锂电池正极材料的发展及应用材料
锂离子电池的研究进展及应用前景精选全文完整版

可编辑修改精选全文完整版锂离子电池的研究进展及应用前景近年来,新能源电池市场的发展迅猛,尤其是锂离子电池,在家用电器、电动车、太阳能等领域得到了广泛的应用。
对于锂离子电池的研究,不仅能够提高电池的性能,同时也能够为其更进一步的应用提供技术支持。
本文介绍了锂离子电池的研究进展以及其应用前景。
一、研究进展1. 电极材料改进电池的性能主要取决于电极材料的性质,因此在锂离子电池的研究中,电极材料的改进是必不可少的。
传统的电极材料为石墨,但石墨有低比容量、低导电性、易热化等问题。
近年来,锂离子电池的革新主要是基于正极和负极材料之间的平衡。
目前用于正极的材料有LiFePO4、LiCoO2、LiMn2O4等,用于负极的材料主要有石墨、金属锂、硅材料等。
这些材料科技的不断创新进步,使得锂离子电池的性能得到不断提升。
2. 电解质电解质是电池中极为重要的部分,因为它赋予电池主要的性能(如循环性能、电池容量、能量密度等)。
在传统的锂离子电池中,一般使用液态电解质,但液态电解质有泄漏的风险,而且易于氧化和燃烧。
为了提高电池的安全性和循环性能,目前锂离子电池中主要使用固态电解质。
固态电解质中,最为主流的是氧化铝、氧化锆等陶瓷材料。
固态电解质具有优异的化学稳定性,与高无效性的锂电求得更高电化学性能和更安全性的使用。
3. 电池系统除了电极材料和电解质的改进之外,电池系统的研究也是锂离子电池中一个必不可少的研究领域。
在电池工作过程中,电极和电解质之间的变化会影响电池的循环性能。
而电池系统从整体的角度出发,可以有效的解决这一问题。
电池系统研发的一个核心是电池管理系统(BMS),BMS在锂离子电池中起着重要的作用,它将对电池的使用和维护起到至关重要的作用。
同时,电池系统的研究还包括了钝化处理、电极的表面改性等专业技术的研发。
这些研究都可以有效的提高锂离子电池的研发与应用。
二、应用前景随着汽车、家用电器、通讯等领域的快速发展,锂离子电池在各个领域得到了广泛的应用。
锂离子电池正极材料的研究进展

锂离子电池正极材料的研究进展锂离子电池正极材料的研究进展随着清洁能源的发展,锂离子电池作为一种高能量、高功率密度的电池,已被广泛应用于移动物体、电动汽车、储能系统等方面,锂离子电池中的正极材料是实现高性能锂离子电池的关键。
本文将从锂离子电池正极材料的发展历程、材料的结构与性能、新型材料的研究和应用等方面展开详细的介绍和分析。
一、锂离子电池正极材料的发展历程20世纪80年代中后期,最早的锂离子电池是由四种材料构成的:平板石墨负极、聚乙烯隔膜、液态电解质和金属氧化物正极。
但是,由于金属氧化物正极的电化学性能不佳,限制了锂离子电池的应用,于是人们开始研究新型的锂离子电池正极材料。
1990年,日产汽车公布了采用碳酸锂电解液和三元材料(LiCoO2)的锂离子电池作为电动汽车动力源的计划。
1997年,索尼公司发布了使用锰酸锂(LiMn2O4)作为正极材料的锂离子电池,在实验室内能够实现高达1000次充放电循环,在国际市场上得到了广泛的推广。
之后,锂离子电池正极材料的研究进入了全新的阶段,市场上出现了一大批新型材料,如LiFePO4、LiNi0.33Mn0.33Co0.33O2等,已成为锂离子电池领域中的热门研究方向。
二、锂离子电池正极材料的结构与性能锂离子电池正极材料的结构一般是层状结构、尖晶石结构、钠层化合物结构、硅基嵌入化合物结构、钙钛矿结构和氧化物渗透缺陷结构,其物理化学性质也有所不同。
LiCoO2是最早应用于锂离子电池的材料之一,其具有较高的理论容量和电化学效率,但是由于其参数退化、安全性差以及高的成本等问题,不断推进了对新型的锂离子电池正极材料的研究。
