匀速圆周运动的实例分析 -
匀速圆周运动的实例分析例题

匀速圆周运动的实例分析典型例题1——关于汽车通过不同曲面的问题分析1.一辆质量t的小轿车,驶过半径m的一段圆弧形桥面,求:(重力加速度)(1)若桥面为凹形,汽车以20m/s的速度通过桥面最低点时,对桥面压力是多大?(2)若桥面为凸形,汽车以10m/s的速度通过桥面最高点时,对桥面压力是多大?(3)汽车以多大速度通过凸形桥面顶点时,对桥面刚好没有压力?解:典型例题2——细绳牵引物体做圆周运动的系列问题1.一根长的细绳,一端拴一质量的小球,使其在竖直平面内绕绳的另一端做圆周运动,求:(1)小球通过最高点时的最小速度?(2)若小球以速度通过周围最高点时,绳对小球的拉力多大?若此时绳突然断了,小球将如何运动.典型例题3——转动系统中的惯性力1.一辆质量为的汽车以速度在半径为的水平弯道上做匀速圆周运动.汽车左、右轮相距为,重心离地高度为,车轮与路面之间的静摩擦因数为.求:(1)汽车内外轮各承受多少支持力;(2)汽车能安全行驶的最大速度是多少?2、关于地球的圆周运动例1:把地球看成一个球体,在地球表面上赤道某一点A,北纬60°一点B,在地球自转时,A与B两点角速度之比为多大?线速度之比为多大?3、关于皮带传送装置的圆周运动特点例2:如图所示,皮带传送装置A、B为边缘上两点,O1A=2O2B,C为O1A中点,皮带不打滑.求:(1)νA:νB:νC=(2)ωA:ωB:ωC=4、如图5-26所示,O1皮带传动装置的主动轮的轴心,轮的半径为r1;O2为从动轮的轴心,轮的半径为r2;r3为与从动轮固定在一起的大轮的半径.已知r2=1.5r1,r3=2r1.A、B、C分别是三个轮边缘上的点,那么质点A、B、C的线速度之比是_________ ,角速度之比是_________ ,向心加速度之比是__________ ,周期之比是_________.关于汽车通过不同曲面的问题分析例1:一辆质量m=2.0t的小轿车,驶过半径R=90m的一段圆弧形桥面,求:(重力加速度g=10m/s2)(1)若桥面为凹形,汽车以20m/s的速度通过桥面最低点时,对桥面压力是多大?(2)若桥面为凸形,汽车以10m/s的速度通过桥面最高点时,对桥面压力是多大?(3)汽车以多大速度通过凸形桥面顶点时,对桥面刚好没有压力?2、当小汽车以10m/s的速度通过一座拱桥的最高点,拱桥半径50m,求此车里的一名质量为60kg的乘客对座椅的压力4、关于光滑水平面上物体的圆周运动如图所示,长0.40m的细绳,一端拴一质量为0.2kg的小球,在光滑水平面上绕绳的另一端做匀速圆周运动,若运动的角速度为5.0rad/s,求绳对小球需施多大拉力?5、关于静摩擦力提供向心力的问题如图所示,小物体A与圆盘保持相对静止,跟着圆盘一起作匀速圆周运动,则A的受力情况是()A、受重力、支持力B、受重力、支持力和指向圆心的摩擦力C、重力、支持力、向心力、摩擦力D、以上均不正确6、明确向心力的来源如图所示,半径为R的半球形碗内,有一个具有一定质量的物体A,A与碗壁间的动摩擦因数为,当碗绕竖直轴匀速转动时,物体A刚好能紧贴在碗口附近随碗一起匀速转动而不发生相对滑动,求碗转动的角速度.一圆筒绕其中心轴OO1匀速转动,筒内壁上紧挨着一个物体与筒一起运动相对筒无滑动,如图2所示,物体所受向心力是()A.物体的重力B.筒壁对物体的静摩擦力C.筒壁对物体的弹力D.物体所受重力与弹力的合力7、关于绕同轴转动物体的圆周运动如图所示,两个质量分别为m1=50g和m2=100g的光滑小球套在水平光滑杆上.两球相距21cm,并用细线连接,欲使两球绕轴以600r/min的转速在水平面内转动而光滑动,两球离转动中心各为多少厘米?绳上拉力是多少?8、细绳牵引物体做圆周运动的系列问题一根长的细绳,一端拴一质量的小球,使其在竖直平面内绕绳的另一端做圆周运动,求:(1)小球通过最高点时的最小速度?(2)若小球以速度通过周围最高点时,绳对小球的拉力多大?若此时绳突然断了,小球将如何运动.。
圆周运动的实例分析

物体沿圆的内轨道运动
A
mg
N
N
N
【例题5】质量为m的小球在竖直平面内的圆形轨道内侧运动,若经最高点不脱离轨道的临界速度为v,则当小球以2v速度经过最高点时,小球对轨道的压力大小为( ) 0 mg 3mg 5mg
C
2、轻杆模型
五、竖直平面内圆周运动
质点被一轻杆拉着在竖直面内做圆周运动
质点在竖直放置的光滑细管内做圆周运动
过最高点的最小速度是多大?
