八年级上册数学各章复习题(经典)
北师大版数学八年级上册全册复习典型例题

考点二 直角三角形的判别
例 2 如图 1-1,在正方形 ABCD 中,F 为 DC 的中点,E 为 BC 上一点,且 EC=14BC,请说明:AF⊥EF.
图 1-1
[解析] 要说明 AF⊥EF,可说明△AEF 是直角三角形,只要根 据勾股定理的逆定理说明 AF2+EF2=AE2 就可以了.
解:连接 AE,设正方形边长为 a,则 DF=FC=a2,EC=a4.
找出格点C,使△ABC是面积为1个平方单位的直角三角形,这样
的点有____6____个.
图1-8 图1-9
[解析] 如图1-9,当∠A为直角时,满足面积为1的点是A1、 A2;当∠B为直角时,满足面积为1的点是B1、B2;当∠C为直角 时,满足面积为1的点是C、C1,所以满足条件的点共有6个.
3.已知三角形的三边为 a=34,b=54,c=1,这个三角形是 直角三角形吗?
图1-17
13.如图1-18,在直线l上依次摆放着三个正方形,已知中间 斜放置的正方形的面积是6,则正放置的两个正方形的面积之和 为( A )
图1-18
A.6 B.5 C. 6 D.36
14.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点 沿纸箱爬到B点,那么它所行的最短路线的长是__1_0_____.
6.B、C 是河岸边两点,A 为对岸岸上一点,测得∠ABC=45°, ∠ACB=45°,BC=50 m,则河宽 AD 为( )
B
A.25 2 m B.25 m
50 C. 3 3 m
D.25 3 m
图 1-10
7.如图1-11,已知△ABC中,∠C=90°,BA=15,AC=12,
以直角边BC为直径作半圆,则这个半圆的面积是__8_81_π____.
2024-2025学年北师大版数学八年级上册第1-2章复习题

2024-2025学年北师大版八上数学第1-2章复习题一.选择题(每小题3分,共30分)1.下列各数3.14159,39-,0.131131113…(每相邻两个3之间依次多一个1),0.6,42+,76,2π,16中,无理数有()个.A .3B .4C .5D .62.下列运算正确的是()A.416±=B.()332-=-)( C.283-=-D .3333=-3.下列四组数据不能作为直角三角形三边长的是()A .91215B .72425C .153639D .1215204.在△ABC 中,∠A ,∠B ,∠C 的对边分别记为a ,b ,c ,下列结论中不正确的是()A .如果∠A ﹣∠B =∠C ,那么△ABC 是直角三角形B .如果222c b a -=,那么△ABC 是直角三角形且∠C =90°C .如果∠A :∠B :∠C =1:3:2,那么△ABC 是直角三角形D .如果a 2:b 2:c 2=9:16:25,那么△ABC 是直角三角形5.下列各式4,2,8,,1932--+a x ,中是二次根式的有几个()A .1个B .3个C .4个D .5个6.如图,在数轴上,B 是AC 的中点,B ,C 两点对应的实数分别是-1和2,则点A 对应的实数是()A .22-B .22--C .42-D .22-7.如图,△ABC 的顶点A 、B 、C 在边长为1的正方形网格的格点上,BD ⊥AC 于点D ,则CD 的长为()A .552B .553C .554 D.548.一架2.5米长的梯子,斜立在一竖直的墙上,这时梯子的底端离墙0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯子底部在水平方向上滑动()A .0.4米B .0.5米C .0.8米D .0.9米9.如图是“赵爽弦图”,△ABH ,△BCG ,△CDF ,△DAE 是四个全等的直角三角形,四边形ABCD 和EFGH 都是正方形,如果AB=10,EF=2,那么AH 等于()A .2B .4C .6D .810.如图,在一个正方形的内部放置大小不同的两个小正方形,其中较大的正方形条的面积为15,重叠部分的面积为1,空白部分的面积为4154-,则较小的正方形面积为()A .4B.152 C.9D .154二、填空题(每小题3分,共15分)11.16的平方根为______________.12.若二次根式11-x 在实数范围内有意义,则x 的取值范围为.13.矩形纸片ABCD 中,AD =10,AB =4,按如图方式折叠,使点B 与点D 重合,折痕为EF ,则DE =第13题第15题14.如果()x x -=-332那么x 的取值范围是.15.如图,在Rt △ABC 中,∠C =90°,AB =5cm ,AC =3cm ,动点P 从点B 出发,沿射线BC 以2cm /s 的速度移动设运动的时间为t s ,当t =时,△ABP 为直角三角形.三、解答题(共75分)16.(10分)计算:17.(9分)阅读材料:∵362<<,∴6的整数部分为2,6的小数部分为解决问题:(1)填空:56的小数部分是;(2)已知a 是319-的整数部分,b 是319-的小数部分,求代数式(a +1)2+(b +4)2的值.18.(9分)(1)作图:利用三角板,圆规直尺等作图工具,在数轴1上画出10.(2)思考:利用三角板,圆规直尺等作图工具,在数轴2上画出102-.数轴1数轴219.(9分)如图,实数c b a ,,在数轴上的位置,化简:()ac c b a ---+22328202430+---)②(π2252121)(①---+⎪⎭⎫ ⎝⎛-26-20.(9分)台风是一种自然灾害,它以台风中心为圆心在周围上百千米的范围内形成极端气候,有极强的破坏力,如图,有一台风中心沿东西方向AB 由A 行驶向B ,已知点C 为一海港,且点C 与直线AB 上的两点A ,B 的距离分别为AC =300km ,BC =400km ,又AB =500km ,以台风中心为圆心周围250km 以内为受影响区域.(1)求∠ACB 的度数;(2)海港C 受台风影响吗?为什么?(3)若台风的速度为20千米/小时,当台风运动到点E 处时,海港C 刚好受到影响,当台风运动到点F 时,海港C 刚好不受影响,即CE =CF =250km ,则台风影响该海港持续的时间有多长?21.(9分)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:223+=()()2222122121+=+⨯⨯+=,善于思考的小明进行了以下探索:设2b a +=()22n m +(其中a 、b 、m 、n 均为整数),则有222222n mn m b a ++=+.∴mn b n m a 2222=+=,.这样小明就找到了一种把部分2b a +的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a 、b 、m 、n 均为正整数时,若3b a +=()23n m +,用含m 、n 的式子分别表示a 、b ,得a =,b =;(2)试着把347+化成一个完全平方式.(3)若a 是216的立方根,b 是16的平方根,试计算:2b a +.22.(10分)构建几何图形解决代数问题是“数形结合”思想的重要应用.如图,C 为线段BD 上一动点,分别过点B ,D 作AB ⊥BD ,ED ⊥BD ,连接AC ,EC .已知AB=5,DE=1,BD=8,设CD=x .问题发现:(1)我们发现可以用含x 的代数式表示AC =,CE =;拓展探究:(2)我们可以利用“将军饮马”模型来求AC+CE 的最小值,请你画出图形求值;解决问题:(3)根据(2)中的规律和结论,请求出代数式224(12)9x x +-+的最小值__________.23.(10分)23.小明在解决问题:已知a=,求2a2﹣8a+1的值,他是这样分析与解答的:因为a===2﹣,所以a﹣2=﹣.所以(a﹣2)2=3,即a2﹣4a+4=3.所以a2﹣4a=﹣1.所以2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1.请你根据小明的分析过程,解决如下问题:(1)计算:=.(2)计算:+++…+;(3)若a=,求4a2﹣8a+1的值.。
人教版八年级数学上册11.1 ---11.3期末复习题(含答案)

11.1 与三角形有关的线段考点1 三角形的认识及分类1.三角形是指()A.由三条线段所组成的封闭图形B.由不在同一直线上的三条直线首|尾顺次相接组成的图形C.由不在同一直线上的三条线段首|尾顺次相接组成的图形D.由三条线段首|尾顺次相接组成的图形2.如图中三角形的个数是()A.6B.7C.8D.93.在△ABC中,∠B =2∠C,∠A =30° ,那么这个三角形是( ) A.锐角三角形B.直角三角形C.钝角三角形D.无法判断4.三角形按角分类可以分为 ( )A.锐角三角形、直角三角形、钝角三角形B.等腰三角形、等边三角形、不等边三角形C.直角三角形、等边直角三角形D.以上答案都不正确考点2 三角形的稳定性5.以下图形中具有稳定性的是 ( )A .直角三角形B .正方形C .长方形D .平行四边形6.以下图形中 ,不是运用三角形的稳定性的是 ( )A .房屋顶支撑架B .自行车三脚架C .拉闸门D .木门上钉一根木条7.如图 ,工人师傅做了一个长方形窗框ABCD ,E ,F ,G ,H 分别是四条边上的中点 ,为了稳固 ,需要在窗框上钉一根木条 ,这根木条不应钉在( )A .G ,H 两点处B .A ,C 两点处C .E ,G 两点处D .B ,F 两点处考点3 三角形的三边关系8.以下每组数分别表示三根木棒的长度,将它们首|尾连接后,能摆成三角形的一组是( ) A .3 ,3 ,6B .1 ,5 ,5C .1 ,2 ,3D .8 ,3 ,49.如图 ,在△ABC 中 ,AC =5 ,中线AD =7 ,那么AB 边的取值范围是( )A .1AB 29<<B .4AB 24<<C .5AB 19<<D .9AB 19<<10.一个三角形的两边长为4和7 ,第三边长为奇数 ,那么第三边长可能为 ( ) A .5或7B .5、7或9C .7D .1111.三角形的两边长分别为3和5 ,那么周长C 的范围是 ( )A .615C <<B .616C <<C .1113C <<D .1016C <<12.等腰△ABC 的两边长分别为2和3 ,那么等腰△ABC 的周长为()A .7B .8C .6或8D .7或813.a b c 、、是ABC ∆的三边长 ,化简a b c b a c +----的值是 ( )A .2c -B .22b c -C .22a c -D .22a b -考点4 三角形的高线14.下面四个图形中 ,线段BE 是⊿ABC 的高的图是 ( )A .B .C .D .15.如图 ,△ABC 的面积计算方法是 ( )A .AC •BDB .12BC •EC C .12AC •BD D .12AD •BD 16.以下各图中 ,AC 边上的高画正确的选项是 ( )A .B .C .D .考点5 三角形的中线17.如图AD 是△ABC 的中线 ,那么BD = ( )A .ADB .AC C .BCD .CD18.如图 ,AD 是ABC ∆的中线 ,5AB = ,3AC = ,ABD ∆的周长和ACD ∆的周长差为( )A .6B .3C .2D .不确定19.如图 ,在ABC 中 ,点D 、E 分别为BC 、AD 的中点 ,且26ABC S cm =△ ,那么ABE S △的值为 ( )A .20.5cmB .21.5cmC .22cmD .23cm20.如图 ,, , A B C 分别是线段1A B 、1BC 、1C A 的中点 ,假设111A B C △的面积是20 ,那么ABC 的面积是 ( )A .4B .103C .207D .5 考点6 三角形的角平分线21.如图 ,△ABC 中 ,AD 为△ABC 的角平分线 ,BE 为△ABC 的高 ,∠C =70° ,∠ABC =48° ,那么∠3是 ( )A .59°B .60°C .56°D .22°22.如图 ,在ABC 中 ,∠A =60° ,∠ABD 和∠ACE 是ABC 的外角 ,∠ACE =110° ,BF 平分∠ABD ,那么∠FBE = ( )A.105°B.110°C.115°D.120°23.如下图 ,在△ABC中,∠A=36° ,∠C=72° ,∠ABC的平分线交AC于D ,那么图中共有等腰三角形 ( )A.0个B.1个C.2个D.3个答案1.C2.C3.C4.A5.A6.C7.C8.B9.D10.B11.D12.D13.B14.A15.C16.D17.D18.C19.B20.C21.A22.C23.D11.2 与三角形有关的角一、选择题(本大题共10道小题)1. 在一个直角三角形中,有一个锐角等于35° ,那么另一个锐角的度数是() A.75° B.65° C.55° D.45°2. 如图,在⊿ABC中,∠ACB=90° ,CD∥AB ,∠ACD=40° ,那么⊿B的度数为()A. 40°B. 50°C. 60°D. 70°3. 如图,在⊿ABC中,⊿C=90° ,⊿A=30° ,BD平分⊿ABC,那么⊿BDC的度数为()A.30° B.40° C.50° D.60°4. 如图,CE是⊿ABC的外角⊿ACD的平分线,假设⊿B=35° ,∠ACE=60° ,那么∠A=()A. 35°B. 95°C. 85°D. 75°5. 在⊿ABC中,假设⊿C=40° ,⊿B=4⊿A ,那么⊿A的度数是()A.30° B.28° C.26° D.40°6. 