锂离子电池正极材料锰酸锂的研究现状
锰酸锂材料在高容量锂离子电池中的应用研究

锰酸锂材料在高容量锂离子电池中的应用研究随着电子设备的广泛应用和能源储存需求的增长,锂离子电池已成为目前最主流的二次电池技术。
而锂离子电池的关键组成部分之一,就是正极材料。
在众多可选的正极材料中,锰酸锂材料因其较高的比容量和较低的成本而备受关注。
本文将重点探讨锰酸锂材料在高容量锂离子电池中的应用研究。
首先,我们需要了解锰酸锂材料的基本特性。
锰酸锂是由锰、氧和锂组成的化合物,其晶体结构稳定性较好,具有较高的比容量和较低的材料成本。
此外,锰酸锂材料还具有较高的电导率和较好的循环稳定性,这使得它成为一种理想的锂离子电池正极材料。
在锰酸锂材料的研究中,最常用的晶相是LiMn2O4。
该材料具有尖晶石结构,能够容纳较多的锂离子,从而实现高容量的储能。
LiMn2O4材料的电化学性能受到晶格缺陷、离子扩散速率以及锰的价态变化等因素的影响。
因此,研究人员通过合成方法、表面改性和掺杂等手段来提高锰酸锂材料的性能。
目前,针对锰酸锂材料的研究主要集中在以下几个方面。
首先,合成方法的改进。
为了提高锰酸锂材料的性能,研究人员致力于开发新的合成方法。
常见的合成技术包括固相法、溶胶凝胶法、水热法和溶剂热法等。
其中,水热法被广泛应用于锰酸锂材料的制备,它可以提高材料的结晶度、颗粒尺寸和电导率。
其次,表面改性的研究。
锰酸锂材料的电化学性能很大程度上取决于材料的表面特性。
为了改善锰酸锂材料的电导率和循环稳定性,研究人员通过表面涂覆、离子掺杂和表面修饰等手段来改善材料的表面性能。
例如,通过涂覆导电聚合物或金属氧化物来提高材料的导电性,并提高循环寿命。
再次,掺杂材料的研究。
掺杂是改善锰酸锂材料性能的重要途径之一。
研究人员通过掺杂一些过渡金属离子,如钴、铁或镍等,来调节材料的晶格结构和电化学性能。
这些过渡金属的掺杂可以提高锂离子的迁移速率,并增加材料的比容量。
最后,循环性能的改善。
在锰酸锂材料的应用中,循环寿命是一个重要的指标。
研究人员通过优化材料的结构、表面改性和掺杂等方法,来改善锰酸锂材料的循环性能。
锂离子电池三元镍钴锰正极材料研究现状综述

三元系锂电池正极材料研究现状摘要:综述了近年来锂离子电池层状Li-Ni-Co-Mn-O正极材料的研究进展,重点介绍了正极材料LiNi l/3Co l/3Mn l/3O其合成方法电化学性能以及掺杂、包覆改性等方面的研究结果。
三元系正极材料的结果:LiMn x Co y Ni1-x-y O2具有α-2NaFeO2层状结构。
Li原子占据3a位置,Ni、Mn、Co随机占据3b位置,氧原子占据6c位置。
其过渡金属层由Ni、Mn、Co 组成,每个过渡金属原子由 6 个氧原子包围形成MO6 八面体结构,而锂离子嵌入过渡金属原子与氧形成的(MnxCo yNi1-x-y) O2层之间。
在层状锂离子电池正极材料中均有Li+与过渡金属离子发生位错的趋势,特别是以结构组成中有Ni2+存在时这种位错更为突出。
抑制或消除过渡金属离子在锂层中的位错现象是制备理想α-2NaFeO2结构层状正极材料的关键,在LiMn x Co y Ni1-x-y O2结构中, Ni2+的半径( rNi2+=0.069nm)与Li+的( rLi+=0.076nm)半径接近,因此晶体结构会发生位错,即过渡金属层中的镍原子占据锂原3a的位置,锂原子则进驻3b位置。
在Li+层中,Ni2+的浓度越大,则Li+在层状结构中脱嵌越困难,电化学性能越差。
而相对于LiNiO2及LiNi x Co1-x-y O2,LiMn x Co y Ni1-x-y O2中这种位错由于Ni 含量的降低而显著减少。
