测量不确定度与《测量不确定度表示指南》

合集下载

测量不确定度与《测量不确定度表示指南》

测量不确定度与《测量不确定度表示指南》

测量不确定度与《测量不确定度表示指南》摘要:CIPM、BIPM、ISO等国际组织提出了统一的测量准确度的评定方法,制定了“测量不确定度表示指南”等技术规范。

测量不确定度的提出对于计量学、经典真值误差概念、误差理论研究和应用、测量结果评定与表示等都具有划时代的意义。

本文对“测量不确定度表示指南”进行综述,介绍测量不确定度的提出和发展过程、计量学指南联合委员会(JCGM)关于测量不确定度的工作情况,以及在JCGM/WG1工作会议上我国提出的关于GUM建议修改意见。

关键词:测量不确定度;测量误差;GUM;JCGM/WG11。

引言测量是人们认识自然界量值关系的重要手段,是人类有意识的实践活动。

当人们用测量来认识客观存在的量值时,该量值就是被测量,其定义值就是被测量真值。

被测量真值是一种客观存在,其关键是被测量真值的定义。

通过测量确定的被测量的估计值被称为测量结果。

测量结果是人们对客观存在的被测量真值通过测量得到的主观认识。

受到需要和客观可能的限制,测量结果与被测量真值间存在差异,即测量误差。

测量误差表征测量结果作为被测量真值估计值的可靠程度,被称为测量准确度,测量准确度评估事实上就是对测量误差进行评估。

完整的测量结果的信息中,应该包括测量准确度评估结果,用以判断测量结果的可靠程度[1]。

有测量史以来,测量准确度评估始终处于计量技术的核心位置。

测量不确定度表征被测量真值在某个量值范围的估计。

测量误差虽然不可能准确知道,但常常可以由各种依据估计测量误差可能变动的区间,可以估计测量误差的绝对值上界,这个被估计的变动区间或上界值称为测量不确定度,它是测量结果及其表征测量误差大小的统计特征估计值[2,3]。

测量不确定度的提出引发了经典真值误差概念、误差理论研究和应用、测量结果评定与表示的重大变革。

本文拟对“测量不确定度表示指南”进行综述,介绍测量不确定度的提出和发展过程、计量学指南联合委员会(JCGM)第一工作组(WG1)的工作情况,以及我国在JCGM/WG1工作会议上提出的GUM建议修改意见。

JJF1059.1-2012规程测量不确定度评定与表示

JJF1059.1-2012规程测量不确定度评定与表示

JJF 中华人民共和国国家计量技术规范JJF1059.1-2012测量不确定度评定与表示Evaluation and Expressionof Uncertainty in Measurement2012-12-03 发布2013-06-03实施国家质量监督检验检疫总局发布测量不确定度评定与表示Evaluation and ExpressionOf Uncertainty in Measurement归口单位:全国法制计量管理计量技术委员会起草单位:江苏省计量科学研究院中国计量科学研究院北京理工大学国家质检总局计量司本规范委托全国法制计量管理计量技术委员会解释本规范起草人:叶德培赵峰(江苏省计量科学研究院)施昌彦原遵东(中国计量科学研究院)沙定国(北京理工大学)周桃庚(北京理工大学)陈红(国家质检总局计量司)目录引言1 范围2 引用文献3 术语和定义4 测量不确定度的评定方法4.1 测量不确定度来源分析4.2 测量模型的建立4.3 标准不确定度的评定4.4 合成标准不确定度的计算4.5 扩展不确定度的确定5 测量不确定度的报告与表示6.测量不确定度的应用附录A 测量不确定度评定举例(参考件)附录B t分布在不同概率p与自由度ν的)(νp t值(t值)(补充件) 附录C 有关量的符号汇总(补充件)附录D 术语的英汉对照(参考件)1 引言本规范是对JJF1059-1999《测量不确定度评定与表示》的修订。