LiFePO4是一种锂离子电池正极材料,它具有高的理论容量、低的电化学电位和充电的极高可逆性,但是其电导率较低,电量功率较低,在高功率环境下却发生了否决性的出现。
LiMn2O4是一种高性能的锂离子电池正极材料,其较高的电化学反应速度能够有效提高锂离子电池的安全性,但是容易发生相关的氧化还原反应,导致容量的降低。
锂离子电池正极材料发展历程

锂离子电池正极材料发展历程随着电子产品的不断普及和应用,对于便携式电源的需求日益增长。
而作为目前最为普及的电池,锂离子电池因着其高能量密度、环保、可充放电等优点,成为了市场上最受欢迎的电源之一。
其中,锂离子电池正极材料扮演着重要的角色。
本文将对锂离子电池正极材料的发展历程进行简要介绍。
1、第一代材料——LiCoO2首先提到的是第一代锂离子电池正极材料——LiCoO2。
这种材料在80年代初期被发现,其具有高的电化学性能、较高的比能量、优异的循环稳定性。
得益于这些优点,LiCoO2成为了当时锂离子电池的首选的材料之一。
然而,这种材料也存在一定的缺陷:其寿命较短、使用温度受限、成本较高等问题。
2、第二代材料——LiNi0.8Co0.15Al0.05O2第二代锂离子电池正极材料的代表是LiNixCoyM1-x-yO2系列(M可以是Al、Mn等元素)。
其中,LiNi0.8Co0.15Al0.05O2是其中代表性的材料。
相比于第一代材料,这一代材料拥有更高的比容量、更高的温度稳定性和更长的循环寿命等性能。
但是,由于这种材料的制备过程比较复杂,其成本也更高。
3、第三代材料——LiFePO4随着对于绿色、环保的要求日益提高,大量研究人员开始关注新型的锂离子电池材料。
第三代锂离子电池正极材料的材料代表是LiFePO4。
其具有较高的放电平台、优秀的热稳定性和安全性等优点。
并且,这种材料还有一个非常重要的优势:价格低廉。
LiFePO4作为下一代的材料,其主要用于专业的动力应用领域。
4、第四代材料——石墨烯现如今,科技进步日新月异,越来越多的研究人员开始着手探索新型的锂离子电池正极材料。
目前,第四代锂离子电池正极材料的代表是石墨烯。
石墨烯由单层碳原子通过特殊的合成方法制备而成。
据研究,石墨烯在锂离子电池正极材料方面具有明显的优势,如高的比能量、高的导电性能和优异的循环稳定性等。
石墨烯因具有多方面优势,受到空间科学、新能源、生物技术等多领域科学家的重视,未来可能有着更广泛的应用前景。
锂电池正极材料概述

锂电池正极材料概述一、材料种类锂电池正极材料是指在锂电池中,用于提供正电的物质,是锂电池中最为关键的组成部分。
常见的锂电池正极材料包括钴酸锂、磷酸铁锂、锰酸锂、三元材料等。
这些材料在电池性能、成本等方面具有不同的优势和缺点,选用哪种正极材料需要根据具体的应用需求来确定。
二、性能特点1.钴酸锂:具有高能量密度、高电压、较好的循环性能等优点,但价格较高,安全性稍差。
2.磷酸铁锂:具有高能量密度、无毒、循环寿命长、成本低等优点,但高温性能较差,充电电压较高。
3.锰酸锂:具有高电压、低成本、无毒等优点,但循环性能较差,容量较低。
4.三元材料:具有高能量密度、长循环寿命、无毒等优点,且可以调节镍钴锰的比例来调整电池的容量和电压,是目前锂电池正极材料中较为优秀的一种。
三、制备工艺锂电池正极材料的制备工艺主要有物理法和化学法两种。
物理法是将原材料进行物理混合、球磨、烧结等工艺制备成正极材料;化学法则是通过化学反应制备正极材料,包括沉淀法、溶胶凝胶法、水热法等。
制备工艺对正极材料的性能和质量有着重要影响。
四、应用领域锂电池正极材料广泛应用于电动汽车、电动自行车、移动电源等领域。
随着新能源汽车的快速发展,锂电池正极材料的市场需求也在持续增长。