在Rt⊿ABC中,⊿C=90° ,⊿A-⊿B=50° ,那么⊿A的度数为()A.80° B.70° C.60° D.50°7. 如图,在⊿ABC中,D是⊿ABC和⊿ACB的平分线的交点,⊿A=80° ,⊿ABD=30° ,那么⊿BDC的度数为()A.100° B.110° C.120° D.130°8. 如图,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠ABC =42°,∠A =60°,那么∠BFC的度数为()A.118°B.119°C.120°D.121°9. 如图,在⊿CEF中,⊿E=80° ,⊿F=50° ,AB⊿CF ,AD⊿CE ,连接BC ,CD ,那么⊿A的度数是()A.45° B.50° C.55° D.80°10. 如图,在△ABC中,BC边不动,点A竖直向上运动,∠A越来越小,∠B,∠C越来越大.假设∠A减小x°,∠B增加y°,∠C增加z°,那么x,y,z之间的关系是()A.x =y +zB.x =y -zC.x =z -yD.x +y +z =180二、填空题(本大题共6道小题)11. 如图,∠CAE是⊿ABC的外角,AD∥BC ,且AD是⊿EAC的平分线.假设⊿B =71° ,那么⊿BAC=________.12. 如图,在⊿ABC中,⊿ABC ,⊿ACB的平分线相交于点O ,OD⊿OC交BC于点D.假设⊿A=80° ,那么⊿BOD=________°.13. 如图,⊿AOB=50° ,P是OB上的一个动点(不与点O重合) ,当⊿A的度数为________时,⊿AOP为直角三角形.14. 如图,在四边形ABCD中,AB⊿CD ,将四边形ABCD沿对角线AC折叠,使点B落在点B′处.假设⊿1=⊿2=44° ,那么⊿B=________°.15. 如图,在⊿ABC中,BO平分⊿ABC,CO平分⊿ACB.假设⊿A=70° ,那么⊿BOC=________°.16. 定义:当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为"特征三角形〞,其中α称为"特征角〞.如果一个"特征三角形〞的一个内角为48° ,那么"特征角〞α的度数为____________.三、解答题(本大题共4道小题)17. 如图,AD是⊿ABC的角平分线,⊿B=35° ,⊿BAD=30° ,求⊿C的度数.18. 如图,A处在B处的北偏西45°方向,C处在B处的北偏东15°方向,C处在A 处的南偏东80°方向,求⊿ACB的度数.19. 如图,在△ABC中,点E在AC上,∠AEB =∠ABC.(1)如图①,作∠BAC的平分线AD ,与CB ,BE分别交于点D ,F.求证:∠EFD =∠ADC;(2)如图②,作△ABC的外角∠BAG的平分线AD ,交CB的延长线于点D ,反向延长AD交BE 的延长线于点F ,那么(1)中的结论是否仍然成立?为什么?20. 如图,AD ,AE分别是⊿ABC的角平分线和高.(1)假设⊿B=50° ,⊿C=60° ,求⊿DAE的度数;(2)假设⊿C>⊿B ,猜测⊿DAE与⊿C-⊿B之间的数量关系,并加以证明.人教版八年级|数学11.2 与三角形有关的角培优训练-答案一、选择题(本大题共10道小题)1. 【答案】C2. 【答案】B【解析】∵AB∥CD,∴∠A=∠ACD=40° ,∵∠ACB=90° ,∴∠B =90°-∠A=90°-40°=50°.3. 【答案】D4. 【答案】C【解析】∵CE是△ABC的外角∠ACD的平分线,∠ACE=60° ,∴∠ACD=2∠ACE=120° ,∵∠A+∠B=∠ACD,∠B=35° ,∴∠A=∠ACD-∠B =120°-35°=85°.5. 【答案】B[解析] ⊿⊿A+⊿B+⊿C=180° ,⊿C=40° ,⊿B=4⊿A ,⊿5⊿A+40°=180°.⊿⊿A=28°.6. 【答案】B[解析] ⊿⊿C=90° ,⊿⊿A+⊿B=90°.又⊿⊿A-⊿B=50° ,⊿2⊿A=140°.⊿⊿A=70°.7. 【答案】D[解析] ⊿BD是⊿ABC的平分线,⊿⊿DBC=⊿ABD=30° ,⊿ABC=2⊿ABD=2×30°=60°.⊿⊿ACB=180°-⊿A-⊿ABC=40°.⊿CD平分⊿ACB ,⊿⊿DCB=12⊿ACB=12×40°=20°.⊿⊿BDC=180°-⊿DCB-⊿DBC=130°.8. 【答案】C[解析] ∵∠A =60°,∠ABC =42°,∴∠ACB =180°-∠A -∠ABC =78°.∵∠ABC,∠ACB的平分线分别为BE,CD,∴∠FBC =∠ABC =21°,∠FCB =∠ACB =39°,∴∠BFC =180°-∠FBC -∠FCB =120°.应选C.9. 【答案】B[解析] 如图,连接AC并延长交EF于点M.⊿AB⊿CF ,⊿⊿3=⊿1.⊿AD⊿CE ,⊿⊿2=⊿4.⊿⊿BAD=⊿3+⊿4=⊿1+⊿2=⊿FCE.⊿⊿FCE=180°-⊿E-⊿F=180°-80°-50°=50° ,⊿⊿BAD=⊿FCE=50°.10. 【答案】A[解析] 根据题意,得∠A +∠ABC +∠ACB =180°①,变化后的三角形的三个角的度数分别是∠A -x°,∠ABC +y°,∠ACB +z°,∴∠A -x° +∠ABC +y° +∠ACB +z° =180°②,①②联立整理可得x =y +z.二、填空题(本大题共6道小题)11. 【答案】38°【解析】∵AD∥BC ,∠B=71° ,∴∠EAD=∠B=71°.∵AD是∠EAC的平分线,∴∠EAC=2∠EAD=142° ,∴∠BAC=180°-∠EAC=180°-142°=38°.12. 【答案】4013. 【答案】90°或40°[解析] 假设⊿AOP为直角三角形,那么分两种情况:⊿当⊿A=90°时,⊿AOP为直角三角形;⊿当⊿APO=90°时,⊿AOP为直角三角形,此时⊿A=40°.14. 【答案】114[解析] 因为AB⊿CD ,所以⊿BAB′=⊿1=44°.由折叠的性质知⊿BAC=12⊿BAB′=22°.在⊿ABC中,⊿B=180°-(⊿BAC+⊿2)=114°.15. 【答案】125[解析] ⊿BO平分⊿ABC ,CO平分⊿ACB ,⊿⊿ABO=⊿CBO ,⊿BCO=⊿ACO.⊿⊿CBO+⊿BCO=12(⊿ABC+⊿ACB)=12(180°-⊿A)=12(180°-70°)=55°.⊿在⊿BOC中,⊿BOC=180°-55°=125°.16. 【答案】48°或96°或88°[解析] 当"特征角〞为48°时,即α=48°;当β=48°时,那么"特征角〞α=2×48°=96°;当第三个角为48°时,α+12α+48°=180° ,解得α=88°.综上所述, "特征角〞α的度数为48°或96°或88°.三、解答题(本大题共4道小题)17. 【答案】解:⊿AD是⊿ABC的角平分线,⊿⊿BAC=2⊿BAD=2×30°=60°.⊿⊿C=180°-⊿B-⊿BAC=180°-35°-60°=85°.18. 【答案】解:由题意知⊿ABN=45° ,⊿CBN=15° ,⊿MAC=80° ,所以⊿ABC=60°.因为AM⊿BN ,所以⊿MAB=⊿ABN=45° ,所以⊿BAC=80°-45°=35°.所以⊿ACB=180°-60°-35°=85°.19. 【答案】解:(1)证明:∵AD平分∠BAC ,∴∠BAD =∠DAC.∵∠EFD =∠DAC +∠AEB ,∠ADC =∠ABC +∠BAD ,且∠AEB =∠ABC ,∴∠EFD =∠ADC.(2)∠EFD =∠ADC仍然成立.理由:∵AD平分∠BAG ,∴∠BAD =∠GAD.∵∠F AE =∠GAD ,∴∠F AE =∠BAD.∵∠EFD =∠AEB -∠F AE ,∠ADC =∠ABC -∠BAD ,且∠AEB =∠ABC ,∴∠EFD =∠ADC.20. 【答案】解:(1)在⊿ABC中,⊿⊿B=50° ,⊿C=60° ,⊿⊿BAC=70°.⊿AD是⊿ABC的角平分线,⊿⊿BAD=⊿DAC=12⊿BAC=35°.⊿AE是BC上的高,⊿⊿AEB=90°.⊿⊿BAE=90°-⊿B=40°.⊿⊿DAE=⊿BAE-⊿BAD=5°.(2)⊿DAE=12(⊿C-⊿B).证明:⊿AE是⊿ABC的高,⊿⊿AEC=90°.⊿⊿EAC=90°-⊿C.⊿AD是⊿ABC的角平分线,⊿⊿DAC=12⊿BAC.⊿⊿BAC=180°-⊿B-⊿C ,⊿⊿DAC=12(180°-⊿B-⊿C).⊿⊿DAE =⊿DAC -⊿EAC=12(180°-⊿B -⊿C)-(90°-⊿C)=12(⊿C -⊿B).11.3 多边形及其内角和一、选择题 (本大题共10道小题 )1. 假设正多边形的内角和是540° ,那么该正多边形的一个外角为A .45°B .60°C .72°D .90°2. 八边形的内角和等于( )A .360°B .1080°C .1440°D .2160°3. 从九边形的一个顶点出发可以引出的对角线的条数为( )A .3B .4C .6D .94. 如图 ,足球图片正中的黑色正五边形的内角和是A .180°B .360°C .540°D .720°5. 假设一个正多边形的每一个外角都等于40° ,那么它是( )A .正九边形B .正十边形C .正十一边形D .正十二边形6. 假设一个多边形的一个顶点处的所有对角线把多边形分成4个三角形 ,那么这个多边形的边数为( )A .3B .4C .5D .67. 以下哪一个度数可以作为某一个多边形的内角和 ( )A.240° B.600°C.540° D.2180°8. 一个正多边形的每个外角不可能等于()A.30° B.50° C.40° D.60°9. 一个多边形切去一个角后,形成的另一个多边形的内角和为1080° ,那么原多边形的边数为()A.7 B.7或8C.8或9 D.7或8或910. 如图,长方形ABCD,一条直线将长方形ABCD分割成两个多边形.假设这两个多边形的内角和分别为M和N ,那么M +N不可能是()A.360°B.540°C.720°D.630°二、填空题(本大题共7道小题)11. 一个正多边形的一个外角为45° ,那么这个正多边形的边数是________.12. 如图,假设A表示四边形,B表示正多边形,那么阴影局部表示________.13. 一个多边形的内角和是外角和的,那么这个多边形的边数是.14. 如图,小明从点A出发,沿直线前进12米后向左转36° ,再沿直线前进12米,又向左转36°……照这样走下去,他第|一次回到出发地点A时,一共走了________米.15. 有一程序,如果机器人在平地上按如下图的步骤行走,那么机器人回到A处行走的路程是.16. 模拟某人为机器人编制了一段程序(如图) ,如果机器人以2 cm/s的速度在平地上按照程序中的步骤行走,那么该机器人从开始到停止所需的时间为________s.17. 如图,假设该图案是由8个形状和大小相同的梯形拼成的,那么⊿1=________°.三、解答题(本大题共4道小题)18. 如图,⊿ABC是正三角形,剪去三个边长均不相等的小正三角形(即⊿ADN ,⊿BEF ,⊿CGM)后,得到一个六边形DEFGMN.(1)六边形DEFGMN的每个内角是多少度?为什么?(2)六边形DEFGMN是正六边形吗?为什么?19. 某单位修建正多边形花台,正多边形花台的一个外角的度数比一个内角度数的多12°.(1)求出这个正多边形的一个内角的度数;(2)求这个正多边形的边数.20. 小华与小明在讨论一个凸多边形的问题,他们的对话如下:小华说:"这个凸多边形的内角和是2021°.〞小明说:"不可能吧!你错把一个外角当作内角了!〞请根据俩人的对话,答复以下问题:(1)凸多边形的内角和为2021° ,小明为什么说不可能?(2)小华求的是几边形的内角和?21. 如图,在五边形ABCDE中,⊿A+⊿B+⊿E=310° ,CF平分⊿DCB ,CF的反向延长线与⊿EDC处的外角的平分线相交于点P ,求⊿P的度数.人教版八年级|数学11.3 多边形及其内角和同步训练-答案一、选择题(本大题共10道小题)1. 【答案】C【解析】∵正多边形的内角和是540°,∴多边形的边数为540°÷180°+2 =5 , ∵多边形的外角和都是360°, ∴多边形的每个外角 =360÷5 =72°.应选C .2. 【答案】B3. 【答案】C [解析] 从九边形的一个顶点出发 ,可以向与这个顶点不相邻的6个顶点引对角线 ,即能引出6条对角线.4. 【答案】C【解析】黑色正五边形的内角和为:(5–2)×180° =540° , 应选C .5. 【答案】A [解析] 由于正多边形的外角和为360° ,且每一个外角都相等 ,因此边数=360°40°=9. 6. 【答案】D[解析] 设这个多边形的边数为n ,那么n -2=4 ,解得n =6. 7. 【答案】C [解析] ⊿多边形内角和公式为(n -2)×180° ,⊿多边形内角和一定是180°的倍数.⊿540°=3×180° ,⊿540°可以作为某一个多边形的内角和.8. 【答案】B [解析] 设正多边形的边数为n ,那么当30°n =360°时 ,n =12 ,故A可能;当50°n =360°时 ,n =365 ,不是整数 ,故B 不可能;当40°n =360°时 ,n =9 ,故C 可能;当60°n =360°时 ,n =6 ,故D 可能.9. 【答案】D [解析] 设内角和为1080°的多边形的边数为n ,那么(n -2)×180°=1080° ,解得n =8.那么原多边形的边数为7或8或9.应选D.10. 