本次修订的依据是十多年来我国贯彻JJF1059-1999的经验以及最新的国际标准ISO/IEC Guide98-3-2008《测量不确定度第3部分:测量不确定度表示指南》(Uncertainty of measurement-Part 3:Guide to the Expression of Uncertainty in Measurement以下简称GUM),与JJF 1059-1999相比,主要修订内容有:--编写格式改为符合JJF1071-2010《国家计量校准规范编写规则》的要求。

ISO 10025测量不确定度指南

ISO 10025测量不确定度指南

ISO 10025测量不确定度指南ISO 10025是国际标准化组织(International Organization for Standardization)针对测量不确定度的指南标准。

这一指南的目的是为了确保测量结果的准确性和可信度,并通过提供一套系统的原则和方法来评估和表达测量结果的不确定度。

一、引言测量不确定度是度量测量结果的可靠性和确定性程度的参数。

在各个领域的测量中,存在着多种决定测量结果准确性的因素,如仪器的稳定性、环境条件的变化以及操作人员的技能水平等。

因此,了解和评估这些不确定性因素对测量结果的影响至关重要。

二、测量不确定度的定义和表示根据ISO 10025指南,测量不确定度被定义为测量结果与被测量量真实值之间的差异的一个参数,表达为标准偏差的度量。

常用的表示方法有扩展不确定度和覆盖因子等。

三、测量不确定度的评估方法ISO 10025指南提供了一系列评估测量不确定度的方法,包括顶层方法、底层方法和中层方法。

顶层方法是基于标准偏差的度量进行评估,底层方法则考虑更多的因素,如环境的不确定性和数据的分布特性。

中层方法是对顶层和底层方法的综合应用。

四、测量不确定度的应用测量不确定度的应用范围非常广泛,涵盖了各个领域的测量活动。

在科学研究、工业生产以及法律认证等方面,测量不确定度的准确评估能够提供决策者所需的可靠数据和依据。

五、测量不确定度的控制为了控制测量不确定度,需要采取一系列有效的措施。

这些措施包括选择适当的测量仪器和方法、进行校准和验证以及进行合理的数据处理和分析等。

六、标准化与认证标准化和认证是确保测量不确定度可靠度和可比性的重要手段。

通过制定国家或国际标准,并进行合格评定和认证,能够推动测量不确定度的准确性和一致性的提高。

七、结论ISO 10025测量不确定度指南为各个领域的测量活动提供了一套清晰的原则和方法,以确保测量结果的可靠性和可信度。

通过了解和评估测量不确定度,我们能够更好地理解测量结果,并采取相应的措施来控制和改善测量过程。

《医学实验室-测量不确定度的评定与指南》

《医学实验室-测量不确定度的评定与指南》

《医学实验室-测量不确定度的评定与指南》医学实验室测量不确定度是指在医学实验室中进行的各种测量结果中存在的不确定性。

这不确定性可能受到诸如测量设备、操作程序、环境及分析方法等多种因素的影响。

因此,对这些因素进行评估和分析是非常重要的。

测量不确定度的评估是对测量结果的品质控制的重要步骤。

它可以帮助实验室确定精度和准确性,以便针对测量结果进行更好的管理和控制。

测量不确定度的评估是一个定量的指标,并且需要采用统计学中的方法来计算和评估。

对于医学实验室,评估不确定度的指南包括以下几个步骤:第一步是确定测量物理量及其所需要的测量单位。

在选择测量物理量时,应考虑其在医学实验室中的重要性以及所需的精度和准确性。

测量单位则取决于所使用的测量设备。

第二步是确定影响测量结果的各种因素,包括环境因素、操作程序和设备因素等。

这些因素可能包括不同批次的试剂和不同运营人员的实验技术差异等。

第三步是对这些因素进行统计分析,以计算出测量不确定度。

这可以通过一个称为标准偏差的统计指标来实现。