五、市场前景随着环保意识的提高和新能源汽车的推广,锂电池正极材料的市场前景十分广阔。
未来,随着技术的进步和成本的降低,锂电池正极材料的应用领域还将进一步扩大。
同时,政策支持和市场需求也将推动锂电池正极材料产业的快速发展。
六、技术挑战目前,锂电池正极材料仍面临着一些技术挑战,如容量密度提升、充电速度提高、安全性提升、循环寿命延长等方面的问题。
这些问题需要不断地研究和改进技术来解决,以满足市场对高性能锂电池的需求。
七、发展趋势未来,锂电池正极材料的发展趋势将主要集中在以下几个方面:1.高能量密度:随着电动汽车等应用领域的发展,对锂电池的能量密度要求越来越高,正极材料的高能量密度研究将不断深入。
锂离子电池的正极材料

锂离子电池的正极材料
锂离子电池是一种广泛应用于电子设备、电动汽车和储能系统中的重要电池类型。
它由正极、负极、电解质和隔膜组成,其中正极材料是决定电池性能的关键因素之一。
在锂离子电池中,正极材料主要负责储存和释放锂离子,因此其特性直接影响电池的能量密度、循环寿命和安全性能。
目前,锂离子电池的正极材料主要包括钴酸锂、锰酸锂、三元材料(镍钴锰酸锂)、钛酸锂、磷酸铁锂等。
这些材料各有其优缺点,选择合适的正极材料取决于电池的具体应用和性能要求。
钴酸锂是目前应用最为广泛的正极材料之一,它具有高能量密度和较好的循环寿命,但成本较高且含有稀缺资源钴。
锰酸锂具有较低的成本和较高的热稳定性,但能量密度较低且循环寿命不及钴酸锂。
三元材料由镍、钴、锰的混合物组成,综合了三种材料的优点,具有较高的能量密度和循环寿命,但成本较高。
钛酸锂和磷酸铁锂则分别具有优异的热稳定性和安全性能,适用于特定领域的高安全性要求。
除了以上常见的正极材料外,还有一些新型材料如钠离子正极材料、多孔材料等正在被研究和开发,以期望提高电池的能量密度、循环寿命和安全性能。
在选择正极材料时,需要综合考虑电池的能量密度、循环寿命、成本、安全性能等因素。
未来,随着新材料的不断涌现和技术的不断进步,锂离子电池的正极材料将会更加多样化和专业化,以满足不同领域对电池性能的不同需求。
总的来说,锂离子电池的正极材料是决定电池性能的重要因素,不同的正极材料具有各自的优缺点,选择合适的正极材料需要综合考虑电池的具体应用和性能要求。
未来,随着材料科学和电池技术的发展,正极材料将会不断更新换代,为电池的性能提升提供更多可能性。
锂离子电池正极材料的包覆改性及应用

锂离子电池正极材料的包覆改性及应用摘要:锂离子电池以其优异的电化学性能成为二次电池市场中重要的发展方向。
通常,正极材料的表面性质对其物理和电化学性能有很大影响,其中,对于正极材料进行表面包覆是简单有效的实现锂离子电池性能提升的方法。
本文梳理了锂离子电池正极材料包覆技术的发展现状,并依托国内外专利文献,列举了其主要应用情况,文章最后对锂离子电池正极包覆技术的发展趋势进行了阐述。
关键词:锂离子电池;正极;包覆;改性一、前言通讯和信息产业的发展,手机、笔记本电脑、数码相机、平板电脑的兴起,带动了锂离子电池的飞速发展。
众所周知,锂离子电池的电压平台和容量主要受正极材料的影响。
随着技术的快速发展,传统正极材料难以满足人们对电池高能量、高密度锂电池的要求[1]。
正极材料较容易与电解液发生副反应,导致表面结构重构,过渡金属溶解,以及微裂纹的产生,而微裂纹又会暴露出更多的反应位点,进一步导致相变的产生及微裂纹的扩展。
三元正极材料与电解液的副反应是其性能衰退极为关键的因素。
二、发展现状针对以上问题,专家学者们探索采用各种方式对正极材料进行改性,其中在正极材料颗粒表面进行包覆是最有效的方式之一。
包覆层可以有效地减少正极材料与电解液副的反应,降低电极极化程度,抑制金属离子溶解,维持材料结构稳定,从而提高电极材料的电化学性能。
