第2章 3.圆周运动的实例分析
圆周运动的实例分析

物体沿圆的内轨道运动
A
mg
N
N
N
【例题5】质量为m的小球在竖直平面内的圆形轨道内侧运动,若经最高点不脱离轨道的临界速度为v,则当小球以2v速度经过最高点时,小球对轨道的压力大小为( ) 0 mg 3mg 5mg
C
2、轻杆模型
五、竖直平面内圆周运动
质点被一轻杆拉着在竖直面内做圆周运动
质点在竖直放置的光滑细管内做圆周运动
过最高点的最小速度是多大?
V=0
L
R
【例题6】用一轻杆栓着质量为m的物体,在竖直平面内做圆周运动,则下列说法正确的是( ) A.小球过最高点时,杆的张力可以为零 B.小球过最高点时的最小速度为零 C.小球刚好过最高点是的速度是 D.小球过最高点时,杆对小球的作用力可以与球所受的重力方向相反
BD
【例题4】如图所示,火车道转弯处的半径为r,火车质量为m,两铁轨的高度差为h(外轨略高于内轨),两轨间距为L(L>>h),求: 火车以多大的速率υ转弯时,两铁轨不会给车轮沿转弯半径方向的侧压力? υ是多大时外轨对车轮有沿转弯半径方向的侧压力? υ是多大时内轨对车轮有沿转弯半径方向的侧压力?
四、汽车过拱形桥
T
mg
T
mg
过最高点的最小速度是多大?
O
【例题1】如图所示,一质量为m的小球用长为L的细绳悬于O点,使之在竖直平面内做圆周运动,小球通过最低点时速率为v,则小球在最低点时细绳的张力大小为多少? O mg T
【例题2】用细绳栓着质量为m的物体,在竖直平面内做圆周运动,圆周半径为R。则下列说法正确的是 A.小球过最高点时,绳子的张力可以为零 B.小球过最高点时的最小速度为零 C.小球刚好过最高点是的速度是 D.小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相反
圆周运动的实例分析

圆周运动的实例分析圆周运动是指物体在固定圆周上做匀速旋转的运动。
它在生活中有着广泛的应用,例如车轮的旋转、地球绕太阳的公转等。
本文将通过分析两个具体实例来说明圆周运动的特点和应用。
实例一:车轮的旋转当车辆行驶时,车轮就会以一个轴为中心进行匀速旋转,这就是典型的圆周运动。
车轮的旋转不仅能够驱动车辆前进,还可以改变行驶方向。
根据牛顿第一定律,车轮受到的作用力与向心加速度成正比。
当车辆加速时,作用力增加,车轮的旋转速度也会增加,从而使车辆更快地行驶。
相反,当车辆减速或停止时,车轮的旋转速度也会相应减小或停止。
这种以车轮为例的圆周运动,为我们提供了便利的交通工具。
实例二:地球绕太阳的公转地球围绕太阳做匀速的圆周运动,这就是地球的公转。
这种公转使地球维持着相对稳定的轨道,保持了恒定的距离和倾斜角度,从而使我们能够有四季的交替和昼夜的变化。
地球公转的轨迹是一个近似于椭圆的轨道,太阳位于椭圆焦点之一。
地球公转的周期是365.24天,也就是一年的长度。
这个周期的长短决定了季节的变化和地球上生物的繁衍。
除了以上两个实例,圆周运动还广泛应用于其他领域。
例如,在工程中,我们常常需要使用电机来驱动各种设备的旋转,如风扇、洗衣机等。
这些旋转运动都是圆周运动的实例。
在体育竞技中,篮球、足球等球类运动都有着明显的圆周运动特点。
球员的投篮和射门都需要进行准确的角度和力度的控制,以确保球能够按照预定的轨道运动。
总之,圆周运动在我们的生活中随处可见,它是物体在固定圆周上做匀速旋转的运动。
不仅在自然界中存在着典型的实例,如车轮的旋转和地球的公转,而且在我们的日常生活和工程技术中也广泛应用。
圆周运动的特点和应用使得我们的生活更加便利、丰富多样,并为科学研究和技术发展提供了基础。
2020高中物理第二章第3节圆周运动的实例分析1火车、汽车拐弯的动力学问题学案