标准偏差是对一组数据的集中程度的度量,我们可以用它来表示不确定度。

第四步是对测量结果进行比较和分析。

这可以通过使用接受因子和公差来完成,以确保测量结果在特定范围内。

医学实验室应该根据实际情况制定适合自己的测量不确定度评估指南。

它们应该针对医学实验室的特定需要,并且应该包含一些重要的组件,例如质量保证和质量控制计划。

同时,应该对评估过程进行监督和监控,以确保其准确性。

总之,对于医学实验室来说,评估测量不确定度的指南十分必要。

它可以帮助实验室正确评估测量结果的精度和准确性,并建立起一套科学的质量控制体系。

通过这样的控制体系,在普通测量过程中降低误差,提高实验的准确性,为医学领域的实验研究提供数据基础。

测量不确定度评定与表示

测量不确定度评定与表示

测量结果减去被测量的真值,是 具有正负号的量值
用标准偏差或其倍数的半宽度 (置信区间)表示,并需要说明 置信概率。无符号参数(取正号)
表明测量结果偏离真值
说明合理赋予被测量之值(最佳 估值)的分散性
客观存在,不以人的认识程度而 与评定人员对被测量、影响量及
改变
测量过程的认识密切相关
可利用系统误差对测量结果进行 修正
例1 校准标准溶液的制备
由高纯金属(镉)制备浓度约为1000mg/l 的校准标准溶液。
1.制备步骤
清洁高纯金属的表面以便除以任何金属氧化物的污染。然后称量金属并 将金属溶于容量瓶的硝酸中。该步骤的各个阶段见下述流程图。
2. 被测量数学模式:
清洁金属表面
(c)d100 m 0
V
p
(mg l1)
称量金属
会(CIPM)委员安布勒(Ambler)向CIPM提交了解决在国际上统一表达测量不确定度 方法问题的提案。 1978年5月,国际计量局向32个国家计量实验室和5个国际组织发出不确定度表述的征 求意见书。同年年底收到了21个国家实验室的复函。 1980年10月,国际计量局根据国际计量委员会的要求,召集并成立了不确定度表述工 作组,起草了建议书 INC-1(1980)《实验不确定度表示》,并提交国际计量委员会讨 论通过。 1986年10月,国际计量委员会会议进一步考虑了修改意见,通过建新议书 INC1(1986),并决定推广应用。 1993年,工作组完成文件制订:测量不确定度表示指南 ISO:1993(E),GUM。 1995年勘误后再版,英文文件名为:Guide to the Expression of Uncertainty in Measurement,Corrected and Reprinted,1995. ISO。

(完整版)不确定度与测量结果不确定的表达

(完整版)不确定度与测量结果不确定的表达

1.2 不确定度与测量结果不确定的表达由于误差的存在,使得测量结果具有一定程度的不确定性。

为了加强国际间的交流与合作,1996年,中国计量科学研究院在国际权威文件《测量不确定度表达指南》的基础上,制定了我国的《测量不确定度规范》。

从此,物理实验的不确定度评定有了国际公认的准则。

下面将结合对测量结果的评定对不确定度的概念、分类、合成等问题进行讨论。

1.2.1 不确定度的概念不确定度是评价测量质量的一个新概念,是表达测量结果具有分散性的一个参数,它是被测量的真值在某个量值范围内的一个评定。

不确定度反映了可能存在的误差分布范围,是误差的数字指标。

不确定度愈小,测量结果可信赖程度愈高;不确定度愈大,测量结果可信赖程度愈低。

在实验和测量工作中,不确定度是作为估计而言的,因为误差是未知的,不可能用指出误差的方法去说明可信赖程度,而只能用误差的某种可能的数值去说明可信赖程度,所以不确定度更能表示测量结果的性质和测量的质量。

用不确定度评定实验结果的误差,其中包含了各种来源不同的误差对结果的影响,而它们的计算又反映了这些误差所服从的分布规律,这是更准确地表述了测量结果的可靠程度,因而有必要采用不确定度的概念。