【答案】D[解析] 一条直线将长方形ABCD分割成两个多边形的情况有以下三种: (1)直线不经过原长方形的顶点,如图①②,此时长方形被分割为一个五边形和一个三角形或两个四边形,∴M +N =540° +180° =720°或M +N =360° +360° =720°;(2)直线经过原长方形的一个顶点,如图③,此时长方形被分割为一个四边形和一个三角形,∴M +N =360° +180° =540°;(3)直线经过原长方形的两个顶点,如图④,此时长方形被分割为两个三角形,∴M +N =180° +180° =360°.二、填空题(本大题共7道小题)11. 【答案】8【解析】由正多边形的每一个外角都是45° ,其外角和为360° ,可得这个正多边形的边数是360°45°=8.【一题多解】因为正多边形的每一个外角都是45° ,所以这个正多边形的每一个内角都是180°-45°=135° ,设正多边形的边数为n ,那么(n-2)×180°=135°×n ,解得n=8.方法指导设正多边形的边数为n ,正多边形的外角和为360° ,内角和为(n-2)×180° ,每个内角的度数为180°× (n-2 )n.12. 【答案】正方形13. 【答案】514. 【答案】120[解析] 由题意得360°÷36°=10 ,那么他第|一次回到出发地点A时,一共走了12×10=120(米).故答案为120. 15. 【答案】30米[解析] 360°÷24° =15 ,利用多边形的外角和等于360° ,可知机器人回到A处时,恰好沿着正十五边形的边走了一圈,即可求得路程为15×2 =30(米).16. 【答案】16[解析] 由题意得,该机器人所经过的路径是一个正多边形,多边形的边数为36045=8 ,那么所走的路程是4×8=32(cm) ,故所用的时间是32÷2=16(s).17. 【答案】67.5三、解答题 (本大题共4道小题 )18. 【答案】解:(1)六边形DEFGMN 的各个内角都是120°.理由:⊿⊿ADN ,⊿BEF ,⊿CGM 都是正三角形 ,⊿它们的每个内角都是60° ,即六边形DEFGMN 的每个外角都是60°. ⊿六边形DEFGMN 的每个内角都是120°.(2)六边形DEFGMN 不是正六边形.理由:⊿三个小正三角形(即⊿ADN ,⊿BEF ,⊿CGM)的边长均不相等 , ⊿DN ,EF ,GM 均不相等.⊿六边形DEFGMN 不是正六边形.19. 【答案】解:(1)设这个多边形的一个内角的度数是x ° ,那么与其相邻的外角度数是x ° +12°. 由题意 ,得x +x +12 =180 ,解得x =140.即这个正多边形的一个内角的度数是140°.(2)这个正多边形的每一个外角的度数为180° -140° =40° ,所以这个正多边形的边数是=9.20. 【答案】解:(1)⊿n 边形的内角和是(n -2)×180° ,⊿多边形的内角和一定是180°的整倍数.⊿2021÷180=11……40 ,⊿多边形的内角和不可能为2021°.(2)设小华求的是n 边形的内角和 ,这个内角为x° ,那么0<x <180.根据题意 ,得(n -2)×180°-x +(180°-x)=2021° ,解得n =12+2x +40180.⊿n 为正整数 ,⊿2x +40必为180的整倍数.又⊿0<x <180 ,⊿40180<2x +40180<400180.⊿n =13或14.⊿小华求的是十三边形或十四边形的内角和.21. 【答案】解:延长ED ,BC 相交于点G.在四边形ABGE 中 ,⊿G =360°-(⊿A +⊿B +⊿E)=50° ,⊿P =⊿FCD -⊿CDP =12(⊿DCB -⊿CDG)=12⊿G =12×50°=25°.。
人教版八年级上册数学第11-14章综合复习试卷(含答案)

人教版八年级上册数学第11-14章综合复习试卷一.选择题1.下列线段长能构成三角形的是()A.3、4、8B.2、3、6C.5、6、11D.5、6、102.下列图形中具有稳定性的是()A.六边形B.五边形C.四边形D.三角形3.下列图形中,是轴对称图形的是()A.B.C.D.4.一个缺角的三角形ABC残片如图所示,量得∠A=60°,∠B=75°,则这个三角形残缺前的∠C的度数为()A.75°B.60°C.45°D.40°5.下列运算正确的是()A.a2+a3=a5B.a2•a2=2a2C.6a5÷3a3=2a2D.(﹣a2)3=﹣a56.如图,若△ABC≌△DEF,BC=7,CF=5,则CE的长为()A.1B.2C.2.5D.37.已知x2﹣8x+a可以写成一个完全平方式,则a可为()A.4B.8C.16D.﹣168.如图,在△ABC中,AC=10,BC=8,AB垂直平分线交AB于点M,交AC于点D,则△BDC的周长为()A.14B.16C.18D.209.如图,在△ABC中,∠B=50°,∠A=30°,CD平分∠ACB,CE⊥AB于点E,则∠DCE的度数是()A.5°B.8°C.10°D.15°10.下列各式从左到右的变形中,属于因式分解的是()A.﹣12x3y=﹣3x3•4y B.m(mn﹣1)=m2n﹣mC.y2﹣4y﹣1=y(y﹣4)﹣1D.ax+ay=a(x+y)11.等腰三角形的一个角为50°,则这个等腰三角形的底角为()A.65°B.65°或80°C.50°或65°D.40°12.如图,AD∥BC,点E是线段AB的中点,DE平分∠ADC,BC=AD+2,CD=7,则BC2﹣AD2的值等于()A.14B.9C.8D.5二.填空题13.分解因式:mx2﹣4m=.14.平面直角坐标系中点P(3,﹣2)关于x轴对称的点的坐标是.15.计算:20+(﹣)﹣2=.16.八边形的外角和等于°.17.将一副直角三角板,按如图所示叠放在一起,则图中∠α的度数是.。
八数上(BS)-八年级数学上册测试题及答案(1-6章)--复习资料

八年级上册数学评价检测试卷第一章勾股定理一、选择题1.以下列各组数据为三角形三边,能构成直角三角形的是( ) (A )4cm ,8cm ,7cm (B ) 2cm ,2cm ,2cm (C ) 2cm ,2cm ,4cm (D )13cm ,12 cm ,5 cm2.一个三角形的三边长分别为15cm ,20cm ,25cm ,则这个三角形最长边上的高为( ) (A )12cm (B )10cm (C )12.5cm (D )10.5cm3.Rt ∆ABC 的两边长分别为3和4,若一个正方形的边长是∆ABC 的第三边,则这个正方形的面积是( ) (A )25 (B )7 (C )12 (D )25或74.有长度为9cm ,12cm ,15cm ,36cm ,39cm 的五根木棒,可搭成(首尾连接)直角三角形的个数为 ( )(A )1个 (B )2个 (C )3个 (D )4个5.将直角三角形的三边长扩大相同的倍数后,得到的三角形是( ) (A )直角三角形 (B )锐角三角形 (C )钝角三角形 (D )以上结论都不对 6.在△ABC 中,AB =12cm , AC =9cm ,BC =15cm ,下列关系成立的是( ) (A )B C A ∠+∠>∠ (B )B C A ∠+∠=∠ (C )B C A ∠+∠<∠ (D )以上都不对7.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m ,把竹竿的顶端拉向岸边,竿顶和岸边的水平刚好相齐,河水的深度为( ) (A )2m (B )2.5cm (C )2.25m (D )3m 8.若一个三角形三边满足ab c b a 2)(22=-+,则这个三角形是( )(A )直角三角形 (B )等腰直角三角形 (C )等腰三角形 (D )以上结论都不对9.一架250cm 的梯子斜靠在墙上,这时梯足与墙的终端距离为70cm ,如果梯子顶端沿墙下滑40cm ,那么梯足将向外滑动( ) (A )150cm(B )90cm(C )80cm(D )40cm10.三角形三边长分别为12+n 、n n 222+、1222++n n (n 为自然数),则此三角形是( ) (A )直角三角形 (B )等腰直角三角形 (C )等腰三角形 (D )以上结论都不对二、填空题11.写四组勾股数组.______,______,______,______.12.若一个直角三角形的三边为三个连续的偶数,则它的周长为____________。
八年级数学上册第三章位置与坐标课时练习题及答案

八(上)第三章位置与坐标分节练习题和本章复习题带答案第1节确定位置1、【基础题】下列数据不能确定物体位置的是()★A. 4楼8号B.北偏东30度C.希望路25号D.东经118度、北纬40度2、【基础题】如左下图是某学校的平面示意图:如果用(2:5)表示校门的位置:那么图书馆的位置如何表示?图中(10:5)处表示哪个地点的位置?★3、【基础题】如右上图:雷达探测器测得六个目标A、B、C、D、E、F:目标C、F的位置表示为C(6:120°)、F(5:210°):按照此方法在表示目标A、B、D、E的位置时:其中表示不正确的是()★A.A(5:30°)B.B(2:90°)C.D(4:240°)D.E(3:60°)30方向:距学校1000m处:则学校在小明家的_______. ★4、【综合题】小明家在学校的北偏东○第2节平面直角坐标系5、【基础题】写出左下图中的多边形ABCDEF各个顶点的坐标. ★★★6、【基础题】在右上图的平面直角坐标系中:描出下列各点:A(-5:0):B(1:4):C(3:3):D(1:0):E(3:-3):F(1:-4). ★★★6.1【基础题】在右边的直角坐标系中描出下列各组点:并将各组内的点用线段依次连接起来:并观察这几组点所连的线段合在一起像什么? ★第一组:(0:0)(6:0)(6:7)(0:7)(0:0) 第二组:(1:4)(2:6) 第三组:(4:6)(5:5) 第四组:(2:0)(2:3)(4:3)(4:0) 7、【综合题】如左上图:若点E 的坐标为(-2:1):点F 的坐标为(1:-1):则点G 的坐标为______. ★ 8、【基础题】如右图:对于边长为4的正△ABC :建立适当的直角坐标系:写出各个顶点的坐标. ★ 9、【基础题】在平面直角坐标系中:下面的点在第一象限的是( ) ★ A. (1:2) B. (-2:3) C. (0:0) D. (-3:-2) 【综合题】若023=++-b a :则点M (a :b )在( ) ★ A.第一象限 B.第二象限 C.第三象限 D.第四象限10、【基础题】在平面直角坐标系中:点P (1:2-m )在第四象限:则m 的取值范围是_________. ★10.1【基础题】点),(b a P 是第三象限的点:则( ) ★(A )b a +>0 (B )b a +<0 (C )ab >0 (D )ab <011、【基础题】点P 在第二象限:若该点到x 轴的距离为3:到y 轴的距离为1:则点P 的坐标是______. ★★★11.1【基础题】已知点)68(,-Q :它到x 轴的距离是____:它到y 轴的距离是____:它到原点的距离是_____. ★ 12、【提高题】在平面直角坐标系中:点A 的坐标为(-3:4):点B 的坐标是(-1:-2):点O 为坐标原点:求△AOB 的面积. ☆第3节 轴对称与坐标变化13、【基础题】点M 的坐标是(-3:4):则点M 关于y 轴的对称点的坐标是_______:关于x 轴的对称点的坐标是_______:关于原点的对称点的坐标是_______:点M 到原点的距离是_______. ★★★13.1【综合题】如右图:在直角坐标系中:△AOB 的顶点O 和B 的坐标分别是O (0:0):B (6:0):且∠OAB =90°:AO =AB :则顶点A 关于x 轴的对称点的坐标是 ( ) ★(A )(3:3) (B )(-3:3)(C )(3:-3) (D )(-3:-3)O AB y14、【综合题】△ABC 在平面直角坐标系中的位置如图所示. ★★★ (1)作出△ABC 关于x 轴对称的△A 1B 1C 1:并写出点A 1的坐标: (2)作出将△ABC 绕点O 顺时针旋转180°后的△A 2B 2C 2: (3)求S △ABC .15、【提高题】 在如图所示的直角坐标系中:四边形ABCD 的各个顶点的坐标分别是A (0:0):B (2:5):C (9:8):D (12:0):求出这个四边形的面积. ★本章复习题一、选择题1、一只七星瓢虫自点(-2:4)先水平向右爬行3个单位:然后又竖直向下爬行2个单位:则此时这只七星瓢虫的位置是 ( ) (A )(-5:2) (B )(1:4) (C )(2:1) (D )(1:2)2、若点P 的坐标为)0,(a :且a <0:则点P 位于 ( )(A )x 正半轴 (B )x 负半轴 (C )y 轴正半轴 (D )y 轴负半轴 3、若点P ),(b a 在第四象限:则Q ),1(b a -+在 ( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限4、点M (-2:5)关于x 轴的对称点是N :则线段MN 的长是 ( ) (A )10 (B )4 (C )5 (D )25、如右图:把矩形OABC 放在直角坐标系中:OC 在x 轴上:OA 在y 轴上:且OC=2:OA=4:把矩形OABC 绕着原点顺时针旋转90°得到矩形OA ′B ′C ′:则点B ′的坐标为( ) A 、(2:3) B 、(-2:4) C 、(4:2) D 、(2:-4)二、填空题6、如右下图:Rt △AOB 的斜边长为4:一直角边OB 长为3:则点A 的坐标是_____:点B 的坐标是_____.DCBAyx123459678101112108769543217、如右图:∠OMA =90°:∠AOM =30°:AM =20米:OM =203米:站在O 点观察点A :则点A 的位置可描述为:在北偏东_____度的方向上:距离点O_____米.8、点A )2,(a 和点B ),3(b 关于x 轴对称:则ab =_____.9、将点P (2:1)绕原点O 按顺时针方向旋转90°到点Q :则点Q 的坐标是_____. 