同时由于Ni2 + 的半径( rNi2 + =0. 069nm) 大于Co3+ ( rCo3+ = 0. 0545nm) 和Mn4 + ( rMn4 + =0. 053nm) ,LiMnxCo yNi1 - x - yO2 的晶格常数有所增加。
由于充分综合镍酸锂的高比容量、钴酸锂良好的循环性能和锰酸锂的高安全性及低成本等优点,利用分子水平的掺杂、包覆和表面修饰等方法来合成锰镍钴等多元素协同的复合正极材料,因其良好的研究基础及应用前景而成为近年来研究热点之一。
锂离子电池正极材料的研究进展

锂离子电池正极材料的研究进展锂离子电池正极材料的研究进展随着清洁能源的发展,锂离子电池作为一种高能量、高功率密度的电池,已被广泛应用于移动物体、电动汽车、储能系统等方面,锂离子电池中的正极材料是实现高性能锂离子电池的关键。
本文将从锂离子电池正极材料的发展历程、材料的结构与性能、新型材料的研究和应用等方面展开详细的介绍和分析。
一、锂离子电池正极材料的发展历程20世纪80年代中后期,最早的锂离子电池是由四种材料构成的:平板石墨负极、聚乙烯隔膜、液态电解质和金属氧化物正极。
但是,由于金属氧化物正极的电化学性能不佳,限制了锂离子电池的应用,于是人们开始研究新型的锂离子电池正极材料。
1990年,日产汽车公布了采用碳酸锂电解液和三元材料(LiCoO2)的锂离子电池作为电动汽车动力源的计划。
1997年,索尼公司发布了使用锰酸锂(LiMn2O4)作为正极材料的锂离子电池,在实验室内能够实现高达1000次充放电循环,在国际市场上得到了广泛的推广。
之后,锂离子电池正极材料的研究进入了全新的阶段,市场上出现了一大批新型材料,如LiFePO4、LiNi0.33Mn0.33Co0.33O2等,已成为锂离子电池领域中的热门研究方向。
二、锂离子电池正极材料的结构与性能锂离子电池正极材料的结构一般是层状结构、尖晶石结构、钠层化合物结构、硅基嵌入化合物结构、钙钛矿结构和氧化物渗透缺陷结构,其物理化学性质也有所不同。
LiCoO2是最早应用于锂离子电池的材料之一,其具有较高的理论容量和电化学效率,但是由于其参数退化、安全性差以及高的成本等问题,不断推进了对新型的锂离子电池正极材料的研究。
LiFePO4是一种锂离子电池正极材料,它具有高的理论容量、低的电化学电位和充电的极高可逆性,但是其电导率较低,电量功率较低,在高功率环境下却发生了否决性的出现。
LiMn2O4是一种高性能的锂离子电池正极材料,其较高的电化学反应速度能够有效提高锂离子电池的安全性,但是容易发生相关的氧化还原反应,导致容量的降低。
锂离子电池正极材料研究进展

锂离子电池正极材料研究进展锂离子电池是目前广泛应用于移动电子设备和电动车辆等领域的重要能量存储设备,其正极材料的性能对电池的性能和循环寿命有着至关重要的影响。
近年来,针对锂离子电池正极材料的研究逐渐受到了广泛关注。
在这篇文章中,将介绍一些最新的研究进展。
首先,锂离子电池正极材料的研究主要集中在提高材料的能量密度和循环寿命。
目前市面上常见的锂离子电池正极材料是钴酸锂(LiCoO2)、锰酸锂(LiMn2O4)和锂铁磷酸锂(LiFePO4)。
然而,这些材料在使用过程中存在着一些问题,比如钴酸锂存在着资源稀缺和价格昂贵的问题,锰酸锂的电化学性能相对较差,锂铁磷酸锂的能量密度较低等。
因此,研究人员开始寻找替代材料。
一种备受关注的材料是含有镍的过渡金属氧化物,比如锂镍钴锰氧化物(Li(Ni1/3Co1/3Mn1/3)O2)。
这种材料具有较高的能量密度和较长的循环寿命。
另外,研究人员还探索了硅和硫等材料作为锂离子电池正极材料的替代品。
其次,锂离子电池正极材料的微观结构调控也成为一个研究热点。
通过控制正极材料的粒径、纳米结构和晶体结构等参数,可以调节材料的电化学性能。
比如,一些研究表明,通过控制锂离子电池正极材料的晶体结构,可以实现更高的能量密度和更好的循环稳定性。
此外,锂离子电池正极材料的表面改性也引起了广泛关注。
