。

1.5.4 设V(G) = {v v v 12,,......,ν},则称 ( d(v 1), d(v 2), ...... , d(v ν) ) 为G 的度序列。

证明:非负整数序列 ( d 1 ,d 2, ......, d n ) 为某一图的度序列 ⇔dii n=∑1是偶数。

1.5.5 证明:任一 无环图G 都包含一 偶生成子图H ,使得 d H (v) ≥ d G (v)/2 对所有v ∈ V 成立。

1.5.6*设平面上有n 个点,其中任二点间的距离 ≥ 1,证明:最多有 3n 对点的 距离 = 1 。

路和连通性途径 (walk) 例如 (u ,x )-途径W = ueyfvgyhwbvgydxdydx (有限非空序列) = uyvywvyxyx (简写法---当不引起混淆时) 起点(origin ) u 。

终点(terminus ) x 。

内部顶点(internal vertex ) y, v, w, x 。

(注意,中间出现的x 也叫内部顶点。

)长 ⇔ 边数(重复计算)。

节(段,section )。

例如W 的(y, w)-节=yvw 。

W -1(逆途径), WW ’(两条途径W 与W ’相衔接)。

迹( trail) ⇔ 边各不相同的途径。

例如,yvwyx 。

路 (path) ⇔ 顶点各不相同的途径。

(可当作一个图或子图)。

例如, yvwx 。

d(u, v) = u 与v 之间最短路的长。

例。

(命题)G 中存在(u, v)-途径 ⇔ G 中存在(u, v)-路。

G 中顶点u 与v 为连通的(connected) ⇔ G 中存在(u, v)-路( ⇔ G 中存在(u, v)-途径。

)V 上的连通性是V 上的等价关系,它将V 划分为(等价类):V 1,......,V ω使每个V i 中的任二顶点u 及v 都连通(即存在(u, v)-路)。

称每个 G[V i ] i=1,2,......ω为G 的一个分支(component ); 称ω(G )为G 的分支数。

G 为连通图 ⇔ ω(G) = 1⇔ G 中任两点间都有一 条路相连。

G 为非连通图 ⇔ ω(G) > 1。

相关文档
最新文档