10、(2012山东泰安)如左下图:在平面直角坐标系中:有若干个横坐标分别为整数的点:其顺序按图中“→”方向排列:如(1:0):(2:0):(2:1):(1:1):(1:2):(2:2)…根据这个规律:第2012个点的横坐标为 .三、解答题11、 如图:每个小方格都是边长为1的正方形:在平面直角坐标系中.(1)写出图中从原点O 出发:按箭头所指方向先后经过A 、B 、C 、D 、E 多点的坐标: (2)按图中所示规律:标出下一个点F 的位置. 12、(1)在左下的直角坐标系中作△ABC :使点A 、B 、C 的坐标分别为(0:0):(-1:2):(-3:-1): (2)作出△ABC 关于x 轴和y 轴的对称图形.13、在右上的平面直角坐标系中作点A (4:6):B (0:2):C (6:0):并求△ABC 的周长和面积.AOM北A B C DO E x y 11题八(上) 第三章位置与坐标 分节练习答案第1节确定位置 答案 1、【答案】 选B 2、【答案】 图书馆的位置表示为(2:9):图中(10:5)表示旗杆的位置. 3、【答案】 选D 4、【答案】 南偏西○30方向:距小明家1000 m 处.第2节平面直角坐标系 答案 5、【答案】 A (-2:0): B (0:-3): C (3:-3): D (4:0): E (3:3): F (0:3). 6、【答案】略. 6.1【答案】 囧 (注意:右眉毛短一点) 7、【答案】 (1:2) 8、【答案】 略 9、【答案】 选A 9.1【答案】 选 D10、【答案】 2<m 10.1【答案】 选C 11、【答案】 (-1:3) 11.1【答案】 6:8:10. 12、【答案】 △AOB 的面积是5.第3节 轴对称与坐标变化 答案 13、【答案】点M 的坐标是(-3:4):则点M 关于y 轴的对称点的坐标是(3:4):关于x 轴的对称点的坐标是 (-3:-4):关于原点的对称点的坐标是(3:-4)::点M 到原点的距离是5. 13.1【答案】 选C 14、【答案】(1)A 1的坐标是(-2:-3)(2)关于原点对称的点的横、纵坐标都互为相反数. (3)S △ABC 15、【答案】本章复习题 答案 一、选择题 答案 1、【答案】 选D 2、【答案】 选B 3、【答案】 选A 4、【答案】 选A 5、【答案】 选 C 二、填空题 答案6、【答案】 )7,0( (3:0)7、 【答案】 60 408、【答案】 -69、【答案】 (1:-2) 10、【答案】 45 三、解答题11、【答案】 (1)A(1:0):B(1:2):C(-2:2):D(-2: -2):E(3:-2):(2)F (3:4).12、【答案】 略13、【答案】 周长是24104+:面积是16.。
八年级数学上册全册经典试题(一课一练)

第十一章三角形11.1 与三角形有关的线段11.1.1 三角形的边1.下面是小强用三根火柴组成的图形,其中符合三角形概念的是()2.以下列各组线段的长为边长,能组成三角形的是()A.2,3,5 B.3,4,5C.3,5,10 D.4,4,83.下列说法正确的有()①等腰三角形是等边三角形;②三角形按边分可分为等腰三角形、等边三角形和不等边三角形;③等腰三角形至少有两边相等;④三角形按角分应分为锐角三角形、直角三角形和钝角三角形.A.①②B.①③④C.③④D.①②④4.如图,图中共有________个三角形,在△ABE中,AE所对的角是________,∠ABE所对的边是________;在△ADE中,AD是________的对边;在△ADC中,AD是________的对边.5.若a,b,c为△ABC的三边长,且a,b满足|a-3|+(b-2)2=0.(1)求c的取值范围;(2)若第三边长c是整数,求c的值.11.1.2三角形的高、中线与角平分线11.1.3 三角形的稳定性1.桥梁拉杆、电视塔底座都是三角形结构,这是利用三角形的________性.2.如图,在△ABC中,AB边上的高是________,BC边上的高是________;在△BCF中,CF边上的高是________.第2题图第3题图3.如图,在△ABC中,BD是∠ABC的平分线.已知∠ABC=80°,则∠DBC=________°.4.若AE是△ABC的中线,且BE=4cm,则BC=________cm.5.如图,BD是△ABC的中线,AB=5,BC=3,则△ABD和△BCD的周长差是________.第5题图第6题图6.如图,在△ABC中,D是BC的中点,S△ABC=4cm2,则S△ABD=________cm2.7.如图,AD,CE是△ABC的两条高.已知AD=5,CE=4.5,AB=6.(1)求△ABC的面积;(2)求BC的长.11.2 与三角形有关的角11.2.1 三角形的内角第1课时三角形的内角和1.在△ABC中,∠A=20°,∠B=60°,则∠C的度数为()A.80°B.90°C.20°D.100°2.如图所示是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,则这块三角形木板的另一个角的度数是()A.30°B.40°C.50°D.60°第2题图第3题图3.如图,△ABC中,∠A=46°,∠C=74°,BD平分∠ABC,交AC于点D,则∠DBC的度数是________.4.根据下图填空.(1)n=________;(2)x=________;(3)y=________.5.如图,在△ABC中,点D在BA的延长线上,DE∥BC,∠BAC=65°,∠C=30°,求∠BDE的度数.第2课时直角三角形的两锐角互余1.在Rt△ABC中,∠C=90°,∠A=61°,则∠B的度数为()A.61°B.39°C.29°D.19°2.在△ABC中,∠A=60°,∠C=30°,则△ABC是()A.直角三角形B.钝角三角形C.锐角三角形D.等边三角形3.直角三角形的一个锐角是另一个锐角的2倍,则较小锐角的度数是()A.60°B.36°C.54°D.30°4.如图,∠ACB=90°,CD⊥AB,垂足为D,则与∠A互余的角的个数是() A.1个B.2个C.3个D.4个第4题图第5题图5.如图,在△ABC中,∠A=25°,∠ACB=105°,则∠D的度数为________.6.如图,在△ABC中,CE,BF是两条高.若∠A=70°,∠BCE=30°,求∠EBF和∠FBC的度数.7.如图,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B.求证:CD⊥AB.11.2.2三角形的外角1.如图,在△ABC中,∠B=40°,∠C=30°,延长BA至点D,则∠CAD的大小为________.2.如图,∠2________∠1(填“>”“<”或“=”).3.如图,在△ABC中,CD是∠ACB的平分线,∠A=70°,∠ACB=60°,则∠BDC的度数为() A.80°B.90°C.100°D.110°4.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E的度数为()A.30°B.40°C.60°D.70°5.如图,在△ABC中,延长CB到D,延长BC到E,∠A=80°,∠ACE=140°,求∠1的度数.11.3多边形及其内角和11.3.1多边形1.下列图形中,凸多边形有()A.1个B.2个C.3个D.4个2.下列关于正六边形的说法错误的是()A.边都相等B.对角线长都相等C.内角都相等D.外角都相等3.四边形一共有________条对角线()A.1 B.2 C.3 D.44.已知从一个多边形的一个顶点最多可以引出3条对角线,则它是()A.五边形B.六边形C.七边形D.八边形5.若一个六边形的各条边都相等,当边长为3cm时,它的周长为________cm.6.从七边形的一个顶点出发,最多可以引________条对角线,这些对角线可以将这个多边形分成________个三角形.7.如图,请回答问题:(1)该多边形如何表示?指出它的内角;(2)作出这个多边形所有过顶点A的对角线;(3)在这个多边形的一个顶点处作出它的一个外角.11.3.2多边形的内角和1.五边形的内角和是()A.180°B.360°C.540°D.720°2.已知一个多边形的内角和为900°,则这个多边形为()A.七边形B.八边形C.九边形D.十边形3.若一个多边形的每一个外角都等于45°,则这个多边形的边数为()A.3 B.4 C.5 D.84.若正多边形的一个内角是120°,则该正多边形的边数是()A.12 B.6 C.16 D.85.如图,在四边形ABCD中,∠A=90°,∠D=40°,则∠B+∠C的度数为________.第5题图第6题图6.图中x的值为________.7.若一个多边形的内角和是外角和的3倍,则它是几边形?8.如果四边形ABCD的四个外角的度数之比为3∶4∶5∶6,那么这个四边形各内角的度数分别是多少?第十二章全等三角形12.1全等三角形1.下列各组的两个图形属于全等图形的是()2.如图,△ABD≌△ACE,则∠B与________,∠AEC与________,∠A与________是对应角;则AB与________,AE与________,EC与________是对应边.第2题图第3题图3.如图,△ABC≌△CDA,∠ACB=30°,则∠CAD的度数为________.4.如图,若△ABO≌△ACD,且AB=7cm,BO=5cm,则AC=________cm.第4题图第5题图5.如图,△ACB≌△DEB,∠CBE=35°,则∠ABD的度数是________.6.如图,△ABC≌△DCB,∠ABC与∠DCB是对应角.(1)写出其他的对应边和对应角;(2)若AC=7,DE=2,求BE的长.12.2三角形全等的判定第1课时“边边边”1.如图,下列三角形中,与△ABC全等的是()A.①B.②C.③D.④2.如图,已知AB=AD,CB=CD,∠B=30°,则∠D的度数是()A.30°B.60°C.20°D.50°第2题图第3题图3.如图,AB=DC,请补充一个条件:________,使其能由“SSS”判定△ABC≌△DCB. 4.如图,A,C,F,D在同一直线上,AF=DC,AB=DE,BC=EF.求证:△ABC≌△DEF.5.如图,AB=AC,AD=AE,BD=CE.求证:∠ADE=∠AED.第2课时“边角边”1.如图,已知点F、E分别在AB、AC上,且AE=AF,请你补充一个条件:________,使其能直接由“SAS”判定△ABE≌△ACF.第1题图第2题图2.如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′能绕着点O自由转动,就做成了一个测量工具,由三角形全等可知A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是________.3.如图,AB=AD,∠1=∠2,AC=AE. 求证:△ABC≌△ADE.4.如图,AE∥DF,AE=DF,AB=CD.求证:(1)△AEC≌△DFB;(2)CE∥BF.第3课时“角边角”“角角边”1.如图,已知∠1=∠2,∠B=∠C,若直接推得△ABD≌△ACD,则其根据是() A.SAS B.SSS C.ASA D.AAS第1题图第2题图2.如图,在△ABD与△ACD中,已知∠CAD=∠BAD,在不添加任何辅助线的前提下,直接由“ASA”证明△ABD≌△ACD,需再添加一个条件,正确的是()A.∠B=∠C B.∠CDA=∠BDAC.AB=AC D.BD=CD3.如图,已知MA∥NC,MB∥ND,且MB=ND.求证:△MAB≌△NCD.4.如图,在△ABC中,AD是BC边上的中线,E,F为直线AD上的两点,连接BE,CF,且BE∥CF.求证:(1)△CDF≌△BDE;(2)DE=DF.第4课时“斜边、直角边”1.如图,∠BAD=∠BCD=90°,AB=CB,可以证明△BAD≌△BCD的理由是() A.HL B.ASA C.SAS D.AAS第1题图第2题图2.如图,在Rt△ABC与Rt△DCB中,∠A=∠D=90°,请你添加一个条件(不添加字母和辅助线),使Rt△ABC≌Rt△DCB,你添加的条件是________.3.如图,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.求证:∠AEB=∠F.4.如图,点C,E,B,F在一条直线上,AB⊥CF于B,DE⊥CF于E,AC=DF,AB=DE.求证:CE=BF.12.3 角的平分线的性质第1课时 角平分线的性质1.如图,在Rt △ACB 中,∠C =90°,AD 平分∠BAC ,DE ⊥AB 于点E .若CD =6,则DE 的长为( )A .9B .8C .7D .6第1题图 第2题图2.如图,在△ABC 中,∠C =90°,按以下步骤作图:①以点B 为圆心,以小于BC 的长为半径画弧,分别交AB ,BC 于点E ,F ;②分别以点E ,F 为圆心,以大于12EF 的长为半径画弧,两弧相交于点G ;③作射线BG ,交AC 边于点D .