通过在正极材料的表面形成一层保护膜,可以提高材料的循环稳定性和抗固相界面反应能力。
一些研究表明,通过硅、氟等元素的表面覆盖,可以显著改善正极材料的循环性能和容量保持率。
总体来说,锂离子电池正极材料的研究进展主要包括寻找新的材料、微观结构调控和表面改性。
通过这些研究,可以不断提高锂离子电池的能量密度和循环寿命,进一步推动锂离子电池在移动电子设备和电动车辆等领域的广泛应用。
随着移动电子设备和电动车辆市场的不断扩大,对锂离子电池正极材料的需求也越来越迫切。
因此,研究人员在锂离子电池正极材料的改进和创新上投入了大量的精力。
锂离子电池原理、研究现状与前景

锂离子电池原理、研究现状与前景锂离子电池是目前应用最广泛的可充电电池之一,其广泛应用于手机、电动车、航空航天等领域。
锂离子电池的优点主要表现在其高能量密度、长寿命、低自放电率以及较高的工作电压等方面。
本文将从锂离子电池的原理、研究现状与前景三个方面进行阐述。
一、锂离子电池原理锂离子电池是一种以锂离子嵌入/脱出负极材料为电池反应基础的电池。
锂离子电池包括正极、负极、电解液和隔膜等组成部分。
其中,正极材料通常为钴酸锂、锰酸锂、三元材料等,负极材料通常为石墨材料。
电解液一般采用有机溶液,例如碳酸盐溶液、有机磷酸酯溶液等。
隔膜则用于隔离正极和负极,避免两者直接接触。
在充电过程中,锂离子由正极向负极移动,同时在负极上嵌入形成化合物。
而在放电过程中,锂离子由负极向正极移动,同时从负极材料中脱出。
这个过程是可逆的,即锂离子在充放电过程中可以反复嵌入/脱出负极材料。
二、锂离子电池研究现状随着科技的发展,锂离子电池也在不断升级改进。
目前,锂离子电池的研究主要集中在以下几个方面:1. 提高电池能量密度提高电池能量密度是目前锂离子电池研究的热点之一。
目前的锂离子电池能量密度已经达到了200Wh/kg左右,而科学家们正在探索新的材料和结构,以进一步提高电池的能量密度。
2. 延长电池寿命锂离子电池的寿命受到多种因素的影响,例如循环次数、充放电速率、温度等。
科学家们正在研究如何通过优化电池结构、选择更稳定的材料等方式延长电池的寿命。
3. 提高电池安全性锂离子电池在充放电过程中会产生热量,如果电池内部温度过高,就可能发生热失控事故。
因此,提高电池的安全性也是当前锂离子电池研究的重要方向之一。
三、锂离子电池未来发展趋势随着科技的不断进步,锂离子电池在未来的应用前景也非常广阔。
以下几个方面是锂离子电池未来的发展趋势:1. 大容量电池大容量电池是未来锂离子电池的重要发展方向之一。
大容量电池可以应用于电动汽车、储能设备等领域,为人们带来更加便捷的生活方式。
三元系锂电池正极材料研究现状

三元系锂电池正极材料研究现状三元系锂电池是目前商业化应用最为广泛的锂离子电池之一,其具有高能量密度、长循环寿命、低成本等优势,在电动汽车、储能系统等领域有着广泛的应用前景。
正极材料是三元系锂电池的关键组成部分之一,直接影响到电池的性能和性质。
本文将对三元系锂电池正极材料的研究现状进行详细介绍。
三元系锂电池的正极材料主要由锂镍钴锰氧化物(Li(NiCoMn)O2)和镍钴锰氧化物(NCM)两种材料构成。
以Li(NiCoMn)O2为例,目前已有三种不同的结构型式:层状结构(Layered)、尖晶石结构(Spinel)和沙漠铁酸锂(LFMO),分别对应着不同的化学式和晶格结构。
层状结构的锂镍钴锰氧化物(如NMC622、NMC622、NMC811等)具有较高的比容量和较好的电化学性能,目前已经商业化应用较为广泛。
尖晶石结构的锂镍钴锰氧化物(如NCM811、NCM811等)具有更高的充放电电压平台和较好的结构稳定性,但其合成工艺较为复杂,目前正在逐步推广应用。
沙漠铁酸锂结构的锂镍钴锰氧化物在结构稳定性和循环寿命方面表现出更优越的性能,但其能量密度相对较低,目前还处于研究阶段。