火车、汽车拐弯的动力学问题一、考点突破:二、重难点提示:重点:1. 掌握火车、汽车拐弯时的向心力来源;2. 会用圆周运动的规律解决实际问题。
难点:能从供需关系理解拐弯减速的原理。
一、火车转弯问题1. 火车在水平路基上的转弯(1)此时火车车轮受三个力:重力、支持力、外轨对轮缘的弹力。
(2)外轨对轮缘的弹力提供向心力。
(3)由于该弹力是由轮缘和外轨的挤压产生的,且由于火车质量很大,故轮缘和外轨间的相互作用力很大,易损害铁轨。
2. 实际弯道处的情况:外轨略高于内轨道(1)对火车进行受力分析:火车受铁轨支持力N的方向不再是竖直向上,而是斜向弯道的内侧,同时还有重力G。
(2)支持力与重力的合力水平指向内侧圆心,成为使火车转弯所需的向心力。
【规律总结】转弯处要选择内外轨适当的高度差,使转弯时所需的向心力完全由重力G和支持力N来提供,这样外轨就不受轮缘的挤压了。
3. 限定速度v分析:火车转弯时需要的向心力由火车重力和轨道对它的支持力的合力提供。
F 合=mgtan α=rv m 2①由于轨道平面和水平面的夹角很小,可以近似地认为 tan α≈sin α=h/d ② ②代入①得:mg dh=r v m 2d rgh v思考:在转弯处:(1)若列车行驶的速率等于规定速度,则两侧轨道是否受车轮对它的侧向压力。
(2)若列车行驶的速率大于规定速度,则___轨必受到车轮对它向___的压力(填“内”或“外”)。
(3)若列车行驶的速率小于规定速度,则___轨必受到车轮对它向___的压力(填“内”或“外”)。
二、汽车转弯中的动力学问题1. 水平路面上的转弯问题:摩擦力充当向心力 umg=mv 2/r 。
由于摩擦力较小,故要求的速度较小,否则就会出现离心现象,发生侧滑,出现危险。
2. 实际的弯道都是外高内底,以限定速度转弯,受力如图。
Mgtanθ=Mv2/r v=θtanrg当v >θtanrg,侧向下摩擦力的水平分力补充不足的合外力;v <θtanrg,侧向上摩擦力的水平分力抵消部分过剩的合外力;v =θtanrg,沿斜面方向的摩擦力为零,重力和支持力的合力提供向心力。
山东省实验高中2020人教版物理第二章匀速圆周运动3圆周运动的实例分析55

得F1=16 N
(2)v=4 m/s>v0,杆对小球有拉力 由牛顿第二定律:mg+F2=vm2
L
得:F2=44 N
答案:(1)16 N,支持力 (2)44 N,拉力
【定向训练】 1.(多选)(2019·江苏高考)如图所示,摩天 轮悬挂的座舱在竖直平面内做匀速圆周运 动。座舱的质量为m,运动半径为R,角速度 大小为ω,重力加速度为g,则座舱 ( )
为零,则此时重物对电动机向上的作用力大小等于电动
机的重力,即F1=Mg。 根据牛顿第三定律,此时电动机对重物的作用力向下,大
小为:F′1=F1=Mg
①
对重物:F′1+mg=mω2R ②
由①②得ω= m M③g
mR
(2)当重物转到最低点时,电动机对地面的压力最大,对 重物有:F2-mg=mω2R ④ 对电动机,设它所受支持力为FN,FN=F′2+Mg,F′2=F2
(1)当v=1 m/s时。 (2)当v=4 m/s时。
【审题关键】
序号 ①
②
信息提取 杆的弹力可以向上也可以向下
小球的重力和杆的弹力的合力指向圆 心的分量提供向心力
【解析】杆对小球没有作用力时
v0= gL m5/s≈2.24 m/s (1)v=1 m/s<v0,杆对小球有支持力, 由牛顿第二定律:mg-F1=mv2
二 竖直面内的圆周运动 任务1 轻绳模型中物体在最高点时受力的特点
【思考·讨论】 水流星是一项中国传统民间杂技艺术,杂技演员用一根 绳子兜着两个碗,里面倒上水,迅速地旋转着做各种精 彩表演,即使碗底朝上,碗里的水也不会洒出来。这是 为什么? (模型建构)