V=0
L
R
【例题6】用一轻杆栓着质量为m的物体,在竖直平面内做圆周运动,则下列说法正确的是( ) A.小球过最高点时,杆的张力可以为零 B.小球过最高点时的最小速度为零 C.小球刚好过最高点是的速度是 D.小球过最高点时,杆对小球的作用力可以与球所受的重力方向相反
BD
【例题4】如图所示,火车道转弯处的半径为r,火车质量为m,两铁轨的高度差为h(外轨略高于内轨),两轨间距为L(L>>h),求: 火车以多大的速率υ转弯时,两铁轨不会给车轮沿转弯半径方向的侧压力? υ是多大时外轨对车轮有沿转弯半径方向的侧压力? υ是多大时内轨对车轮有沿转弯半径方向的侧压力?
四、汽车过拱形桥
T
mg
T
mg
过最高点的最小速度是多大?
O
【例题1】如图所示,一质量为m的小球用长为L的细绳悬于O点,使之在竖直平面内做圆周运动,小球通过最低点时速率为v,则小球在最低点时细绳的张力大小为多少? O mg T
【例题2】用细绳栓着质量为m的物体,在竖直平面内做圆周运动,圆周半径为R。则下列说法正确的是 A.小球过最高点时,绳子的张力可以为零 B.小球过最高点时的最小速度为零 C.小球刚好过最高点是的速度是 D.小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相反
圆周运动的实例分析

圆周运动的实例分析圆周运动是指物体在固定圆周上做匀速旋转的运动。
它在生活中有着广泛的应用,例如车轮的旋转、地球绕太阳的公转等。
本文将通过分析两个具体实例来说明圆周运动的特点和应用。
实例一:车轮的旋转当车辆行驶时,车轮就会以一个轴为中心进行匀速旋转,这就是典型的圆周运动。
车轮的旋转不仅能够驱动车辆前进,还可以改变行驶方向。
根据牛顿第一定律,车轮受到的作用力与向心加速度成正比。
当车辆加速时,作用力增加,车轮的旋转速度也会增加,从而使车辆更快地行驶。
相反,当车辆减速或停止时,车轮的旋转速度也会相应减小或停止。
这种以车轮为例的圆周运动,为我们提供了便利的交通工具。
实例二:地球绕太阳的公转地球围绕太阳做匀速的圆周运动,这就是地球的公转。
这种公转使地球维持着相对稳定的轨道,保持了恒定的距离和倾斜角度,从而使我们能够有四季的交替和昼夜的变化。
地球公转的轨迹是一个近似于椭圆的轨道,太阳位于椭圆焦点之一。
地球公转的周期是365.24天,也就是一年的长度。
这个周期的长短决定了季节的变化和地球上生物的繁衍。
除了以上两个实例,圆周运动还广泛应用于其他领域。
例如,在工程中,我们常常需要使用电机来驱动各种设备的旋转,如风扇、洗衣机等。
这些旋转运动都是圆周运动的实例。
在体育竞技中,篮球、足球等球类运动都有着明显的圆周运动特点。
球员的投篮和射门都需要进行准确的角度和力度的控制,以确保球能够按照预定的轨道运动。
总之,圆周运动在我们的生活中随处可见,它是物体在固定圆周上做匀速旋转的运动。
不仅在自然界中存在着典型的实例,如车轮的旋转和地球的公转,而且在我们的日常生活和工程技术中也广泛应用。
圆周运动的特点和应用使得我们的生活更加便利、丰富多样,并为科学研究和技术发展提供了基础。
山东省实验高中2020人教版物理第二章匀速圆周运动3圆周运动的实例分析55

得F1=16 N
(2)v=4 m/s>v0,杆对小球有拉力 由牛顿第二定律:mg+F2=vm2
L