除了锂镍钴锰氧化物,锂钴氧化物(LiCoO2)也是一种常见的三元系锂电池正极材料。
与锂镍钴锰氧化物相比,锂钴氧化物具有较高的比容量和较好的循环稳定性,但其价格较高且含有的有毒重金属钴对环境造成的污染问题也引起了人们的关注。
此外,还有一些其他材料也被研究用作三元系锂电池的正极材料,如锰酸镍钴(LiMn2O4)和锰酸锂(LiMnO2)。
锰酸镍钴具有较高的循环寿命和较低的成本,但其比容量较低,目前主要用于低容量应用;锰酸锂具有较高的比能量和较低的成本,但其结构稳定性较差,需要通过改性来提高其循环寿命。
总体而言,三元系锂电池正极材料研究已经取得了很大的进展,不断涌现出新的材料和改性方法。
未来的研究重点将主要集中在提高材料的能量密度、提高循环寿命和安全性能,以满足电动汽车、储能系统等应用的需求。
锰酸锂纳米材料的制备及其电化学性能研究

锰酸锂纳米材料的制备及其电化学性能研究锰酸锂纳米材料的制备及其电化学性能研究引言:近年来,锰酸锂(LiMn2O4)作为一种重要的正极材料,在锂离子电池领域得到广泛应用。
锰酸锂的电化学性能对电池性能有着至关重要的影响。
纳米材料因其微观结构的独特性,被认为有望提高锰酸锂的电化学性能。
因此,本文将重点介绍锰酸锂纳米材料的制备方法及其电化学性能的研究进展。
锰酸锂纳米材料的制备方法:1. 水热法:水热法是一种常用的合成锰酸锂纳米材料的方法。
其原理是在高温高压水热条件下,利用溶液中的热力学和动力学因素,生成纳米结晶。
通过调控反应条件和添加适当的表面活性剂,可以获得粒径较小、分散性好的锰酸锂纳米材料。
2. 沉淀法:沉淀法是另一种常用的制备锰酸锂纳米材料的方法。
该方法通过控制反应溶液中的pH值和温度,将锰和锂离子以沉淀的形式生成锰酸锂纳米颗粒。
此外,添加适当的络合剂或表面活性剂,可以调整纳米颗粒的尺寸和形貌。
3. 气相沉积法:气相沉积法是一种利用化学反应在气态条件下合成锰酸锂纳米薄膜的方法。
该方法通过蒸发金属锰和锂源,生成锰酸锂纳米颗粒,并沉积在基底上。
通过调控反应温度、气氛和沉积时间,可以得到具有不同晶相和形貌的锰酸锂纳米薄膜。
锰酸锂纳米材料的电化学性能研究进展:1. 循环性能:循环性能是衡量锰酸锂电池性能的重要指标之一。
研究表明,纳米材料相比于传统微米材料,具有更好的循环性能。
这是由于纳米材料具有较大的比表面积,可以提供更多的活性位点,减少极化现象和电解液中锂离子的扩散路径,从而提高电池的循环稳定性。
2. 容量性能:纳米材料由于其高比表面积和短离子扩散路径,可以提供更多的嵌入/脱嵌位点,增加电池的容量。
研究表明,锰酸锂纳米材料相比于传统微米材料,具有更高的比容量和更好的倍率性能。
这使得锰酸锂纳米材料在高能量密度要求的电池应用中具有较大的潜力。
3. 循环稳定性:锰酸锂电池在长时间循环过程中往往会出现容量衰减的问题。
锂电池正极材料锰酸锂存在问题和解决途径

THANKS FOR WATCHING
感谢您的观看
制备工艺优化
通过优化复合材料的制备工艺,控制组分分布和相界面结构,提高复合正极材料的电化学性能和稳定 性。
04
锰酸锂正极材料的未来 展望
新型锰酸锂正极材料的研发
总结词
随着科技的不断进步,新型锰酸锂正极材料的研发已成为行业关注的焦点,旨在解决现有锰酸锂材料存在的问题, 提高锂电池的性能和稳定性。
详细描述
成本低廉
锰酸锂原料丰富,价格相对较低,降低了电池成 本。
锰酸锂的应用领域
电动汽车
电动工具和电动自行车
锰酸锂作为正极材料广泛应用于电动 汽车领域,如混合动力汽车和纯电动 汽车。
锰酸锂在电动工具和电动自行车领域 也有广泛应用,提供稳定可靠的电源。
储能系统
由于其高能量密度和安全性能,锰酸 锂也被用于储能系统,如家庭储能和 电网级储能。
VS