提示:当碗底朝上时,水的重力全部用来提供做圆周运 动所需要的向心力。
高中物理难点之三--圆周运动的实例分析

难点之三:圆周运动的实例分析一、难点形成的原因1、对向心力和向心加速度的定义把握不牢固,解题时不能灵活的应用。
2、圆周运动线速度与角速度的关系及速度的合成与分解的综合知识应用不熟练,只是了解大概,在解题过程中不能灵活应用;3、圆周运动有一些要求思维长度较长的题目,受力分析不按照一定的步骤,漏掉重力或其它力,因为一点小失误,导致全盘皆错。
4、圆周运动的周期性把握不准。
5、缺少生活经验,缺少仔细观察事物的经历,很多实例知道大概却不能理解本质,更不能把物理知识与生活实例很好的联系起来。
二、难点突破(1)匀速圆周运动与非匀速圆周运动a.圆周运动是变速运动,因为物体的运动方向(即速度方向)在不断变化。
圆周运动也不可能是匀变速运动,因为即使是匀速圆周运动,其加速度方向也是时刻变化的。
b.最常见的圆周运动有:①天体(包括人造天体)在万有引力作用下的运动;②核外电子在库仑力作用下绕原子核的运动;③带电粒子在垂直匀强磁场的平面里在磁场力作用下的运动;④物体在各种外力(重力、弹力、摩擦力、电场力、磁场力等)作用下的圆周运动。
c.匀速圆周运动只是速度方向改变,而速度大小不变。
做匀速圆周运动的物体,它所受的所有力的合力提供向心力,其方向一定指向圆心。
非匀速圆周运动的物体所受的合外力沿着半径指向圆心的分力,提供向心力,产生向心加速度;合外力沿切线方向的分力,产生切向加速度,其效果是改变速度的大小。
例1:如图3-1所示,两根轻绳同系一个质量m=0.1kg 的小球,两绳的另一端分别固定在轴上的A 、B 两处,上面绳AC 长L=2m ,当两绳都拉直时,与轴的夹角分别为30°和45°,求当小球随轴一起在水平面内做匀速圆周运动角速度为ω=4rad/s 时,上下两轻绳拉力各为多少? 【审题】两绳张紧时,小球受的力由0逐渐增大时,ω可能出现两个临界值。
【解析】如图3-1所示,当BC 刚好被拉直,但其拉力T 2恰为零,设此时角速度为ω1,AC 绳上拉力设为T 1,对小球有:mg T =︒30cos 1 ①30sin L ωm =30sin T AB 211②代入数据得: s rad /4.21=ω,要使BC 绳有拉力,应有ω>ω1,当AC 绳恰被拉直,但其拉力T 1恰为零,设此时角速度为ω2,BC 绳拉力为T 2,则有mg T =︒45cos 2 ③T 2sin45°=m 22ωL AC sin30°④代入数据得:ω2=3.16rad/s 。
圆周运动实例分析(圆锥摆类问题)

整理得: 由几何关系有:
③
④
《课时跟踪检测》P77
(8)
(多选)如图,一根细线下端拴一个金属小球P,细 线的上端固定在金属块Q上,Q放在带小孔的水平桌面 上。小球在某一水平面内做匀速圆周运动(圆锥摆)。 现使小球在一个更高一些的水平面上做匀速圆周运动 (图上未画出),两次金属块Q都保持在桌面上静止。 则后一种情况与原来相比较,下面的判断中正确的是 ( ) A.小球P运动的周期变大 B.小球P运动的线速度变大 C.小球P运动的角速度变大 D.Q受到桌面的支持力变大
1.火车在水平弯道转弯
N
●
2.倾斜弯道转弯
N
051201铁路弯道内外轨高度差.asf
F
G
●
●
h
L
G
θ
01
问题:火车水平轨道转弯
向心力来源? 动力学方程? ①
问题:
当火车转弯速度: ①火车运动轨迹的圆心 ① v > v0 时 是 0 2点? (1 )内外轨道高度差 h ② v < v0 时 ②车轮刚好与内外轨道没 2 / gr h = L v 0 有挤压时,向心力来源?火 车的速度v0=?