1.2.2 测量结果的表示和合成不确定度在做物理实验时,要求表示出测量的最终结果。

在这个结果中既要包含待测量的近似真实值x,又要包含测量结果的不确定度σ,还要反映出物理量的单位。

因此,要写成物理含意深刻的标准表达形式,即σ±=xx(单位)(1—4)式中x为待测量;x是测量的近似真实值,σ是合成不确定度,一般保留一位有效数字,若首数是1或2时可取2位。

这种表达形式反应了三个基本要素:测量值、合成不确定度和单位。

在物理实验中,直接测量时若不需要对被测量进行系统误差的修正,一般就取多次测量的算术平均值x作为近似真实值;若在实验中有时只需测一次或只能测一次,该次测量值就为被测量的近似真实值。

如果要求对被测量进行一定系统误差的修正,通常是将一定系统误差(即绝对值和符号都确定的可估计出的误差分量)从算术平均值x或一次测量值中减去,从而求得被修正后的直接测量结果的近似真实值。

测量不确定度与《测量不确定度表示指南》教材

测量不确定度与《测量不确定度表示指南》教材

测量不确定度与《测量不确定度表示指南》摘要:CIPM、BIPM、ISO等国际组织提出了统一的测量准确度的评定方法,制定了“测量不确定度表示指南”等技术规范。

测量不确定度的提出对于计量学、经典真值误差概念、误差理论研究和应用、测量结果评定与表示等都具有划时代的意义。

本文对“测量不确定度表示指南”进行综述,介绍测量不确定度的提出和发展过程、计量学指南联合委员会(JCGM)关于测量不确定度的工作情况,以及在JCGM/WG1工作会议上我国提出的关于GUM建议修改意见。

关键词:测量不确定度;测量误差;GUM;JCGM/WG11。

引言测量是人们认识自然界量值关系的重要手段,是人类有意识的实践活动。

当人们用测量来认识客观存在的量值时,该量值就是被测量,其定义值就是被测量真值。

被测量真值是一种客观存在,其关键是被测量真值的定义。

通过测量确定的被测量的估计值被称为测量结果。

测量结果是人们对客观存在的被测量真值通过测量得到的主观认识。

受到需要和客观可能的限制,测量结果与被测量真值间存在差异,即测量误差。

测量误差表征测量结果作为被测量真值估计值的可靠程度,被称为测量准确度,测量准确度评估事实上就是对测量误差进行评估。

完整的测量结果的信息中,应该包括测量准确度评估结果,用以判断测量结果的可靠程度[1]。

有测量史以来,测量准确度评估始终处于计量技术的核心位置。

测量不确定度表征被测量真值在某个量值范围的估计。

测量误差虽然不可能准确知道,但常常可以由各种依据估计测量误差可能变动的区间,可以估计测量误差的绝对值上界,这个被估计的变动区间或上界值称为测量不确定度,它是测量结果及其表征测量误差大小的统计特征估计值[2,3]。

测量不确定度的提出引发了经典真值误差概念、误差理论研究和应用、测量结果评定与表示的重大变革。

本文拟对“测量不确定度表示指南”进行综述,介绍测量不确定度的提出和发展过程、计量学指南联合委员会(JCGM)第一工作组(WG1)的工作情况,以及我国在JCGM/WG1工作会议上提出的GUM建议修改意见。