详细描述
通过将锰酸锂与三元材料、富锂材料、硅 基负极材料等进行复合,可以改善锰酸锂 的容量、倍率性能和循环寿命。这种复合 正极材料能够更好地满足电动汽车、储能 系统等领域的性能需求。
锰酸锂在新能源领域的应用前景
要点一
总结词
要点二
详细描述
随着新能源领域的快速发展,锰酸锂正极材料在动力电池 、储能电池等领域的应用前景广阔,成为推动新能源产业 发展的重要力量。
高温性能问题
总结词
锰酸锂正极材料在高温环境下性能较 差,容量衰减和结构变化等问题更加 明显。
详细描述
锰酸锂正极材料在高温环境下容易发 生分解和结构变化,导致电池性能下 降。此外,高温环境下锰酸锂正极材 料的锂离子嵌入脱出速度也会变慢, 影响电池的充放电性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锂离子电池正极材料尖晶石型锰酸锂的研究进展摘要:尖晶石型锰酸锂能量密度高、成本低、无污染、安全性好、资源丰富,是最有发展潜力的锂离子电池正极材料之一。
但是循环过程中容量衰减较快成为制约其发展的主要因素。
本文详细阐述了锰酸锂的各种制备方法及其优缺点,综述了近几年来在表面修饰和体相掺杂改性方面的研究进展。
关键词:锂离子电池;锰酸锂;正极材料;表面改性Research Progress of Lithium Manganate as Cathode Material for Lithium Ion BatteriesAbstract: Spinel LiMn2O4is a potential cathode material for lithium ion batteries due to its high energy density,low cost,no pollution to environment and safety performance. The various preparation methods of lithium manganese acid and its advantages and disadvantages were detailed. The research achievements on phase doping modification,surface modification of LiMn2O4 were reviewed.Key words: lithium ion battery; lithium manganate;anode material; surface modification1前言锂离子电池是性能卓越的新一代绿色环保、可再生的化学能源,目前正以其它电池所不可比拟的优势迅速占领了移动电话、笔记本电脑、小型摄像机、数码照相机、电动工具、电动汽车等应用领域,并有可能取代镉镍和氢镍电池用于航天领域。
正极材料是制造锂离子电池的关键材料之一。
目前,商业化锂离子电池正极材料主要有钴酸锂、锰酸锂,但钴资源有限,价格昂贵,安全性能差,且对环境污染大,无法在动力电池中应用。
尖晶石型锰酸锂具有资源丰富、能量密度高、成本低、无污染、安全性好等优点,是理想的锂离子电池正极材料。
尖晶石型锰酸锂属于立方晶系, Fd3m 空间群,理论比容量为 148 mAh/g,由于具有三维隧道结构,锂离子可以可逆地从尖晶石晶格中脱嵌,不会引起结构的塌陷,被认为是最有发展潜力的正极材料之一。
笔者结合自身的研究工作,锰酸锂正极材料在制备方法及改性方面的研究进展进行了详细的综述。
2锰酸锂材料的制备方法研究进展尖晶石型锰酸锂的合成方法有很多种,主要有高温固相法、熔融浸渍法、微波合成法、溶胶凝胶法、乳化干燥法、共沉淀法、 Pechini 法以及水热合成法。
2.1高温固相法锰酸锂的传统制备方法就是高温固相法。