若CD =4,则点D 到斜边AB 的距离为________. 3.如图,Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,AB =10,S △ABD =15,求CD 的长.4.如图,CD ⊥AB 于点D ,BE ⊥AC 于点E ,BE ,CD 相交于点O ,且AO 平分∠BAC .求证:OB =OC .第2课时角平分线的判定1.如图,DE⊥AB于点E,DF⊥BC于点F,且DE=DF.若∠DBC=50°,则∠ABC的度数为() A.50°B.100°C.150°D.200°第1题图第3题图2.在三角形内部,到三角形的三边距离都相等的点是()A.三角形三条高的交点B.三角形三条角平分线的交点C.三角形三条中线的交点D.以上均不对3.如图,∠ABC+∠BCD=180°,点P到AB,BC,CD的距离都相等,则∠PBC+∠PCB的度数为________.4.如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为E,F,AE=AF.求证:(1)PE=PF;(2)AP平分∠BAC.5.如图,B是∠CAF内的一点,点D在AC上,点E在AF上,且DC=EF,△BCD与△BEF的面积相等.求证:AB平分∠CAF.第十三章轴对称13.1轴对称13.1.1轴对称1.下列图形中,是轴对称图形的是()2.下列轴对称图形中,对称轴条数是四条的图形是()3.如图,△ABC和△A′B′C′关于直线l对称,下列结论中正确的有()①△ABC≌△A′B′C′;②∠BAC=∠B′A′C′;③直线l垂直平分CC′;④直线BC和B′C′的交点不一定在直线l上.A.4个B.3个C.2个D.1个第3题图第4题图4.如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B的度数为() A.25°B.45°C.30°D.20°5.如图,△ABC关于直线MN对称的三角形的顶点分别为A′,B′,C′,其中∠A=90°,A=8cm,A′B′=6cm.(1)求AB,A′C′的长;(2)求△A′B′C′的面积.13.1.2线段的垂直平分线的性质第1课时线段垂直平分线的性质和判定1.如图,在△ABC中,AB的垂直平分线交AC于点P,P A=5,则线段PB的长度为() A.3 B.4 C.5 D.6第1题图第2题图2.如图,AC=AD,BC=BD,则有()A.AB与CD互相垂直平分B.CD垂直平分ABC.AB垂直平分CD D.CD平分∠ACB3.如图,在△ABC中,D为BC上一点,且BC=BD+AD,则点D在线段________的垂直平分线上.第3题图第4题图4.如图,在Rt△ABC中,斜边AB的垂直平分线交边AC于点D,交边AB于点E,且∠CBD=∠ABD,则∠A=________°.5.如图,在△ABC中,AB的垂直平分线交AB于E,交BC于D,连接AD.若AC=4cm,△ADC的周长为11cm,求BC的长.第2课时 线段垂直平分线的有关作图1.如图,已知线段AB ,分别以点A ,点B 为圆心,以大于12AB 的长为半径画弧,两弧交于点C 和点D ,作直线CD ,在CD 上取两点P ,M ,连接P A ,PB ,MA ,MB ,则下列结论一定正确的是( ) A .P A =MA B .MA =PE C .PE =BE D .P A =PB2.已知图中的图形都是轴对称图形,请你画出它们全部的对称轴.3.已知下列两个图形关于直线l 成轴对称.(1)画出它们的对称轴直线l ; (2)填空:两个图形成轴对称,确定它们的对称轴有两种常用方法,经过两对对称点所连线段的________画直线;或者画出一对对称点所连线段的____________.4.如图,在某条河l 的同侧有两个村庄A 、B ,现要在河道上建一个水泵站,这个水泵站建在什么位置,能使两个村庄到水泵站的距离相等?13.2画轴对称图形第1课时画轴对称图形1.已知直线AB和△DEF,作△DEF关于直线AB的轴对称图形,将作图步骤补充完整(如图所示).(1)分别过点D,E,F作直线AB的垂线,垂足分别是点________;(2)分别延长DM,EP,FN至________,使________=________,________=________,________=________;(3)顺次连接________,________,________,得△DEF关于直线AB的对称图形△GHI.2.如图,请画出已知图形关于直线MN对称的部分.3.如图,以AB为对称轴,画出已知△CDE的轴对称图形.第2课时用坐标表示轴对称1.在平面直角坐标系中,点P(-2,3)关于x轴对称的点的坐标是()A.(2,3) B.(2,-3)C.(-2,-3) D.(3,-2)2.在平面直角坐标系中,点P(-3,4)关于y轴的对称点的坐标为()A.(4,-3) B.(3,-4)C.(3,4) D.(-3,-4)3.平面内点A(-2,2)和点B(-2,-2)的对称轴是()A.x轴B.y轴C.直线y=4 D.直线x=-24.已知△ABC在直角坐标系中的位置如图所示,若△A′B′C′与△ABC关于y轴对称,则点A的对称点A′的坐标是()A.(-3,2) B.(3,2)C.(-3,-2) D.(3,-2)第4题图第5题图5.如图,点A关于x轴的对称点的坐标是________.6.已知点M(a,1)和点N(-2,b)关于y轴对称,则a=________,b=________.7.如图,在平面直角坐标系中有三点A(-1,5),B(-1,0),C(-4,3).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1;(2)写出点A1,B1,C1的坐标;(3)△A1B1C1的面积是________.13.3等腰三角形13.3.1等腰三角形第1课时等腰三角形的性质1.已知等腰三角形的一个底角为50°,则其顶角为________.2.如图,△ABC中,AB=AC,BC=6cm,AD平分∠BAC,则BD=________cm.第2题图第3题图3.如图,△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为()A.35°B.45°C.55°D.60°4.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为()A.50°B.80°C.50°或80°D.40°或65°5.如图,在△ABC中,D是BC边上一点,且AB=AD=DC,∠BAD=40°,求∠C的度数.6.如图,△ABC中,AB=AC,D是BC的中点,E,F分别是AB,AC上的点,且AE=AF.求证:DE=DF.第2课时等腰三角形的判定1.在△ABC中,∠A=40°,∠B=70°,则△ABC为()A.等腰三角形B.直角三角形C.等腰直角三角形D.钝角三角形2.已知△ABC中,∠B=50°,∠A=80°,AB=5cm,则AC=________.3.如图,在△ABC中,AD⊥BC于点D,请你再添加一个条件,使其可以确定△ABC为等腰三角形,则添加的条件是________.第3题图第4题图4.如图,已知△ABC中,∠A=36°,AB=AC,BD为∠ABC的平分线,则图中共有________个等腰三角形.5.如图,D是△ABC的BC边上的中点,DE⊥AC,DF⊥AB,垂足分别是E,F,且DE=DF.求证:AB=AC.6.如图,AB∥CD,直线l交AB于点E,交CD于点F,FG平分∠EFD交直线AB于点G.求证:△EFG 是等腰三角形.13.3.2等边三角形第1课时等边三角形的性质与判定1.如图,a∥b,等边△ABC的顶点B,C在直线b上,则∠1的度数为________.第1题图第3题图2.在△ABC中,∠A=60°,现有下面三个条件:①AB=AC;②∠B=∠C;③∠A=∠B.能判定△ABC为等边三角形的有________.3.如图,在等边△ABC中,BD⊥AC于D,若AB=4,则AD=________.4.如图,△ABC是等边三角形,∠CBD=90°,BD=BC,连接AD交BC于点E,求∠BAD的度数.5.如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD.求证:(1)△ABE≌△ACD;(2)△ADE为等边三角形.第2课时含30°角的直角三角形的性质1.如图,在Rt△ABC,∠C=90°,∠A=30°,AB=10,则BC的长度为( )A.3 B.4 C.5 D.6第1题图第2题图第3题图2.如图,在△ABC中,∠C=90°,AC=3,∠B=30°,P是BC边上的动点,则AP的长不可能是( ) A.3.5 B.4.2 C.5.8 D.73.如图,△ABC是等边三角形,D是BC上一点,BD=2,DE⊥BC交AB于点E,则BE的长为________.4.如图,△ABC是边长为20的等边三角形,点D是BC边上任意一点,DE⊥AB于点E,DF⊥AC于点F,求BE+CF的值.5.如图所示是某种帐篷支架屋顶的侧面示意图,它是底角为30°的等腰三角形.已知中柱BD垂直于底边AC,支柱DE垂直于腰AB,测得BE=1米,求AB的长.13.4 课题学习最短路径问题1.已知点A,点B都在直线l的上方,试用尺规作图在直线l上求作一点P,使得PA+PB的值最小,则下列作法正确的是( )2.如图,已知直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:①作点B关于直线l的对称点B′;②连接AB′与直线l相交于点C,则点C为所求作的点.在解决这个问题时没有运用到的知识或方法是( )A.转化思想B.三角形两边之和大于第三边C.两点之间,线段最短D.三角形的一个外角大于与它不相邻的一个内角第2题图第3题图3.如图,点P是直线l上的一点,线段AB∥l,能使PA+PB取得最小值的点P的位置应满足的条件是( ) A.点P为点A到直线l的垂线的垂足B.点P为点B到直线l的垂线的垂足C.PB=PAD.PB=AB4.如图,在直线l的两侧分别有A和B两点,试在直线l上确定一点P,使点P到点A和到点B的距离之和最短,并说明理由.第十四章 整式的乘法与因式分解14.1 整式的乘法14.1.1 同底数幂的乘法1.化简a 2·a 的结果是( )A .a 2B .a 3C .a 4D .a 5 2.下列计算正确的是( )A .x 2·x 2=x 4B .x 3·x ·x 4=x 7C .a 4·a 4=a 16D .a ·a 2=a 2 3.填空:(1)(-a )5·(-a )2=________;(2)(a -b )·(a -b )2=________(结果用幂的形式表示); (3)a 3·a 2·(________)=a 11. 4.计算:(1)a 2·a 5+a ·a 3·a 3; (2)⎝⎛⎭⎫1104×⎝⎛⎭⎫1103.5.(1)若2x =3,2y =5,求2x +y 的值;(2)若32×27=3n ,求n 的值.1.计算(x3)4的结果是()A.x7B.x12C.x81D.x642.下列运算正确的是()A.(x3)2=x5B.(-x)5=-x5C.x3·x2=x6D.3x2+2x3=5x53.已知5y=2,则53y的值为()A.4 B.6 C.8 D.94.计算:(1)a6·(a2)3=________;(2)(-a3)2=________.5.计算:(1)(x3)2·(x2)3; (2)(-x2)3·x5;(3)-(-x2)3·(-x2)2-x·(-x3)3.6.若(27x)2=36,求x的值.1.计算(x 2y )2的结果是( )A .x 6yB .x 4y 2C .x 5yD .x 5y 2 2.计算(-2a 2b )3的结果是( )A .-6a 6b 3B .-8a 6b 3C .8a 6b 3D .-8a 5b 3 3.若m 2·n 2=25,且m ,n 都为正实数,则mn 的值为( )A .4B .5C .6D .7 4.计算:(1)(mn 3)2=________; (2)(2a 3)3=________; (3)(-2x 2y )3=________;(4)⎝⎛⎭⎫-12x 3y 3=________. 5.计算:(1)(ab 2c 4)3; (2)(3a 2)3+(a 2)2·a 2;(3)(x n y 3n )2+(x 2y 6)n; (4)(-2×103)2;(5)4100×0.25100.14.1.4整式的乘法第1课时单项式与单项式、多项式相乘1.计算x3·4x2的结果是()A.4x5B.5x6C.4x6D.5x52.化简x(2-3x)的结果为()A.2x-6x2B.2x+6x2C.2x-3x2D.2x+3x23.下列各式中,计算正确的是()A.3a2·4a3=12a6B.2xy(3x2-4y)=6x3-8y2C.2x3·3x2=6x5D.(3x2+x-1)(-2x)=6x3+2x2-2x4.计算:(1)(6ab)·(3a2b)=__________;(2)(-2a2)2·a=__________;(3)(-2a2)(a-3)=__________.5.若一个长方形的长、宽分别是3x-4、2x,则它的面积为________.6.计算:(1)ab·(-3ab)2; (2)(-2a2)·(3ab2-5ab3).7.已知a=1,求代数式a(a2-a)+a2(5-a)-9的值.第2课时多项式与多项式相乘1.