N A.h 越高,摩托车对侧壁 的压力将越大 B.h 越高,摩托车做圆周 G 运动的向心力将越大 C.h 越高,摩托车做圆周运动的周期将越小 D.h 越高,摩托车做圆周运动的线速度将越大
-----圆锥摆模型 建立物理模型:
P31 图2-3-2 旋转秋千 L
θ
y
T
h
●
x O
G
动力学方程:
现象观察:?
2.3圆周运动实例分析(竖直面)

F⊥ O
F
一、汽车过拱形桥
例1:设汽车质量为m,以速度v通过桥面半径为R的拱桥, 求拱桥受到的压力是多大?
FN
a
FN
G
a
失重 G
超重
变式: 如果把拱桥变成凹桥,汽车以相同速度过桥,求 桥受到的压力是多大?
发散思维:汽车有无可能做这样的运动?
二、绳连物
例:一根长为L的绳子连一个小球绕其一端在竖直 一根长为 的绳子连一个小球绕其一端在竖直 平面内做圆周运动,在最高点速度为v时 平面内做圆周运动,在最高点速度为 时,求绳对 小球的拉力大小。 小球的拉力大小。
O
圆周运动实例分析( 2.3 圆周运动实例分析(2)
——竖直面内的匀速圆周运动 竖直面内的匀速圆周运动
知识回顾
1.物体做匀速圆周运动时,合外力有何共同点? 物体做匀速圆周运动时,合外力有何共同点? 物体做匀速圆周运动时
合外力总是指向圆心
2.物体做变速圆周运动时,合外力一定指向圆心 物体做变速圆周运动时, 物体做变速圆周运动时 吗? v 不一定。如图, 不一定。如图, F
三、杆连物
例:一根长为L的杆子连一个小球绕其一端在竖直 一根长为 的杆子连一个小球绕其一端在竖直 平面内做圆周运动,要使小球完成圆周运动, 平面内做圆周运动,要使小球完成圆周运动,试 分析杆对小球的作用力的情况。 分析杆对小球的作用力的情况。
O
1.过最高点的最小速度: 1.过最高点的最小速度: 过最高点的最小速度
0
.
2.过最高点的速度为 2.过最高点的速度为 gL ,杆对小 0 . 球的作用力为 3.过最高点的速度小于 3.过最高点的速度小于 小球的作用力为 支持力 4.过最高点的速度大于 4.过最高点的速度大于 小球的作用力为 拉力
物理沪科版2学案:2.3 圆周运动的案例分析含解析

2。
3 圆周运动的案例分析直平面内的圆周运动。
一、分析游乐场中的圆周运动 1.受力分析(1)过山车在轨道顶部时要受到重力和轨道对车的弹力作用,这两个力的合力提供过山车做圆周运动的向心力。
(2)当过山车恰好经过轨道顶部时,弹力为零,此时重力提供向心力。
2.临界速度(1)过山车恰好通过轨道顶部时的速度称为临界速度,记作v 临界,v临界=错误!。
(2)当过山车通过轨道最高点的速度v ≥错误!时,过山车就不会脱离轨道;当v >错误!时,过山车对轨道还会产生压力作用。
(3)当过山车通过轨道最高点的速度v <错误!时,过山车就会脱离轨道,不能完成圆周运动. 预习交流1“水流星"是我国传统的杂技节目,演员们把盛有水的容器用绳子拉住在空中如流星般快速舞动,同时表演高难度的动作,容器中的水居然一滴也不掉下来。
“水流星"的运动快慢与绳上的拉力的大小有什么关系?如果绳上的拉力渐渐减小,将会发生什么现象?答案:“水流星”转得越快,绳上的拉力就越大。
若绳上的拉力减小,有可能使水流出来。
二、研究运动物体转弯时的向心力1.自行车转弯时要向转弯处的内侧倾斜,由地面对车的作用力与重力的合力作为转弯所需要的向心力。
2.汽车在水平路面上转弯时由地面的摩擦力提供向心力。