得:F2=44 N
答案:(1)16 N,支持力 (2)44 N,拉力
【定向训练】 1.(多选)(2019·江苏高考)如图所示,摩天 轮悬挂的座舱在竖直平面内做匀速圆周运 动。座舱的质量为m,运动半径为R,角速度 大小为ω,重力加速度为g,则座舱 ( )
为零,则此时重物对电动机向上的作用力大小等于电动
机的重力,即F1=Mg。 根据牛顿第三定律,此时电动机对重物的作用力向下,大
小为:F′1=F1=Mg
①
对重物:F′1+mg=mω2R ②
由①②得ω= m M③g
mR
(2)当重物转到最低点时,电动机对地面的压力最大,对 重物有:F2-mg=mω2R ④ 对电动机,设它所受支持力为FN,FN=F′2+Mg,F′2=F2
(1)当v=1 m/s时。 (2)当v=4 m/s时。
【审题关键】
序号 ①
②
信息提取 杆的弹力可以向上也可以向下
小球的重力和杆的弹力的合力指向圆 心的分量提供向心力
【解析】杆对小球没有作用力时
v0= gL m5/s≈2.24 m/s (1)v=1 m/s<v0,杆对小球有支持力, 由牛顿第二定律:mg-F1=mv2
二 竖直面内的圆周运动 任务1 轻绳模型中物体在最高点时受力的特点
【思考·讨论】 水流星是一项中国传统民间杂技艺术,杂技演员用一根 绳子兜着两个碗,里面倒上水,迅速地旋转着做各种精 彩表演,即使碗底朝上,碗里的水也不会洒出来。这是 为什么? (模型建构)
提示:当碗底朝上时,水的重力全部用来提供做圆周运 动所需要的向心力。
匀速圆周运动实例分析

18
第19页/共31页
【例题1】如图所示,一质量为m=2kg的小球,在半径大小
为R=1.6m的轻绳子作用下在竖直平面内做圆周运动。
(1)小球恰好经过最高点的速度V2=?此时最低点要给 多大的初速度V1=?(2)若在最低点的速度V1=10m/s, 则在最高点绳的拉力为多大?
T
解:(1)依题意得,物体恰好经过最高点,mg提供做
3、汽车过凹形桥时,车对桥的压力大于 自身重力。此时汽车处于超重状态。
3
第4页/共31页
例一 、当汽车通过桥面粗糙的拱形桥顶时拱形桥顶的速度为10m/s
时,车对桥顶的压力为车重的3/4,如果汽车行驶至该桥顶时刚好不
受摩擦力作用,则汽车通过桥顶时速度应为 ( B )
A、25m/s
B、20m/s
C、15m/s
离心运动本质: (1)离心现象的本质是物体惯性的表现。 (2)离心运动是物体逐渐远离圆心的一 种物理现象。
15
第16页/共31页
离心运动的应用:
1、洗衣机脱水桶
原理:利用离心运动把附 着在衣物上的水分甩掉。
解释当:脱水桶快速转动时,
衣物对水的附着力F不足以
ν
提供水随衣服转动所需的向 心力 F,于是水滴做离心运 动,穿过网孔,飞到脱水桶
一、汽车过拱形桥
在各种公路上拱形桥是常 见的,质量为m的汽车在 拱桥上以速度v前进,桥 面的圆弧半径为R,分析 汽车通过桥的最高点时对 桥面的压力。
问题:汽车通过桥顶时重力G和支持 力N相等吗,为什么?
1
第2页/共31页
分析:
1、当汽车在桥面上运动到最高点时,重力G和桥的支持 力N在一条直线上,它们的合力是使汽车做圆周运动的向 心力F向。
2.3圆周运动实例分析(竖直面)

F⊥ O
F
一、汽车过拱形桥
例1:设汽车质量为m,以速度v通过桥面半径为R的拱桥, 求拱桥受到的压力是多大?