计算(x-1)(x-2)的结果为()A.x2+3x-2 B.x2-3x-2C.x2+3x+2 D.x2-3x+22.若(x+3)(x-5)=x2+mx-15,则实数m的值为()A.-5 B.-2 C.5 D.23.下列各式中,计算结果是x2+7x-18的是()A.(x-2)(x+9) B.(x+2)(x+9)C.(x-3)(x+6) D.(x-1)(x+18)4.计算:(1)(2x+1)(x+3)=________________;(2)(y+3x)(3x-2y)=________________.5.一个长方形相邻的两条边长分别为2a+1和3a-1,则该长方形的面积为____________.6.计算:(1)(a+1)(2-b)-2a;(2)x(x-6)-(x-2)(x+1).7.先化简,再求值:(2a-3b)(a+2b)-a(2a+b),其中a=3,b=1.第3课时 整式的除法1.计算a 6÷a 2的结果为( )A .4a 4B .3a 3C .a 3D .a 42.下列计算正确的是( )A .x 8÷x 2=x 4B .(-x )6÷(-x )4=-x 2C .36a 3b 4÷9a 2b =4ab 3D .(2x 3-3x 2-x )÷(-x )=-2x 2+3x3.计算:(1)20180=________;(2)a 8÷a 5=________;(3)a 6b 2÷(ab )2=________;(4)(14a 3b 2-21ab 2)÷7ab 2=________.4.当m ________时,(m -2019)0的值等于1.5.计算:(1)(-6m 4n 5)÷⎝⎛⎭⎫12m 2n 2; (2)(x 4y +6x 3y 2-x 2y 3)÷3x 2y .6.一个等边三角形框架的面积是4a 2-2a 2b +ab 2,一边上的高为2a ,求该三角形框架的边长.14.2 乘法公式14.2.1 平方差公式1.计算(4+x )(4-x )的结果是( )A .x 2-16B .16-x 2C .x 2+16D .x 2-8x +162.下列多项式乘法中可以用平方差公式计算的是( )A .(b -a )(a -b )B .(x +2)(x +2)C.⎝⎛⎭⎫y +x 3⎝⎛⎭⎫y -x 3 D .(x -2)(x +1) 3.若m +n =5,m -n =3,则m 2-n 2的值是( )A .2B .8C .15D .164.计算:(1)(a +3)(a -3)=________;(2)(2x -3a )(2x +3a )=________;(3)(a +b )(-a +b )=________;(4)98×102=(100-______)(100+______)=(______)2-(______)2=______.5.计算:(1)⎝⎛⎭⎫16x -y ⎝⎛⎭⎫16x +y ; (2)20182-2019×2017;(3)(x -1)(x +1)(x 2+1).6.先化简,再求值:(2-a )(2+a )+a (a -4),其中a =-12.14.2.2完全平方公式第1课时完全平方公式1.计算(x+2)2正确的是()A.x2+4 B.x2+2 C.x2+4x+4 D.2x+42.下列关于962的计算方法正确的是()A.962=(100-4)2=1002-42=9984B.962=(95+1)(95-1)=952-1=9024C.962=(90+6)2=902+62=8136D.962=(100-4)2=1002-2×4×100+42=92163.计算:(1)(3a-2b)2=____________;(2)(-3x+2)2=________;(3)(-x+y)2=____________;(4)x(x+1)-(x-1)2=________.4.计算:(1)(-2m-n)2; (2)(-3x+y)2;(3)(2a+3b)2-(2a-3b)2; (4)99.82.5.已知a+b=3,ab=2.(1)求(a+b)2的值;(2)求a2+b2的值.第2课时添括号法则1.下列添括号正确的是()A.a+b-c=a-(b+c)B.-2x+4y=-2(x-4y)C.a-b-c=(a-b)-cD.2x-y-1=2x-(y-1)2.若运用平方差公式计算(x+2y-1)(x-2y+1),下列变形正确的是() A.[x-(2y+1)]2B.[x+(2y+1)]2C.[x+(2y-1)][x-(2y-1)]D.[(x-2y)+1][(x-2y)-1]3.填空:(1)a+b-c=a+(________);(2)a-b+c-d=(a-d)-(________);(3)(x+y+2z)2=[(________)+2z]2=________________________.4.已知a-3b=3,求代数式8-a+3b的值.5.运用乘法公式计算:(1)(2a+3b-1)(1+2a+3b); (2)(x-y-2z)2.14.3因式分解14.3.1提公因式法1.下列变形,是因式分解的是()A.x(x-1)=x2-x B.x2-x+1=x(x-1)+1C.x2-x=x(x-1) D.2a(b+c)=2ab+2ac2.多项式12ab3c+8a3b中各项的公因式是()A.4ab2B.4abc C.2ab2D.4ab3.把多项式m2-9m分解因式,结果正确的是()A.m(m-9) B.(m+3)(m-3)C.m(m+3)(m-3) D.(m-3)24.分解因式:(1)5a-10ab=____________;(2)x4+x3+x2=________________;(3)m(a-3)+2(3-a)=________________.5.计算:20182-2018×2017.6.分解因式:(1)2mx-6my; (2)3x(x+y)-(x+y)2. 7.先分解因式,再求值:a2b+ab2,其中a+b=3,ab=2.14.3.2公式法第1课时运用平方差公式分解因式1.多项式x2-4分解因式的结果是()A.(x+2)(x-2) B.(x-2)2C.(x+4)(x-4) D.x(x-4)2.下列多项式中能用平方差公式分解因式的是()A.a2+b2B.5m2-20mnC.x2+y2D.x2-93.分解因式3x3-12x,结果正确的是()A.3x(x-2)2B.3x(x+2)2C.3x(x2-4) D.3x(x-2)(x+2)4.因式分解:(1)9-b2=____________;(2)m2-4n2=____________.5.利用因式分解计算:752-252=________.6.若a+b=1,a-b=2007,则a2-b2=________.7.因式分解:(1)4x2-9y2; (2)-16+9a2;(3)9x2-(x+2y)2; (4)5m2a4-5m2b4.第2课时 运用完全平方公式分解因式1.把多项式x 2-8x +16分解因式,结果正确的是( )A .(x -4)2B .(x -8)2C .(x +4)(x -4)D .(x +8)(x -8)2.下列各式中,能用完全平方公式进行因式分解的是( )A .x 2-2x -2B .x 2+1C .x 2-4x +4D .x 2+4x +13.若代数式x 2+kx +49能分解成(x -7)2的形式,则实数k 的值为________.4.若x 2+kx +9是完全平方式,则实数k =________.5.因式分解:(1)x 2-6x +9=________;(2)-2a 2+4a -2=________.6.因式分解:(1)4m 2-2m +14; (2)2a 3-4a 2b +2ab 2;(3)(x +y )2-4(x +y )+4.7.先分解因式,再求值:x 3y +2x 2y 2+xy 3,其中x =1,y =2.第十五章 分 式15.1 分 式15.1.1 从分数到分式1.下列各式不是分式的是( )A.x yB.y π+yC.x 2D.1+x a 2.若分式x +1x -1有意义,则x 的取值范围是( ) A .x ≠1 B .x ≠-1 C .x =1 D .x =-13.如果分式|x |-1x -1的值为零,那么x 的值为( ) A .1 B .-1 C .0 D .±14.某人种了x 公顷的棉花,总产量为y 千克,则棉花的单位面积产量为________千克/公顷.5.当x =________时,分式x 2-9x -3的值为零. 6.x 取何值时,下列分式有意义?(1)x +22x -3; (2)6(x +3)|x |-12;(3)x +6x 2+1; (4)x (x -1)(x +5).15.1.2 分式的基本性质1.下列分式是最简分式的是( )A.x -13x -3B.3(x 2-y 2)x -yC.x -12x +1D.2x 4-2x2.分式x 5y 与3x 2y 2的最简公分母是( ) A .10xy B .10y 2 C .5y 2 D .y 23.根据分式的基本性质填空:(1)a +b ab =( )a 2b; (2)x 2+xy x 2=x +y ( ); (3)a -2a 2-4=1( ). 4.下列式子变形:①b a =b +1a +1;②b a =b -1a -1;③b -2a =2b -42a ;④a 2+a a 2-1=a a -1.其中正确的有________(填序号).5.约分:(1)-4x 2y 6xy 2=________; (2)a 2+2a a 2+4a +4=________. 6.通分:(1)x ac ,y bc ; (2)24-x 2,x x +2; (3)1x 2-6x +9,13x -9.15.2 分式的运算15.2.1 分式的乘除第1课时 分式的乘除1.计算a bc ·c 2a 2的结果是( ) A.c 2a 2b B.c ab C.c 2ab D.a 2bc2.计算2x 3÷1x的结果是( ) A .2x 2 B .2x 4 C .2x D .43.化简:(1)a 2+ab a -b ÷ab a -b=________; (2)2x +2y 5a 2b ·10ab 2x 2-y 2=________. 4.计算:(1)x x 2-1÷1x +1; (2)x 2-9x 2+6x +9·3x 3+9x 2x 2-3x.5.先化简,再求值:x -2x +3·x 2-9x 2-4x +4,其中x =-1.第2课时 分式的乘方1.计算⎝⎛⎭⎫x 2y 3的结果是( )A.x 38y 3B.x 36y 3C.x 8y 3D.x 38y2.计算a 2·⎝⎛⎭⎫1a 3的结果是( ) A .a B .a 5 C.1a D.1a 5 3.已知⎝⎛⎭⎫x 3y 22·⎝⎛⎭⎫-y 3x 2=6,则x 4y 2的值为( ) A .6 B .36 C .12 D .34.计算:(1)⎝⎛⎭⎫3b 2a 2=________;(2)a 2b ·b 2a =________; (3)⎝⎛⎭⎫-y 2ax 2÷y 24x =________. 5.计算:(1)⎝⎛⎭⎫-3ac 2b 2; (2)a -b b ·b a 2-b 2; (3)-a 32b ÷⎝⎛⎭⎫-a 2b 3·b 2.6.先化简,再求值:a -a 2a 2-1÷a a -1·⎝ ⎛⎭⎪⎫a +1a -12,其中a =2.15.2.2 分式的加减第1课时 分式的加减1.计算x -1x +1x的结果是( ) A.x +2x B.2x C.12D .1 2.化简4x x -2-x 2-x的结果是( ) A.3x x -2 B.5x 2-x C.5x x -2 D.3x 2-x3.计算:(1)1a 2-1+a a 2-1=________; (2)1a -1-1a (a -1)=________. 4.计算:(1)5a +3b a 2-b 2-2a a 2-b 2; (2)m m +n +m m -n -m 2m 2-n 2.5.先化简:x 2+x x 2+2x +1+1-x x 2-1,然后从-1≤x ≤2的范围内选取一个合适的整数作为x 的值代入求值.第2课时 分式的混合运算1.化简⎝⎛⎭⎫1+1x -2·x 2-2x x -1的结果为( ) A .4x B .3x C .2x D .x2.化简:(1)⎝ ⎛⎭⎪⎫a +1a -1+11-a ÷a 1-a=________; (2)x 2-4x 2-2x +1·x -1x -2-x x -1=________. 3.计算:(1)a 2-16a +64a -8÷⎝⎛⎭⎫1-8a ; (2)⎝ ⎛⎭⎪⎫x 2-1x 2-2x +1+x +1x -1·1-x 1+x;(3)⎝⎛⎭⎫x -1x ÷⎝⎛⎭⎫2x -1+x 2x ; (4)⎝⎛⎭⎫b 2a 2÷⎝⎛⎭⎫b a -14a ·23b .4.先化简,后求值:⎝⎛⎭⎫1x -1-1x +1÷x x 2-1,其中x =2.15.2.3 整数指数幂第1课时 负整数指数幂1.计算5-2的值是( )A .-125 B.125C .25D .-25 2.计算⎝⎛⎭⎫-12-1的结果是( ) A .-12 B.12C .2D .-2 3.计算a 3·a -5的结果是( )A .a 2B .a -2C .-a 2D .-a -24.若b =-3-2,c =⎝⎛⎭⎫13-2,d =⎝⎛⎭⎫-130,则( ) A .b <c <d B .b <d <c C .d <c <b D .c <d <b5.计算:(1)(-2)0×3-2=________;(2)(x -1)2·x 3=________.6.计算:(1)⎝⎛⎭⎫23-2×3-1+(π-2018)0÷⎝⎛⎭⎫13-1;(2)(ab -2)-2·(a -2)3;(3)(2xy -1)2·xy ÷(-2x -2y ).