3.火车转弯时的向心力由重力和铁轨对火车的支持力的合力提供,其向心力方向沿水平方向。
预习交流2飞行中的鸟和飞机要改变方向转弯时,鸟的身体或飞机的机身要倾斜,如图所示,这是为什么?答案:鸟或飞机转弯时需要向心力,只有当鸟身或飞机的机身倾斜时,它们所受空气对它们的作用力和重力的合力才能提供它们转弯需要的向心力。
一、竖直面内的圆周运动实例分析1.汽车过拱形桥桥顶时,可认为是圆周运动模型,那么汽车过拱形桥顶时动力学特点有哪些?答案:汽车在桥顶受到重力和支持力作用,如图所示,向心力由两者的合力提供.(1)动力学方程: 由牛顿第二定律2=N v G F m R-解得22=N v v F G m mg m R R=--。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
识
学
点
业
一
分
层
测
评
知 识
3.圆周运动的实例分析
点
二
重
点
知 识 点
强 化 卷
三
上一页
返回首页
下一页
学习目标 1.知道向心力可以由一个力或几个力 的合力提供,会分析具体问题中的向 心力来源.(难点) 2.能用匀速圆周运动规律分析、处理 生产和生活中的实例.(重点、难点) 3.了解什么是离心运动,知道物体做 离心运动的条件.
得:ω=
g lcos α
周期 T=2ωπ=_2_π____l_c_og_s_α_.
上一页
返回首页
下一页
[再判断] 1.汽车驶过凸形桥最高点时,对桥的压力可能等于零.(√) 2.汽车驶过凹形桥低点时,对桥的压力一定大于重力.(√) 3.体重越大的人坐在秋千上旋转时,缆绳与中心轴的夹角越小.(×)
上一页
上一页
图 2-3-4
返回首页
下一页
由牛顿第二定律得:G-FN=mvr2,则 FN=G-mvr2. 汽车对桥的压力与桥对汽车的支持力是一对相互作用力,即 FN′=FN=G -mvr2,因此,汽车对桥的压力小于重力,而且车速越大,压力越小. ①当 0≤v< gr时,0<FN≤G. ②当 v= gr时,FN=0,汽车做平抛运动飞离桥面,发生危险.
上一页
图 2-3-5
返回首页
下一页
在最高点时: ①v= gr时,拉力或压力为零. ②v> gr时,物体受向下的拉力或压力,并且随速度的增大而增大. ③v< gr时,物体不能达到最高点.(实际上球未到最高点就脱离了轨道)
上一页
返回首页
下一页
(2)轻杆模型 如图 2-3-6 所示,在细轻杆上固定的小球或在管形轨道内运动的小球,由于 杆和管能对小球产生向上的支持力,所以小球能在竖直平面内做圆周运动的条 件是在最高点的速度大于或等于零,即杆类模型中小球在最高点的临界速度为 v 临=0.
上一页
图 2-3-6
返回首页
下一页
在最高点时: ①v=0 时, 小球受向上的支持力 N=mg. ②0<v< gr时,小球受向上的支持力且随速度的增大而减小. ③v= gr时,小球只受重力. ④v> gr时,小球受向下的拉力或压力,并且随速度的增大而增大.
上一页
返回首页
下一页
1.如图 2-3-7 所示为模拟过山车的实验装置,小球从左侧的最高点释放后 能够通过竖直圆轨道而到达右侧.若竖直圆轨道的半径为 R,要使小球能顺利通 过竖直圆轨道,则小球通过竖直圆轨道的最高点时的角速度最小为( )
【提示】 轻绳上的小球最小速度不能为零. 轻杆上的小球最小速度可以为零. 探讨 2:小球经过最高点时,与绳(或杆)之间的作用力可以为零吗? 【提示】 小球轻过最高点时与绳或杆的作用力可以为零.