FN
a
FN
G
a
失重 G
超重
变式: 如果把拱桥变成凹桥,汽车以相同速度过桥,求 桥受到的压力是多大?
发散思维:汽车有无可能做这样的运动?
二、绳连物
例:一根长为L的绳子连一个小球绕其一端在竖直 一根长为 的绳子连一个小球绕其一端在竖直 平面内做圆周运动,在最高点速度为v时 平面内做圆周运动,在最高点速度为 时,求绳对 小球的拉力大小。 小球的拉力大小。
O
圆周运动实例分析( 2.3 圆周运动实例分析(2)
——竖直面内的匀速圆周运动 竖直面内的匀速圆周运动
知识回顾
1.物体做匀速圆周运动时,合外力有何共同点? 物体做匀速圆周运动时,合外力有何共同点? 物体做匀速圆周运动时
合外力总是指向圆心
2.物体做变速圆周运动时,合外力一定指向圆心 物体做变速圆周运动时, 物体做变速圆周运动时 吗? v 不一定。如图, 不一定。如图, F
三、杆连物
例:一根长为L的杆子连一个小球绕其一端在竖直 一根长为 的杆子连一个小球绕其一端在竖直 平面内做圆周运动,要使小球完成圆周运动, 平面内做圆周运动,要使小球完成圆周运动,试 分析杆对小球的作用力的情况。 分析杆对小球的作用力的情况。
O
1.过最高点的最小速度: 1.过最高点的最小速度: 过最高点的最小速度
0
.
2.过最高点的速度为 2.过最高点的速度为 gL ,杆对小 0 . 球的作用力为 3.过最高点的速度小于 3.过最高点的速度小于 小球的作用力为 支持力 4.过最高点的速度大于 4.过最高点的速度大于 小球的作用力为 拉力
匀速圆周运动实例分析

v2 正确理解公式 F向 = m 中 , 提 供 的 F提 r
与需要的向心力F需之间的关系。对于匀速 圆周运动的试题, 一定要分析需要的向心 力与提供的向心力,这样才不能弄错。
(2)汽车在水平路面上转弯:由摩擦力
提供向心力。类似:单车、摩托车在水平 面上转弯。
(3)旋转的磨盘上的物体:由静摩 擦力提供向心力。
五、离心运动 物体做圆周运动所的向心力
F需 = m r
2
= mw 2 r
=m
2p T
2
r
= mw v
当外界所提供的向心力恰好等于它做圆周运动 所需要的向心力时,则物体做圆周运动、、、、
个提供呢?ຫໍສະໝຸດ 做匀速圆周运动的物体由合外力提供
所需要的向心力。 看下面具体的实例分析。
一、火车转弯问题
水平轨道上匀速行驶的火车所受合 外力为零,在水平弯道上匀速行驶的火 车,做匀速圆周运动,需要向心力,是 什么力提供这个向心力呢?
N F合
G
火车做圆周运动,先找圆心和半径。其 圆心就是弯道的圆心,半径是弯道的半径。
——对桥面有压力作用。
三、汽车过凹桥的情况
如图所示,若汽车经过如图所示的
凹桥的最低点时呢?
提示:汽车对凹桥的压力大小为:
v F =Gm R
2
讨论:汽车经过凸桥最高点容易爆胎
还是在凹桥最低点容易爆胎?
四、航天器中的失重现象 航天器作近地圆周运动时: 1、轨道半径近似等于地球半径 2、航天器所受引力近似等于它 在地球表时所测得的重力
匀速圆周运动实例分析
回顾:匀速圆周运动的有关公式
向心加速度:
v2 an = r = w 2r 2p = r T
《匀速圆周运动的实例分析》课件

自主学习
名师解疑
分类例析
课堂对点演练
活页规范训练
离心运动
(1)做圆周运动的物体,在向心力突然 消失
或
合力不足以提供所需的向心力时,物体沿切线方向飞去或
由力的分解和几何关系可得:
F 合= mgtanα
r= lsinα
由 F 合=mω2·r 得 ω=
g
lcos α
,cos
α=ωg2l.
结论:缆绳与中心轴的夹角 α 跟“旋转秋千”的 角速度
和 绳长 有关,而与乘坐人的质量无关 .在 l 一定
时, ω越大 ,α 也 越大 .