测量不确定度评定与表示方法

测量不确定度评定与表示方法

1)标准差法
统计学中,有一个定量表示测量分散 性的参数,即“标准差”,可直接将其作为 测量的标准不确定度。
输入量的最佳值为测量列x1,x2,x3,‥‥‥, xn的算术平均值:
x
1 n
n i 1
xi
实验标准差
n
2
xi x
s i1 n 1
测量列平均值的实验标准差(A类标准
不确定度)
n
2
u(x) s x s n
测量不确定度评定与表示
Evaluation and Expression of Uncertainty in Measurement
内容
不确定度产生的背景 不确定度的意义及作用 不确定度的评定方法(标准不确定度、合成不确定度及扩展不确定度的评
定) 不确定度的应用实例
目的:
一、了解不确定度的相关术语及其概念 二、理解校准证书中不确定度所表达的含义 三、对校准结果进行合理的不确定度评定
xi x
i 1
n n 1
例:试验机测量重复性的标准不确定度
试验机加载负荷为60kN,重复测量9次,其值为:60.121, 60.120,60.051,60.032,60.055,60.070,60.111, 60.089,60.081.
测量值为: F1 60.081kN
9
(F1i F1)2
1、在相同的温度下用光标卡尺测量一片钢板 的厚度 ( 真值为15 mm),连续测量五次,测量 结果分别为15.02 mm、14.88 mm、14.92 mm、 15.04 mm、14.96 mm等;此时,测量结果是 多少?应如何来表示测量结果呢? 被测量的值=测量结果(值)±测量误差
Y=14.97 mm ±△y
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

测量不确定度与《测量不确定度表示指南》摘要:CIPM、BIPM、ISO等国际组织提出了统一的测量准确度的评定方法,制定了“测量不确定度表示指南”等技术规范。

测量不确定度的提出对于计量学、经典真值误差概念、误差理论研究和应用、测量结果评定与表示等都具有划时代的意义。

本文对“测量不确定度表示指南”进行综述,介绍测量不确定度的提出和发展过程、计量学指南联合委员会(JCGM)关于测量不确定度的工作情况,以及在JCGM/WG1工作会议上我国提出的关于GUM建议修改意见。

关键词:测量不确定度;测量误差;GUM;JCGM/WG11。

引言测量是人们认识自然界量值关系的重要手段,是人类有意识的实践活动。

当人们用测量来认识客观存在的量值时,该量值就是被测量,其定义值就是被测量真值。

被测量真值是一种客观存在,其关键是被测量真值的定义。

通过测量确定的被测量的估计值被称为测量结果。

测量结果是人们对客观存在的被测量真值通过测量得到的主观认识。

受到需要和客观可能的限制,测量结果与被测量真值间存在差异,即测量误差。

测量误差表征测量结果作为被测量真值估计值的可靠程度,被称为测量准确度,测量准确度评估事实上就是对测量误差进行评估。

完整的测量结果的信息中,应该包括测量准确度评估结果,用以判断测量结果的可靠程度[1]。

有测量史以来,测量准确度评估始终处于计量技术的核心位置。

测量不确定度表征被测量真值在某个量值范围的估计。

测量误差虽然不可能准确知道,但常常可以由各种依据估计测量误差可能变动的区间,可以估计测量误差的绝对值上界,这个被估计的变动区间或上界值称为测量不确定度,它是测量结果及其表征测量误差大小的统计特征估计值[2,3]。

测量不确定度的提出引发了经典真值误差概念、误差理论研究和应用、测量结果评定与表示的重大变革。

本文拟对“测量不确定度表示指南”进行综述,介绍测量不确定度的提出和发展过程、计量学指南联合委员会(JCGM)第一工作组(WG1)的工作情况,以及我国在JCGM/WG1工作会议上提出的GUM建议修改意见。

2。

测量不确定度与测量误差测量不确定度和测量误差是误差理论中两个重要概念[4],它们都是评价测量结果质量高低的重要指标,都可作为测量结果的精度评定参数。

但它们之间又有明显的区别。

从定义上讲,测量误差是测量结果与真值之差,它以真值或约定真值为中心,而测量不确定度是以被测量的估计值为中心。

因此测量误差是一个理想的概念,一般不能准确知道,难以定量;而测量不确定度是反映人们对被测量真值在某个量值范围的估计,可以定量评定。

测量误差按其特征和性质分为系统误差、随机误差和粗大误差,并可采取不同措施来减小或消除各类误差对测量的影响。

由于各类误差之间并不存在绝对界限,故在分类判别和误差计算时不易准确掌握。

测量不确定度不对测量误差进行分类,而是按评定方法分为A类评定和B类评定[5,6],两类评定方法不分优劣,按实际情况的可能性加以选用。

由于不确定度的评定不考虑影响不确定度因素的来源和性质,只考虑其影响结果的评定方法,从而简化了分类,便于评定与计算。

当然,误差是不确定度的基础,研究测量不确定度首先需研究测量误差,只有对误差的性质、分布规律、相互联系及对测量结果的误差传递关系等有了充分的认识和了解,才能更好地估计各不确定度分量,正确得到测量结果的不确定度。