最初由 Hunter 等[1]提出,即将锂盐和锰化合物按一定比例机械混合、研磨,然后在高温下烧结制得。
常用的含锰原料有化学二氧化锰(CMD)、电解二氧化锰(EMD)及锰盐,含锂材料有碳酸锂、氢氧化锂和硝酸锂。
这种方法操作简单,易于实现工业化。
但用该方法制备出来的材料颗粒粒度较大、物相分布不均匀、电化学性能不理想。
研究表明,加入分散剂或用分段烧结可改善材料的性能。
2.2熔融浸渍法熔融浸渍法最初是由 Yoshio 等[2]提出,是一种改进了的固相合成法,即利用锂盐熔点较低,先将反应混合物在锂盐熔点处加热几小时,在此过程中,锂盐渗入到锰盐材料的多孔中,极大地增加了反应物分子间的接触面积,其速度要比固体反应快,降低了最终的热处理温度,缩短了反应时间,且合成产物粒度分布均匀,具有较大的比表面积,还保持了金属氧化物的多孔形状,所以,相对于机械化学法有一定的优越性。
熔融浸渍法[3]在固相法制备尖晶石型锰酸锂中是较好的一种方法,能够得到电化学性能优良的正极材料,但由于操作复杂,条件较为苛刻,因而不利于工业化。
2.3微波合成法微波合成法是将被合成的材料放在微波场中,材料和微波场相互作用,产生的微波转变成热能被材料吸收,从材料内部进行加热,产生均匀的受热中心,快速升温至所需温度。
该方法可实现均匀受热,快速升温,大大缩短反应时间[4]。
2.4溶胶凝胶法溶胶凝胶法是应用胶体化学原理制备材料。
即将金属锰盐和锂盐水解形成金属氧化物或金属氢氧化物的均匀溶胶,然后蒸发浓缩使其变成透明状凝胶,再将凝胶干燥,烧结得到锰酸锂材料。
该方法合成温度低,产品化学均匀性好,纯度高,具有较好的电化学性能。
2.5乳化干燥法乳化干燥法提供了一种制备均匀分散金属氧化物前驱体的好方法。
是利用 2 种互不相溶的溶剂在表面活性剂的作用下形成均匀的乳液,从乳液中析出固体。
用该方法制备的材料颗粒粒度小且分布均匀。
2.6共沉淀法共沉淀法是将锂源和锰源化合物溶解后,加入合适的沉淀剂析出沉淀,干燥后烧结得到超微颗粒的锰酸锂材料。
用该方法制备的材料颗粒细小,成分均一化程度高,但是反应过程不易控制[5]。
2.7Pechini 法Pechini 法[6]是利用多种阳离子与弱酸混合形成多元酸螯合物,该螯合物在 Pechini 过程中起聚酯作用,即在多元醇中加热时,能够产生多种阳离子均匀分布方的固态聚合酯。
该方法可在相对较低的温度下生成均一、单相、可精确控制计量比非化合物,但前驱体的制备过程较复杂,不易控制。
2.8水热合成法水热合成法是指在一定温度和压强条件下,利用溶液中物质之间的相互反应所进行的合成。
在高温高压条件下,研究体系处于非理想非平衡状态,即水处于临界或者超临界状态,反应活性大大提高,因此在此基础上开发出来的水热合成法合成的产物具有较好的结晶状态,有利于锰酸锂的稳定。
3锰酸锂材料存在的主要问题锰酸锂是理想的 4 V 级正极材料,但其储存性能较差、容量衰减较快,目前对于锰酸锂容量衰减的原因研究很多,认为主要包括以下几方面。
3.1锰的溶解锰酸锂在电解液中溶解是引起容量衰减的重要原因之一。
引起锰酸锂溶解的原因主要有两方面。
1)锰酸锂在酸的作用下直接溶解。
高温条件下当电解液中有痕量水存在时,会引起电解液中某些锂盐如六氟磷酸锂的水解产生氢氟酸,使电解液呈酸性。
LiPF6+H2O=2HF+POF3+LiF锰酸锂在酸性条件下发生溶解:4H++2LiMn2O4=3MnO2+Mn2++2Li++2H2O2)在电极过程中尖晶石锰酸锂中的 Mn3+会发生歧化反应。
2Mn3+→Mn2++Mn4+在锰酸锂/锂电池中,游离的 Mn2+会迅速转化为黑色锰沉淀,并沉积于参比电极上,阻碍 Li+的扩散,使电极无法正常工作。