三、应用举例本文列举了各类包覆材料,以金属氧化物、金属氟化物、碳材料和金属单质等为例,介绍了各类包覆材料的研究进展,依托国内外相关专利进行简要介绍:3.1、金属氧化物包覆中国专利申请CN201811366942.6公开了一种氧化铝包覆锂离子电池正极材料及其制备方法,包括下列步骤:将锂离子电池正极材料、溶剂、碳酸盐/碳酸氢盐以及铝盐混合,并超声反应,生成沉淀;将所述沉淀微波加热,得到产品;所述铝盐以铝元素计,质量为所述锂离子电池正极材料的0.5%~2.5%。
通过以上方法,能够将氧化铝均匀包覆锂离子电池正极材料,并且使铝元素熔融进入正极材料的晶体内部结构,既能够改善锂离子电池正极材料副反应效应以及循环寿命,又不使工艺复杂化。
锂离子电池正极三元材料的研究进展及应用

锂离子电池正极三元材料的研究进展及应用一、本文概述随着全球能源危机和环境污染问题的日益严重,锂离子电池作为一种高效、环保的能源储存和转换方式,已经在电动汽车、移动电子设备等领域得到了广泛应用。
其中,正极材料作为锂离子电池的重要组成部分,其性能直接影响到电池的能量密度、循环寿命和安全性能。
因此,研究和开发高性能的正极材料是锂离子电池领域的重要研究方向。
本文将对锂离子电池正极三元材料的研究进展和应用进行全面的综述,旨在探讨其发展趋势和未来应用前景。
本文将简要介绍锂离子电池的基本原理和正极材料的重要性。
然后,重点分析三元材料的结构特点、性能优势以及存在的问题和挑战。
接着,综述近年来三元材料在合成方法、改性技术和应用领域的研究进展,包括纳米化、复合化、掺杂等改性手段对三元材料性能的影响。
展望三元材料在未来的发展趋势和应用前景,提出可能的研究方向和建议。
通过本文的综述,旨在为相关领域的研究人员和企业提供有益的参考和启示,推动锂离子电池正极三元材料的研究和应用进一步发展。
二、三元材料的基本性质三元材料,又称为三元正极材料,是锂离子电池中的关键组成部分,对电池的能量密度、功率密度以及循环寿命等性能起着决定性的作用。
其一般化学式可表示为LiNixCoyMn1-x-yO2 (NCM) 或LiNixCoyAlzO2 (NCA),其中x、y、z为各元素的摩尔比例,可根据需要进行调整以优化材料的性能。
高能量密度:三元材料具有较高的比容量,这使得锂离子电池在相同体积或重量下能够存储更多的能量,因此适用于高能量需求的电子设备或电动车等领域。
良好的电化学性能:三元材料具有良好的电子导电性和离子迁移率,这有助于提高电池的充放电效率和循环稳定性。
其结构稳定,能够在充放电过程中保持结构的完整性,减少电池容量的衰减。
安全性:三元材料在高温下具有较好的热稳定性,能够有效防止电池热失控的发生。
同时,其结构中的元素均为无毒或低毒元素,对环境和人体健康影响较小。
锂离子电池正极相关材料

锂离子电池正极相关材料-----------------------作者:-----------------------日期:锂离子电池具有工作电压高、无记忆效应、环境友好等优点,已经成为21世纪绿色电池的首选。
锂离子电池的关键材料之一是正极材料,目前商品化锂离子电池的正极材料主要是LiCoO2,但存在成本高、实际比容量偏低、抗过充电性能差、安全性能不佳等问题,严重阻碍了锂离子电池的进一步发展,限制了它在更广领域的应用,迫切需要研究者开发出成本低、性能优良、安全性高的锂离子电池正极材料以满足电动汽车等新兴行业的需求。
锂离子电池是绿色环保电池,是二次电池中的佼佼者。
与镍镉电池(Cd.Ni)和镍氢电池(Ni.H)相比,锂离子电池具有工作电压高、比能量大、充放电寿命长、自放电率低等显著优点,且没有Cd-Ni电池中镉的环境污染问题。