第2课时用科学记数法表示绝对值小于1的数1.0.000012用科学记数法表示为()A.120×10-4B.1.2×10-5C.-1.2×10-5D.-1.2×1052.生物学家发现了一种病毒的长度约为0.00000432毫米.数据0.00000432用科学记数法表示为() A.0.432×10-5B.4.32×10-6C.4.32×10-7D.43.2×10-73.PM2.5是指大气中直径小于或等于2.5μm(0.0000025m)的颗粒物,含有大量有毒、有害物质,也称可入肺颗粒物.若将0.0000025用科学记数法表示为2.5×10n(n为整数),则n的值为()A.-7 B.-6 C.-5 D.64.用科学记数法把0.000009405表示成a×10-6,则a=________.5.用科学记数法表示下列各数:(1)0.0000314; (2)-0.0000064.6.用小数表示下列各数:(1)2×10-7; (2)2.71×10-5.7.纳米是一种长度单位,常用于度量物质原子的大小,1纳米=10-9米.已知某种植物孢子的直径约为45000纳米,用科学记数法表示该孢子的直径约为多少米?15.3 分式方程第1课时 分式方程及其解法1.下列方程是分式方程的是( )A.12-x 3=0B.4x=-2 C .x 2-1=3 D .2x +1=3x2.以下是解分式方程1-x 2-x -3=1x -2时,去分母后的结果,其中正确的是( ) A .1-x -3=1 B .x -1-3x +6=1C .1-x -3x +6=1D .1-x -3x +6=-13.分式方程12x =2x +3的解是________.4.当实数m =________时,方程2m -1x =3的解为x =1.5.若关于x 的方程3x -1=1-k1-x 无解,则k 的值为________.6.解方程:(1)3x =2x +1; (2)3x +5-1x -1=0;(3)1x -2=4x 2-4; (4)1-13x -1=56x -2.第2课时 分式方程的应用1.某工程队要铺建一条长2000米的管道,采用新的施工方式,工作效率提高了25%,结果比原计划提前2天完成了任务.设这个工程队原计划每天要铺建x 米管道,则依题意所列方程正确的是( )A.2000x +2=20001.25xB.2000x =20001.25x-2 C.2000x +20001.25x =2 D.2000x -20001.25x=2 2.某特快列车在最近一次的铁路大提速后,平均时速提高了30千米/时,则该列车行驶350千米所用的时间比原来少用1小时.若该列车提速前的速度是x 千米/时,下列所列方程正确的是( )A.350x -350x -30=1B.350x -350x +30=1 C.350x +30-350x =1 D.350x -30-350x =1 3.学校最近新配备了一批图书需要甲、乙两人进行整理,若甲单独整理完成需要4小时;若甲、乙共同整理2小时后,乙再单独整理2小时才能完工,则乙单独整理完成需要多少小时?4.某校初二年级的同学乘坐大巴车去北京展览馆参观“砥砺奋进的五年”大型成就展,北京展览馆距离该校12千米,1号车出发3分钟后,2号车才出发,结果两车同时到达.已知2号车的平均速度是1号车的平均速度的1.2倍,求2号车的平均速度.第十一章 三角形11.1 与三角形有关的线段11.1.1 三角形的边1.C 2.B 3.C 4.6 ∠B AE ∠AED ∠C5.解:(1)∵|a -3|+(b -2)2=0,∴a -3=0,b -2=0,∴a =3,b =2.由三角形三边关系得3-2<c <3+2,即1<c <5.(2)∵c 为整数,1<c <5,∴c =2或3或4.11.1.2 三角形的高、中线与角平分线11.1.3 三角形的稳定性1.稳定 2.CE AD BC 3.40 4.8 5.2 6.27.解:(1)S △ABC =12AB ·CE =12×6×4.5=13.5. (2)∵S △ABC =12BC ·AD ,∴BC =2S △ABC AD =2×13.55=5.4. 11.2 与三角形有关的角11.2.1 三角形的内角第1课时 三角形的内角和1.D 2.B 3.30° 4.(1)27 (2)29 (3)595.解:∵∠BAC =65°,∠C =30°,∴∠B =85°.∵DE ∥BC ,∴∠BDE =180°-∠B =180°-85°=95°.第2课时 直角三角形的两锐角互余1.C 2.A 3.D 4.B 5.40°6.解:∵∠A =70°,CE ,BF 是△ABC 的两条高,∴∠EBF =20°,∠ECA =20°.又∵∠BCE =30°,∴∠ACB =50°,∴在Rt △BCF 中,∠FBC =40°.7.证明:∵∠ACB =90°,∴∠A +∠B =90°.∵∠ACD =∠B ,∴∠A +∠ACD =90°,∴∠ADC =90°,∴CD ⊥AB .11.2.2 三角形的外角1.70° 2.> 3.C 4.A5.解:∵∠ACE =140°,∴∠ACB =40°.∵∠A =80°,∴∠1=40°+80°=120°.11.3 多边形及其内角和11.3.1 多边形1.A 2.B 3.B 4.B 5.18 6.4 57.解:(1)六边形ABCDEF ,它的内角是∠A ,∠B ,∠C ,∠D ,∠E ,∠F .(2)如图所示.(3)如图,∠DCG 即为点C 处的一个外角(答案不唯一).11.3.2 多边形的内角和1.C 2.A 3.D 4.B 5.230° 6.1307.解:设该多边形是n 边形.由题意可得(n -2)·180°=3×360°,解得n =8.故该多边形为八边形.8.解:根据题意,设四边形ABCD 的四个外角的度数分别为3x ,4x ,5x ,6x ,则3x +4x +5x +6x =360°,解得x =20°.∴这四个外角的度数分别为60°,80°,100°,120°,则这个四边形各内角的度数分别为120°,100°,80°和60°.第十二章 全等三角形12.1 全等三角形1.D 2.∠C ∠ADB ∠A AC AD DB3.30° 4.7 5.35°6.解:(1)对应边:AB 与DC ,AC 与DB ,BC 与CB .对应角:∠A 与∠D ,∠ACB 与∠DBC .(2)由(1)可知DB =AC =7,∴BE =BD -DE =7-2=5.12.2 三角形全等的判定第1课时 “边边边”1.C 2.A 3.AC =BD4.证明:∵AF =DC ,∴AF -CF =DC -CF ,即AC =DF .在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AC =DF ,AB =DE ,BC =EF ,∴△ABC ≌△DEF (SSS).5.证明:在△ABD 与△ACE 中,⎩⎪⎨⎪⎧AB =AC ,AD =AE ,BD =CE ,∴△ABD ≌△ACE (SSS),∴∠ADB =∠AEC .∵∠ADB +∠ADE=180°,∠AEC +∠AED =180°,∴∠ADE =∠AED .第2课时 “边角边”1.AB =AC 2.SAS3.证明:∵∠1=∠2,∴∠BAC =∠DAE .在△ABC 与△ADE 中,∵⎩⎪⎨⎪⎧AB =AD ,∠BAC =∠DAE ,AC =AE ,∴△ABC ≌△ADE (SAS).4.证明:(1)∵AE ∥DF ,∴∠A =∠D .∵AB =CD ,∴AC =DB .在△AEC 与△DFB 中,⎩⎪⎨⎪⎧AE =DF ,∠A =∠D ,AC =DB ,∴△AEC ≌△DFB (SAS).(2)由(1)知△AEC ≌△DFB ,∴∠ECA =∠FBD ,∴CE ∥BF .第3课时 “角边角”“角角边”1.D 2.B3.证明:∵MB ∥ND ,∴∠MBA =∠D .∵MA ∥NC ,∴∠A =∠NCD .在△MAB 与△NCD 中,⎩⎪⎨⎪⎧∠MBA =∠D ,∠A =∠NCD ,MB =ND ,∴△MAB ≌△NCD (AAS).4.证明:(1)∵AD 是△ABC 的中线,∴BD =CD .∵BE ∥CF ,∴∠FCD =∠EBD .在△CDF 和△BDE 中,⎩⎪⎨⎪⎧ ∠FCD =∠EBD ,CD =BD ,∠CDF =∠BDE ,∴△CDF ≌△BDE (ASA).(2)由(1)知△CDF ≌△BDE ,∴DF =DE .第4课时 “斜边、直角边”1.A 2.AB =DB (答案不唯一)3.证明:∵∠ABC =90°,∴∠CBF =90°.在Rt △ABE 和Rt △CBF中, ∵⎩⎪⎨⎪⎧AE =CF ,AB =CB ,∴Rt △ABE ≌Rt △CBF (HL).∴∠AEB =∠F .4.证明:∵AB ⊥CF ,DE ⊥CF ,∴∠ABC =∠DEF =90°.在Rt △ABC 和Rt △DEF 中,⎩⎪⎨⎪⎧AC =DF ,AB =DE ,。
2021--2022学年华东师大版八年级数学上册第第11--12章复习题附答案

第11章一、选择题:(每题3分,共30分) 1. -2020的相反数是( )A. 2020B. -2020C.12020 D. -120202. (2020江苏盐城市)实数a ,b 在数轴上表示的位置如图所示,则( )2题图A. a >0B. a >bC. a <bD. a <b3.实数的立方根是( ) A.-1B.0C.1D.±14. (2020黑龙江绥化市)3的结果正确的是( )A.C. 5. (2020福建省)如图,数轴上两点M ,N 所对应的实数分别为m ,n ,则m-n 的结果可能是( )5题图A. -1B. 1C. 2D. 36.下面各等式正确的是( )3=± B.7=- 0.3- D.0.000 1-7. )A .5B .6C .7D .88. 一个数的平方是 4,则这个数的立方是( )A .8B .8 或-8C .-8D .4 或-4 9. (2020湖北恩施州)在实数范围内定义运算“☆”:a ☆b =a +b -1,例如:2☆3=2+3-1,如果2☆x =1,则x 的值是( ).A. -1B. 1C. 0D. 2 10.一个自然数的算术平方根是a ,那么比这个自然数大且与它相邻的一个自然数的算术平方根是( )A.21a +C.1a +二、填空题:(每题3分,共30分)11. (2020四川遂宁市)下列各数3.1415926 1.212212221…,17,2﹣π,﹣2020中,无理数的个数有 个.12.(2020浙江宁波市)实数8的立方根是 .13.写出一个比2大比3小的无理数(用含根号的式子表示) .14π,-4,0这四个数中,最大的数是________.15.4+3的整数部分是5,小数部分是________.16.某个数的平方根分别是2a -1和2-a ,则这个数为________.17. =0.5981 5.98 1 0.1289 , 则 x = , y = .18. 规定用符号[m ]表示一个实数m 的整数部分,例如:⎥⎦⎤⎢⎣⎡32=0,[3.14]=3.按此规定8⎡⎣的值为______________.19. 对于任意两个不相等的实数a ,b ,定义一种新运算“※”,规则如下:a ※b =b a ba -+,如3※2=2323-+=5,则12※4的值为________________. 20.请你认真观察、分析下列计算过程:(1)∵112=121,∴121=11; (2)∵1112=12 321,∴12 321=111;(3)∵1 1112=1 234 321,∴ 1 234 321=1 111;…由此可得:12 345 678 987 654 321=______________________.三、解答下列各题:(共60分) 21.计算:(每题5分,共15分)①计算:|-2|(-1)×(-3); ;34.22.解方程:(每题5分,共10分)①(x+2)2-9=0;②(x+3)3+27=0.23.(5分)物体从某一高度自由落下,物体下落的高度h与下落的时间t•之间的关系可用公式h=12gt2表示,其中g=10米/秒2,若物体下落的高度是180米,•那么下落的时间是多少秒?24.(6分)已知3既是x-1的算术平方根,又是x-2y+1的立方根,求4x+3y 的平方根和立方根.25.(8分)已知x,y为实数,且y19,求xy的立方根.26.(8分)某小区为了促进全民健身活动的开展,决定在一块面积约为1000 m2的正方形空地上建一个篮球场.已知篮球场的面积为420 m2,其中长是宽的2815倍,篮球场的四周必须留出1 m宽的空地.请你通过计算说明能否按要求在这块空地上建一个篮球场?27.(8分)||||b c a c b c-++++.27题图第11章数的开方达标性测试题答案1.B.2.C.解析:由图可得a <0<b , b <a , 故选C .3.C.解析:∵21()=1,而1的立方根等于1,∴21()的立方根是1.4.D.3 =3-2D .5.C.解析:根据数轴可得0<m <1,-2<n <-1,则1<m-n <3, 故选C.6.C.7.B. 解析:∵36<37<496<7,∵37与36最接最接近的是6.故选B .8.B.解析:∵一个数的平方是 4,∴这个数是2或-2,那么2或-2的立方是8或-8. 应选B.9.C.解析:由题意知:2☆x =2+x -1=1+x ,又2☆x =1,∴1+x =1,∴x =0.故选C . 10.B.11. 3. 解析:根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,在上面所列的实数中,无理数有1.212212221…,2﹣π3个,故答案为:3. 