用测量不确定度代替测量误差表示测量结果,易于理解、便于评定,具有合理性和实用性。

测量不确定度是对经典误差理论的补充、完善与发展,是现代误差理论的内容之一[7]。

3。

测量不确定度的提出与发展早在1963年,美国国家标淮局(NBS),现为国家标准与技术研究院(NIST)的Eisenhart先生在研究“仪器校准系统的精密度和准确度的估计”时,提出了“定量表示不确定度”的建议。

20世纪70年代,美国国家标准局在研究和推广测量保证方案(MAP)时,对不确定度定量表示研究又有了进一步的发展。

不确定度这个术语逐渐在测量领域内被广泛应用,但表示方法各不相同。

1977年5月,国际计量委员会(CIPM)下设的国际电离辐射咨询委员会(CCEMRI)中的X-γ射线和电子组,讨论了关于校准证书上如何表达不确定度的若干不同建议,提出了解决这个问题的必要性和迫切性。

时任CIPM成员、CCEMRI主席、NBS局长的Ambler先生,正式向国际计量局(BIPM)提出了解决测量不确定度表示的国际统一性问题提案[8]。

1978年,BIPM就此制定了一份详细的调查表,并分发到32个国家计量院及5个国际组织征求意见。

1979年底,收到21个国家计量院的复函。

1980年,BIPM召集和成立了不确定度表示工作组,在征求各国意见的基础上起草了一份建议书,即INC 1(1980)。

该建议书向各国推荐了不确定度的表示原则,使测量不确定度的表示方法逐渐趋于统一。

1981年,第七十届CIPM批准了INC 1(1980),并发布了CIPM建议书,即CI1981。

1986年,CIPM再次重申采用上述测量不确定度表示的统一方法,并发布了CIPM建议书,即CI 1986。

这份CIPM建议书推荐的方法,以INC1(1980)为基础,要求所有CIPM及其咨询委员会赞助下的国际比对及其他工作的参加者,在给出结果时必须使用合成不确定度。

BIPM一直致力于国际范围内实现计量等效性的目标。

70年代以来,BIPM主要抓了两件关键性的技术工作:组织各国国家基准、标准的国际比对,确定相应量值单位的关键性比对参考值及其不确定度,以及确定各国基准、标准对参考值的偏离值及其不确定度;统一测量准确度的评估方法,即制定“测量不确定度表示指南”。

自20世纪80年代以来,CIPM建议的不确定度表示方法已经在世界各国许多实验室和计量机构使用。

但是,正如国际单位制计量单位不仅在计量部门使用一样,测量不确定度应该也可以应用于一切使用测量结果的领域。

为了进一步促进不确定度表示方法在国际上的广泛使用,1980年CIPM要求国际标准化组织(ISO)在INC l(1980)建议书的基础上,起草一份能广泛应用的指南性文件。

这项工作得到了国际计量局BIPM)、国际电工委员会(IEC)、国际临床化学联合会(IFCC)、国际标准化组织(ISO)、国际理论化学与应用化学联合会(IUPAC)、国际理论物理与应用物理联合会(IUPAP)、国际法制计量组织(OIML)等7个国际组织的支持和赞助。

并决定由ISO第四技术顾问组(TAG4)的第三工作组(WG3)负责起草《测量不确定度表示指南》,其工作组成员则由BIPM、IEC、ISO和OIML组成[9]。

1993年,《测量不确定度表示指南ISO1993》(GUM93)以上述7个国际组织的名义正式由国际标准化组织(ISO)出版发行。

1995年又作了局部修改后重印,即《测量不确定度表示指南ISO1995》(GUM95)[10]。

《测量不确定度表示指南》是在INC l(1980)、CI 1981和CI 1986的基础上编制而成的应用指南,在测量不确定度及有关术语定义、概念、评定方法和报告的表达方式上都作了更明确的统一规定。