自主学习
名师解疑
分类例析
课堂对点演练
vmax= μgR= 0.1×10×4 m/s=2 m/s.
自主学习
名师解疑
分类例析
课堂对点演练
活页规范训练
(2)当汽车的速度超过 2 m/s 时,需要的向心力 mvr2增大,大 于提供的向心力也就是说提供的向心力不足以维持汽车做 圆周运动的向心力,汽车将做离心运动,严重的将会出现翻 车事故. 答案 (1)2 m/s (2)见解析
自主学习
名师解疑
分类例析
课堂对点演练
活页规范训练
解析 (1)汽车在水平路面上转弯不发生侧滑时,沿圆弧运动 所需向心力由静摩擦力提供.当车速增大时,静摩擦力也随 着增大,当静摩擦力达到最大值 μmg 时,其对应的车速即 为不发生侧滑的最大行驶速度. 由牛顿第二定律得 μmg=mvRm2 ax. 求得车速的最大值为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
匀速圆周运动的实例分析 -
教学
知识目标
1、进一步理解向心力的概念.
2、理解向心力公式,进一步明确匀速圆周运动的产生条件,掌握向心力公式的应用.
能力目标
1、培养在实际问题中分析向心力来源的能力.
2、培养运用物理知识解决实际问题的能力.
情感目标
1、激发学生学习兴趣,培养学生关心周围事物的习惯.
教学
教材分析
教材首先明确提出向心力是按效果命名的力,任何一个力或几个力的合力只要它的作用效果是使物体产生向心加速度,它就是物体所受的向心力,接着详细介绍了火车转弯和汽车过拱桥两个常见的实际问题.后面又附有思考与讨论,开拓学生的思维.
教法建议
1、培养学生分析向心力来源的能力,分析问题时,要首先引导学生对做周围运动的物体进行受力情况分析,并让学生清楚地认识
到求出物体沿半径方向受到的合外力,就是提供给物体做圆周运动的向心力.
2、培养学生运用物体知识解决实际问题的能力.通过例题的分析与讨论(结合动画或课件),引导学生从中领悟掌握运用向心力公式的思路和方法.即:第一:根据物体受力情况分析向心力的来源,做匀速圆周运动的物体.
第二:运用向心力公式计算做圆周运动所需的向心力.
第三:由物体实际受到的力提供了它所需要的向心力,列出方程
3、可多举一些实例让学生分析.向心力可由重力、弹力、摩擦力等单独提供,也可由它们的合力提供.
4、在讲述汽车过拱桥的问题时,汽车做的是变速圆周运动,对此要根据牛顿第二定律的瞬时性向学生指出:在变速圆周运动中,物体在各位置受到的向心力分别产生了物体通过各位置的向心加速度,向心力公式仍是适用的.但要注意,对于物体做匀速圆周运动的情况,只有在物体通过最高点和最低点时,向心力才是合外力.同时,还可以向学生指出:此问题中出现的汽车对桥面的压力大于或小于车重的现象,是发生在圆周运动中的超重或失重现象.
教学
教学
教学
主要设计:
一、讨论向心力的来源:
例如:万有引力提供向心力(人造地球卫星);弹力提供向心力(绳系小球在光滑水平面上的匀速圆周运动);摩擦力力提供向心力(物价在转盘上随转盘一起转动);合力提供向心力(圆锥摆等).
二、讨论火车转弯:
(一)展示图片1:火车车轮有凸出的轮缘.
(二)展示课件1:外轨作用在火车轮缘上的力F是使火车必须转弯的向心力.
(三)展示课件2:外轨高于内轨时重力与支持力的合力是使火车转弯的向心力.
(四)讨论:为什么转弯处的半径和火车运行速度有条件限制?
三、讨论汽车过拱桥:
(一)思考:汽车过拱桥时,对桥面的压力与重力谁大?
(二)展示课件3:汽车过拱桥在最高点的受力情况(变变)
(三)展示课件4:汽车过凹形桥时低点时的受力情况(变
(四)总结在圆周运动中的超重、失重情况.
探究活动
1、荡秋千时,你对秋千底座的压力大小恒定吗?请你想办法实际验证一下,并解释为什么?
2、请观察一下,建筑工地上用来砸实地面的“电动夯”工作时的情况:什么时候底座离开地面?什么时候砸向地面?为什么会出这样的结果?。