锂离子电池的上述特点,使其可以向小型化方向发展,因而适合于小型便携式电器电源,如移动电话、笔记本电脑、照相机等。
这些电器与人们的商务活动和日常生活紧密相连,使用的群体广,新旧换代快。
锂离子电池还可以用于电动工具和电动车电源替代Cd.Ni电池和铅酸电池,一方面Cd-Ni电池和铅酸电池的原材料上涨,成本提高,发展受限,我国出口退税政策调整;另一方面欧盟在2005和2006年相继出台了两项与化学品相关的RollS和REACH法令,前者限制了铅、镉等6种化学元素的使用,后者则规定上万种化学药品要重新注册。
所以这为锂离子电池行业发展带来了新的机遇【l】。
此外,锂离子电池也是航空航天和军事等领域要求空间上移动使用的新一代清洁安全能源,以及作为家庭和交通照明、备用电源、储能电站等时间上移动使用的储能调峰电源。
因此锂离子电池有非常广阔的应用范围。
1.2锂离子电池发展概况锂离子电池的发展可以追迥到锂二次电池,锂二次电池的研究最早始于20世纪60--70年代的石油危机,当时主要集中在以金属锂及其合金为负极的锂二次电池体系,但锂在充放电过程中由于电极表面的凹凸不平,导致表面电位分布不均匀,造成了锂的不均匀沉积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锂电池正极材料的发展及应用
一、电池产业概况
1、发展历程
电池产业先后经历了铅酸电池(1890年)、镍镉电池(1956年)、镍氢电池(1990年)、锂电池(1992年)、太阳能电池及燃料电池。
图1-1 电池产业发展历程
2、未来发展趋势
传统铅酸电池、镍镉电池在民用领域将被逐步取代。
铅酸电池是较早出现的一种二次电池。
它的优点是技术成熟,价格便宜,无记忆效应。
但缺点也非常明显,电池含有的重金属铅对环境污染影响较大,能量密度低。
铅酸电池的发展前景在短期仍有重要应用,长期将逐渐被性能更好的绿色电池所取代。
镍氢电池与锂离子电池快速发展,但长期锂离子电池将取代镍氢电池。
镍氢电池的优点是绿色无污染、可快速充电、能量密度高、循环寿命长、低温性能好。
其缺点是具有轻度记忆效应、高温环境下性能差和充放电效率差。
短期内将延续对镍镉电池的
替代攻势,长期来看,镍氢电池产业的发展将面对锂离子电池技术进步带来的替代威胁。
能力密度、循环寿命等性能占优使锂离子电池成为发展趋势,但锂离子电池目前发展瓶颈主要在于安全性和成本上面的突破。
燃料电池是真正的绿色电池,将是二次电池发展的长期目标。
二、锂电池正极材料的应用与发展
1、锂电池正极材料
锂离子电池是指分别用二个能可逆地嵌入与脱嵌锂离子的化合物作为正负极构成的二次电池。
锂离子电池的性能主要取决于所用电池内部材料的结构和性能。
锂离子电池的原材料主要包括正负极材料、电解液、电极基材、隔离膜和罐材等。
其中,正极材料是锂电池中最为关键的原材料,由于正极材料在锂离子电池中占有较大比例(正、负极材料的质量比例为3:1-4:1),因此廉价、高性能的正、负极材料的研究一直是锂离子电池行业发展的重点。
负极材料一般选用碳材料,目前的发展比较成熟。
而正极材料的开发已经成为制约锂
图1-2 锂离子电池成本占比图
离子电池性能进一步提高、价格进一步降低的重要因素。
同时由于锂离子电池正极材料在电池成本中所占比例可高达40%左右,所以其成本也直接决定电池成本的高低,应该说是锂离子电池正极材料的发展引领了锂离子电池的发展。
2、锂电池正极材料种类
目前正在使用和开发的锂电池正极材料中,以过渡金属氧化物所表现出的性能最佳。
中国目前正极材料主要包括钴酸锂、三元材料、锰酸锂和磷酸铁锂。
钴酸锂依然是国内小型锂电领域正极材料的主力,三元材料和锰酸锂主要在小型锂电中应用,在电动自行车和电动工具中也有部分使用;磷酸铁锂目前主要使用在电动工具盒电动汽车领域。