它代表了当前国际上表示测量结果及其不确定度的约定做法,从而使不同国家、不同地区、不同学科、不同领域在表示测量结果及其不确定度时具有一致的含义。

因此,《测量不确定度表示指南》的推广应用必将推动科技进步,促进国际交流。

GUM是一个技术规范,但在推广与应用的过程中,发现还存在着结构性缺陷,存在着计量基准、标准的评定中作用突出,而“一般测量”(工程测量)中执行困难等问题。

为了进一步对《测量不确定度表示指南》进行增补和对《国际计量学通用基本名词术语》(VIM)[11]进行修订,1998年成立了由BIPM、IEC、IFCC、ILAC(国际实验室认可委员会)、ISO、IUPAC、IUPAP和OIML等8个国际组织的代表组成的“计量学指南联合委员会(JCGM)”。

BIPM局长担任JCGM主席。

JCGM分为两个工作组:第一工作组(WG1)的主要任务是促进GUM的使用,并编写增补指南以适应其广泛的应用;第二工作组(WG2)负责对1993年出版的VIM进行修订。

WG1、WG2两个工作组每半年召开一次会议,主要议题是讨论存在的问题和工作进展,并确定下一步工作计划。

今,WG1和WG2已分别召开了3次和7次工作组会议。

2001年5月7~11日中国代表团以BIPM特邀来宾身份,参加了国际计量局在法国巴黎召开的“计量学指南联合委员会”工作组会议。

中国代表团由中国计量科学研究院(NIM)钱钟泰、施昌彦、高蔚等3人组成。

3 计量学指南联合委员会JCGM/WG1(GUM)工作组巴黎会议综述2001年5月JCGM/WG1工作组巴黎会议正式成员11人,包括8个国际组织的代表,以及美国、英国、德国和丹麦等国家研究院、所的代表。

会议的主要议程包括[12]。

(1) JCGM/WG1工作组组长Dr Walter Bich(意大利)对2000年11月召开的JCGM/WG1会议小结。

强调WG1的任务是对GUM进行增补,而不是修订,以免对GUM的执行造成不良影响。

上次会议决定WG1成立了两个子委员会:关于GUM增补指南之一“分布的传播和主流GUM 的有效性”子委员会,关于GUM增补指南之二“多变量分析”子委员会。

(2)介绍BIPM等8个国际组织在测量不确定度领域的活动。

ISO 成立了一个由英国、德国、法国等代表组成的非永久性工作组WG122,并于2001年1月召开了会议,确定欧盟内部对测量不确定度的需求,并决定在明年举办关于测量不确定度的研讨会;OIML、ILAC认为,实际应用中存在简化GUM使用的需要;BIPM针对目前开展的国际关键比对,成立了一个非正式的有关MRA中测量不确定度的小组等。

(3)讨论“分布的传播和主流GUM的有效性:GUM增补指南之一”报告的第二稿(框架)。

报告提出,测量不确定度评定(evaluation)可以分为两个阶段,即公式表述(formulation)和计算(calculation)。

“公式表述”也称为“模型建立”(modelling);而“计算”过去则被称为“评定”(evaluation),为避免词义混淆,现改为“计算”,其含义是在合理地建立测量的数学模型的基础上,采用适当的数学方法得出测量不确定度的数值。

本报告的目的,就是为GUM的使用者提供一些可供选择的计算方法,其中主要是Monte Carlo模拟法(MCS)。

本次会议就该报告框架形成的主要意见是:作为GUM的增补文件之一,它与GUM之间应具有很好的联系,并明确其适用性和局限性(有效性范围)。

该报告的最终文件将在下一次会议前完成。

(4)讨论“测量不确定度表示指南多变量情况”报告的初稿[13]。

相关文档
最新文档