上一页
返回首页
下一页
[核心点击] 1.汽车过桥问题的分析 (1)汽车过凸形桥:汽车在桥上运动,经过最高点时,汽车的重力 与桥对汽车支持力的合力提供向心力.如图 2-3-4 甲所示.
返回首页
下一页
[后思考] 1.公路在通过小型水库泄洪闸的下游时常常要修建凹形桥,也叫“过水路 面”,如图 2-3-2,汽车在凹形桥上通过时,汽车的向心力由什么力提供?汽车 对桥的压力是否等于重力?
图 2-3-2
上一页
返回首页
下一页
【提示】 汽车的向心力由支持力和重力的合力提供,即 Fn=FN-mg,汽 车对桥的压力大于重力.
上一页
返回首页
下一页
(2)汽车过凹形桥. 如图乙所示,汽车经过凹形桥面最低点时,受竖直向下的重力和竖直向上 的支持力,两个力的合力提供向心力,则 FN-G=mvr2,故 FN=G+mvr2.由牛顿 第三定律得:汽车对凹形桥面的压力 FN′=G+mvr2,大于汽车的重力.
上一页
返回首页
下一页
2.竖直平面内圆周运动的两种模型 (1)轻绳模型 如图 2-3-5 所示,轻绳系的小球或在轨道内侧运动的小球,在最高点时的临 界状态为只受重力,由 mg=mvr2,得 v= gr.即绳类模型中小球在最高点的临界 速度为 v 临= gr.
上一页
返回首页
下一页
2.“旋转秋千” (1)物理模型:细线下面悬挂一个钢球,用手带动钢球使它在某个水平面内 做_匀__速__圆__周__运__动__形成一个圆锥摆,如图 2-3-1 所示.
图 2-3-1
上一页
返回首页
下一页
(2)向心力的来源:由重力和悬线拉力的合__力__提供.
由 F 合=mgtan α=mω2r,r=lsin α.
A.A 点,B 点 C.B 点,A 点
图 2-3-8 B.B 点,C 点 D.D 点,C 点
上一页
返回首页
下一页
【解析】 战车在 B 点时由 FN-mg=mvR2知 FN=mg+mvR2,则 FN>mg,故 对路面的压力最大,在 C 和 A 点时由 mg-FN=mvR2知 FN=mg-mvR2,则 FN<mg 且 RC>RA,故 FNC>FNA,故在 A 点对路面压力最小,故选 C.
知识脉络
上一页
返回首页
下一页
汽 车 过 拱 形 桥和 “旋 转 秋 千”
[先填空] 1.汽车过拱形桥 (1)最高点受力情况 汽 ((23))车动 对经力 桥拱学 面形方 压桥程 力顶: :点__N__m′时__g__=-,____mN竖__=g__直-__m__方m__vR__2vR向._2 . 受到重__力__和_支__持__力_作用.
2.旋转秋千的缆绳与中心轴的夹角由哪些因素决定? 【提示】 由绳长和角速度两个因素决定,与人的体重无关.
上一页
返回首页
下一页
[合作探讨] 小球分别在轻绳(如图 2-3-3 甲)和轻杆(如图 2-3-3 乙)的一端绕另一端在竖
直平面内运动,请思考:
上பைடு நூலகம்页
图 2-3-3
返回首页
下一页
探讨 1:小球要在竖直平面内完成圆周运动,经过最高点时的最小速度可以 为零吗?
【导学号:22852040】
上一页
图 2-3-7
返回首页
下一页
A. gR
B.2 gR
g C. R
R D. g
【解析】 小球能通过竖直圆轨道的最高点的临界条件为重力提供向心力,
即 mg=mω2R,解得 ω= Rg,选项 C 正确.
【答案】 C
上一页
返回首页
下一页
2.如图 2-3-8 所示,在某次军事演习中,一辆战车以恒定的速度在起伏不 平的路面上行进,则战车对路面的压力最大和最小的位置分别是( )