下面将几种常见的正极材料的主要特点介绍如下:
A 钴酸锂
钴酸锂由于具有生产工艺简单和电化学性能稳定等优势,所以最先实现商品化。
同时由于钴酸锂具有工作电压高、充放电电压平稳,适合大电流充放电,比能量高、循环性能好等优点,在需要小型充电电池的领域中具有重要应用。
钴酸锂正极材料的缺点是价格昂贵,实际比容量仅为其理论容量的274mAh/g的50%左右。
B三元材料
由于钴酸锂价格高导致的,另一方面国际市场的需求也是三元材料发展迅猛的另一动力。
三元材料综合了钴酸锂、镍酸锂和
锰酸锂三类材料的优点,形成了LiCoO2/LiNiO2/LiMnO2三相的共熔体系,且其综合性能优于任一的单组合化合物,存在明显的三元协同效应。
与目前占据市场主流的钴酸锂比较,其具有比容量高、价格低、对环境友好、热稳定性高和安全性好等优势,具有广阔的市场前景。
C锰酸锂
与钴酸锂和镍酸锂相比,锰酸锂具有安全性好、耐过充性好、原料锰的资源丰富、价格低廉及无毒性等优点,是很有发展前途的一种正极材料。
锰酸锂用作锂离子电池正极材料的缺点是虽然容量很高,但在高温下不稳定,而且在充放电过程中易向尖晶石结构转变,导致容量衰减过快。
锰酸锂在中国市场的使用还主要定位在小型电池领域,无法应用于高端领域,更不能完全取代钴酸锂材料在小型锂电的地位。
目前国内锰酸锂企业包括大型的正极材料生产企业都在积极的开发高温循环改善的锰酸锂材料。
D磷酸铁锂
随着动力电池的发展,国内厂家大多倾向于采用磷酸铁锂材料。
它是一类新型的锂离子电池用正极材料。
该类材料具有高的能量密度、低廉的价格、优异的安全性等特点,特别适用于动力电池。
目前磷酸铁锂被认为是最有发展前途的动力电池正极材料。
目前国内实现磷酸铁锂批量生产的企业有60多家,年产能3800吨。
由于磷酸铁锂生产技术门槛很高,大多数生产厂商在批量生产时产品的稳定性难以保证。
3、正极材料制备工艺方法
锂电池正极材料制备方法主要有高温固相合成法和低温固相合成法,此外还有草酸沉淀法、溶胶凝胶法、有机混合法等软化学方法及模板法。
三、锂电池正极材料的未来发展趋势
锂电正极材料行业经过近20年的发展,国内锂电正极材料行业涌现出了大批的企业参与市场竞争,行业内的优质资源逐渐地向几家具备实力的大企业集中。
国内锂电池生产企业的上市公司有:杉杉股份(600884),中国宝安(000009),金瑞科技(600390),上海普天(600680),咸阳偏转(000697)横店东磁(002056),澄星股份(600078),六国化工(600470)。
锂电正极材料市场可以细分为小型锂电和动力锂电正极材料市场。
小型锂电正极材料包括钴酸锂、三元材料和锰酸锂,而动力锂电正极材料主要锰酸锂、磷酸铁锂和三元材料。
小型锂电正极材料行业仍将平稳增长,钴酸锂在这一市场用量仍将保持一定的增长,但是随着三元材料和锰酸锂材料快速进入,钴酸锂的相对市场份额会有所降低。
动力锂电池的发展给正极材料的成长带来了巨大的市场空间,这类材料在未来的增长趋势明显。
据日本IIT对动力锂电池能量需求的预测:2010年到2012年动力锂电池汽车对锂电能量的需求增长率为137%,预计2018年动力锂电池的总能量将达到350亿Wh,而2009年小型锂电的总能量需求约为48亿Wh.。
表1 未来10年世界动力锂电正极材料市场需求变化趋势单位:吨
表2 未来10年锂电正极材料产量预测单位:吨
总体来看,锂电正极材料行业正处于朝气蓬勃的青壮年期,将长期处于快速增长阶段。
在未来10年内将保持年均22.8%的增长率,尤其是2012年动力锂电池的大规模商业化将使得锂电正极材料需求量的年增长率超过40%,市场总量将超过8万吨。