3.2Jahn-Teller 效应当锰酸锂正极材料过度嵌锂时,在 2.95 V 附近会出现一个电压平台,但不可逆,此时在尖晶石表面形成锰酸锂相, Mn3+离子富集到锰酸锂的 16 d位置上,造成锰酸锂的晶胞膨胀,产生异晶扭曲(Jahn-Tener 效应)[7],锰酸锂晶胞中 Z 轴伸长, X轴和 Y 轴收缩。
一方面使锰酸锂由原来的立方晶系变成四方晶系,另一方面,正方度(c/a)增加,导致晶体结构不稳定,表面产生裂缝,进而使电解液接触到更多的 Mn3+,加速了 Mn3+的溶解。
3.3氧缺陷普通的锰酸锂只在 4.2 V 放电平台出现容量衰减,但 Xia 等[8]发现当尖晶石缺氧时在 4.0 V 和4.2 V 平台会同时出现容量衰减,经研究发现在4.0 V 放电区原尖晶石就开始发生相变。
并且氧的缺陷越多,电池的容量衰减越快。
此外,在尖晶石结构中氧的缺陷也会削弱金属原子和氧原子之间的键能,导致锰的溶解加剧。
而引起尖晶石锰酸锂循环过程中氧缺陷主要来自 2 个方面: 1)高温条件下锰酸锂对电解液有一定的催化作用,可以引起电解液的催化氧化,其本身溶解失去氧; 2)合成条件造成尖晶石中氧相对于标准化学计量数不足。
另外,锰酸锂材料中存在的铁和钠离子杂质,也会影响材料的电化学性能,主要通过化学反应和洗涤的方法去除,笔者在这方面做了大量的工作,取得了很好的成果。
使锰酸锂材料中总铁含量<50×10-6,钠离子含量<300×10-6。
4锰酸锂材料的改性研究4.1表面修饰尖晶石型锰酸锂的表面锰离子有未成对的单电子,存在大量的催化活性中心,它能催化电解液的氧化,导致生成更多的氢离子,加快锰在电解液中的溶解,使材料容量衰减加剧。
表面修饰[9]是在电极表面包覆一层抗电解液侵蚀的物质,形成一层只允许 Li+通过,而 H+和电解质溶液不能穿透的膜。
这样可以减小材料的比表面积,减缓氢氟酸的腐蚀,可以有效地抑制锰的溶解和电解液分解。
所选择的包覆材料必须具备以下特性: 1)能与尖晶石颗粒良好复合,少量的包覆物即可在尖晶石表面形成一均匀的包覆层; 2)具有较高的锂离子电导率; 3)必须能抵抗电池中 4 V 正极材料的高氧化电势; 4)材料的处理温度不能与尖晶石材料的稳定温度相冲突。
4.2掺杂改性体相掺杂是从晶格内部改善锰酸锂正极材料电化学性能的有效方法之一。
通过掺杂一些杂质离子,可以有效抑制充放电过程中的Jahn-Teller 效应,提高尖晶石型锰酸锂框架结构的稳定性,减少充放电过程中的结构变化,降低锰的溶解。
主要的掺杂方法有阳离子掺杂、阴离子掺杂和阴阳离子复合掺杂。
阳离子掺杂:阳离子掺杂是指向尖晶石型锰酸锂中掺杂一些半径和价态与 Mn3+相近的元素离子,当前主要掺杂的阳离子有 Co、 Mg、Cr、 Ni、 Fe、Ti、 Al 和稀土元素 La、 Ce、 Pr、 Nd[10],用掺杂元素来取代尖晶石晶格中的三价锰离子,提高锰元素的平均价态,降低 Jahn-Teller 效应,降低容量的衰减,提高循环性能。
掺杂元素离子还可以增强尖晶石型锰酸锂骨架中阴、阳离子的结合力,使[MnO6]八面体更加稳定,减缓尖晶石型锰酸锂容量的衰减。
阴离子掺杂:掺杂的阴离子主要有有氟、硼、碘和硫。
研究表明,掺氟的尖晶石锰酸理材料的电压平台和充放电曲线特征与锰酸锂没有区别。
另外,由于氟的电负性比氧大,吸电子能力强,降低了锰在有机溶剂中的溶解度,明显提高了在较高温度下的储存稳定性。
掺杂氟还可以消除因掺杂阳离子而形成的不完全固熔体,改善尖晶石的均匀性和内部结构的稳定性,抑制尖晶石在高温下分解造成的损失。
掺杂碘和硫后,由于碘和硫原子半径比氧大,锂嵌入时形变小,在循环过程中可保持结构的稳定性,克服尖晶石结构在 3 V 区域发生的 Jahn-Talle 效应,明显提高循环性能。
复合掺杂:复合掺杂可分为复合阳离子掺杂和阴阳离子复合掺杂。
在尖晶石结构中引入两种或两种以上的有效金属离子进行掺杂,3 种金属的协同作用可以使材料的结构更加稳定,总的效果通常会明显优于单一离子掺杂。