12.2..解析:∵4<5<9,∴232大比3小的无. 14.π解析:∵45,∴小数部分是4 1. 16.9. 解析:由题意得2a -1+2-a =0,解得a =-1, ∴这个数为(2a -1)2=(-3)2=9.17. 214, 0.00214.18.3.点拨:∵9<13<16,∴343,∴8 4. 19.21. 20.111 111 111.21.①原式=2-2+3=3. ②0;③解:∵3<<4,∴1<-2<213<<28312=<912=34,∴<34.22. ①解:由(x +2)2-9=0得,(x +2)2=9; ∴ x +2=3或x +2=-3;∴x 1=-1, x 2=-5. ② 解:由(x +3)3+27=0得,(x +3)3=-27; ∴ x +3=-3,∴ x =-6 23.6.24.解:根据题意得x -1=9且x -2y +1=27,解得x =10,y =-8.∴4x +3y =16,其平方根为±4,立方根为25.解:∵y 为实数,1-3x ≥0, x ≤13, ∴ 3x -1≥0, ∴ x ≥13.∴ x =13,∴y =+-19=-19,∴====-13.26. 解:设篮球场的宽为x m,那么长为2815x m. 根据题意,得2815x ·x =420, 所以x 2=225. 因为x 为正数, 所以x =15,又因为2815x 所以能按要求在这块空地上建一个篮球场.27.解:由数轴得:a <0,b <0,c >0, ∴a +b <0,b –c <0,a +c <0,b +c <0 ∴原式=a -a b ++b c -+a c ++b c +=-a -〔-(a +b )〕+〔-(b-c )〕+〔-(a +c )〕+〔-(b+c )〕 =-a +a +b -b +c -a -c-b-c =–a-b-c. 第12章1.(知识点1)下列运算正确的是( ) A .3x +4y =7xy B .(﹣a )3•a 2=a 5 C .(x 3y )5=x 8y 5 D .m 10÷m 7=m 32.(知识点2,3)下列各式计算正确的是( )A.(x-y)(y-x)=x2-y2B.2x(x-2y)=2x2-4xyC.(-a+b)(a+b)=a2+b2D.(2x+3)2=4x2+93. (2020•江苏徐州)下列计算正确的是()A.a2+2a2=3a4B.a6÷a3=a2C.(a-b)2=a2-b2D.(ab)2=a2b24.(2020•湖南常德)下列计算正确的是()A.a2+b2=(a+b)2 B.a2+a4=a6 C.a10÷a5=a2D.a2•a3=a5 5.(2020•河北)若k为正整数,则=()A.k2k B.k2k+1C.2k k D.k2+k6.(重点2)当x=3、y=1时,代数式(2x+y)(2x-y)+y2的值是.7.(重点2)若a2+b2=12,ab=2,则(a+b)2= .8.(重点2)已知x+y=2,x2-y2=6,则x-y= .9.(重点1)运转速度是7.9×103米/秒,2×102秒卫星运行所走过的路程是.10.(重点2)a>b>0,那么在边长为a+b的正方形内,挖去一个边长为a-b的正方形,剩余部分的面积为.11.(重点1) 计算:2x5(-x2)-(-x2)3(-7x).12.(重点2) 计算:(x+2)2-2(x+2)(x-2)+(x-2)2.13.先化简,再求值:(2m+1)(2m-1)-(m-1)2+(2m)3÷(-8m),其中m是方程x2+x-2=0的一个根强化提高14.(重点2) 计算:(3x-2y+1)(3x+2y-1).第12章复习课(第1课时)1.D.解析:A.3x、4y不是同类项,不能合并,此选项错误;B.(﹣a)3•a2=﹣a5,此选项错误;C.(x3y)5=x15y5,此选项错误;D.m10÷m7=m3,此选项正确;故选D.2.B.3. D. 解析:a2+2a2=3a2,因此选项A不符合题意;a6÷a3=a6-3=a3,因此选项B不符合题意;(a-b)2=a2-2ab+b2,因此选项C不符合题意;(ab)2=a2b2,因此选项D符合题意;故选:D.4.B. 解析:A. a2·a2=a4,故A选项错误;B. (-a2)3=-a6,正确;C. 3a2-6a2=-3a2,故C选项错误;D. (a-2)2=a2-4a+4,故D选项错误,故选B.5. A. 解析:=(k•k)k=(k2)k=k2k,故选:A.6.36.7.16.8.3.9.1.58×106米. 10.4ab. 11. -9x7. 12.16.13. 解:原式=4m2﹣1﹣(m2﹣2m+1)+8m3÷(﹣8m)=4m2﹣1﹣m2+2m﹣1﹣m2=2m2+2m﹣2=2(m2+m﹣1).∵m是方程x2+x﹣2=0的根,∴m2+m﹣2=0,即m2+m=2,则原式=2×(2﹣1)=2.14. 9x2-4y2+4y-1.知识点1:整式的除法法则. 知识点2:因式分解的定义及因式分解法.重点1:综合运用单项式的除法和多项式除以单项式的除法,进行整式除法运算. 重点2:灵活运用提取公因式和公式法进行因式分解.难点:单项式的除法运算.基础巩固1.(知识点1)下列运算正确的是( )A.a3+a4=a7B.a2·a5=a10C.(ab2)2=ab4D.a9÷a2=a72.(知识点2)若x2+mx-15=(x+3)(x+n),则n的值为( )A.-5B.5C.-2D.23.(知识点2)若多项式x2+mx+16可以分解因式,则整数m可取的值共有( )A.1个B.2个C.3个D.无限多个4. (知识点2)若9x2+mxy+16xy2是一个完全平方式,那么m的值是()A.±12B.-12C.±24D.-245.(重点1)计算: (-2x)10÷(2x)8=_____________.6.(重点2)分解因式:(1) xy3-x3y= ;(2) a2-1-b2-2b= ;(3) 2a3﹣8a=;(4) a4-3a3b+2a2b2= .7.(重点2)矩形面积是15a3b2cm2时,它的长为3a2b2cm,则它的宽是.8.(知识点1)若除式为a2+1,商式为a2-1,余式为2a,则被除式为.9. (重点2)已知一个长方形的长宽分别为a,b,如果它的周长为10,面积为5,则代数式a2b+ab2的值为______________10.(重点2) 因式分解:(1) -4a2b3+16ab2-12a b;(2) 4m2n2-(m2+n2)2.11.(重点1) 计算:(1) [(x+1)(x+2)–2]÷x. (2)[(x-3y)(x+3y)+(3y-x)2]÷(-2x).12.(重点1)化简求值.[(2x+y)2-y(y+4x)-8xy]÷2x,其中x=2,y=-2.强化提高13.(重点2)说明817-279-913能被15整除.1. D.2. A.3. B.4. C.5.4x2 .6. (1) xy(y+x)(y-x);(2) (a+b+1)(a-b-1);(3) 2a(a+2)(a﹣2);(4)a2(a-b)(a-2b).7.5a cm. 8.a4+2a-1.9. 25. 解析:由题意知,2(a+b)=10,ab=5,∴a+b=5, ∴a2b+ab2=ab(a+b)=25.10. (1) -4ab(ab2-4b+3). (2) -(m+n)2(m-n)2.11.(1) x+3. (2) -x+3y.12.解:原式=(4x2+4xy+y2-y2-4xy-8xy)÷2x=(4x2-8xy)÷2x=2x-4y.当x=2,y=-2时,原式=2×2-4×(-2)=12. 13.解:817-279-913=(34)7-(33)9-(32)13 =328-327-326=326(32-3-1)=326×5=325×3×5=325×15,故817-279-913能被15整除。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C B A257第一章 勾股定理一、选择题1.等腰三角形的腰长为13cm ,底边长为10cm ,则面积为( ).A .30 cm 2B .130 cm 2C .120 cm 2D .60 cm 22.已知Rt △ABC 中,∠C =90°,若14=+b a cm ,10=c cm ,则Rt △ABC 的面积为( ).(A )24cm 2 (B )36cm 2 (C )48cm 2 (D )60cm 23.如图,分别以直角三角形的三边为边长向外作正方形,然后分别以三个正方形的中心为圆心,正方形边长的一半为半径作圆,记三个圆的面积分别为 S 1,S 2,S 3,则S 1,S 2,S 3之间的关系是( ). (A )321S S S >+ (B )321S S S =+(C )321S S S <+ (D )无法确定 4、以下列各组数为边长,能组成直角三角形的是( )A .2,3,4B .10,8,4C .7,25,24D .7,15,125、已知一个Rt △的两边长分别为3和4,则第三边长的平方是( )A .25B .14C .7D .7或256、以面积为9 cm 2的正方形对角线为边作正方形,其面积为( )A .9 cm 2B .13 cm 2C .18 cm 2D .24 cm 27、如图,直角△ABC 的周长为24,且AB:AC=5:3,则BC=( )A .6B .8C .10D .128、如图,一架云梯长25米,斜靠在一面墙上,梯子底端离墙7米,如果梯子的顶端下滑4米,那么梯子的底部在水平方向上滑动了( )A .4米B .6米C .8米D .10米9、将一根长24 cm 的筷子,置于底面直径为5cm 、高为12cm 的圆柱形水杯中,设筷子露在杯子外面的长为hcm ,则h 的取值范围是( )A .5≤h ≤12B .5≤h ≤24C .11≤h ≤12D .12≤h ≤2410、已知,如图,长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )A .6cm 2B .8cm 2C .10cm 2D .12cm2 11、已知,如图,四边形ABCD 中,AB=3cm ,AD=4cm ,BC=13cm ,CD=12cm ,且∠A=90°,则四边形ABCD 的面积为( )A 、36,B 、22C 、18D 、1212.一个三角形的三边长分别是cm cm cm 25,20,15,则这个三角形的面积是( )A 250 2cmB 1502cmC 200 2cmD 不能确定13.将直角三角形的三边扩大相同的倍数后,得到的三角形是( )A 直角三角形B 锐角三角形 词C 钝角三角形D 不能确定二、填空题1.如图,小张为测量校园内池塘A ,B 两点的距离,他在池塘边选定一点 C ,使∠ABC =90°,并测得AC 长26m ,BC 长24m ,则A ,B 两点间的距离为 m .2.如图,阴影部分是一个半圆,则阴影部分的面积为 .(π不取近似值)321S S S3.底边长为16cm ,底边上的高为6cm 的等腰三角形的腰长为 cm . 4.一艘轮船以16km/h 的速度离开港口向东北方向航行,另一艘轮船同时离开港口以12km/h 的速度向东南方向航行,它们离开港口半小时后相距 km .5.一个长为10m 为梯子斜靠在墙上,梯子的顶端距地面的垂直高度为8m ,梯子的顶端下滑2m 后,底端滑动 m .6.若△ABC 中,∠C=90°,(1)若a =5,b =12,则c = ;(2)若a =6,c =10,则b = ;(3)若a ∶b =3∶4,c =10,则a = ,b = .7.某农舍的大门是一个木制的矩形栅栏,它的高为2m ,宽为1.5m ,现需要在相对的顶点间用一块木棒加固,木板的长为 .8.直角三角形两直角边长分别为5cm ,12cm ,则斜边上的高为 .9、如图,从电线杆离地面6米处向地面拉一条长10米的缆绳,这条缆绳在地面的固定点距离电线杆底部为 米。
10、如图,在等腰直角△ABC 中,AD 是斜边BC 上的高,AB=8,则AD 2= 。
11、如图,在一个高为3米,长为5米的楼梯表面铺地毯,则地毯长度为 米。
12、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为6cm,则正方形A ,B ,C ,D 的面积之和为_________cm 2。
13、如图,一个三级台阶,它的每一级的长、宽和高分别为20、3、2,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点最短路程是 。
14.轮船从海中岛A 出发,先向北航行9km ,又往西航行9km ,由于遇到冰山,只好又向南航行4km ,再向西航行6km ,再折向北航行2km ,最后又向西航行9km ,到达目的地B ,求AB 两地间的距离.15.一棵9m 高的树被风折断,树顶落在离树根3m 之处,若要查看断痕,要从树底开始爬多高?16.折叠长方形ABCD 的一边AD ,使点D 落在BC 边的F 点处,若AB=8cm ,BC=10cm ,求EC 的长.ECFB D A第二章 实数1一、填空题:1、()26-的算术平方根是__________。
2、ππ-+-43= _____________。
3、2的平方根是__________。
4、实数a ,b ,c 在数轴上的对应点如图所示 化简c b c b a a ---++2=________________。
5、若m 、n 互为相反数,则n m +-5=_________。
6、若2)2(1-+-n m =0,则m =________,n =_________。
7、若 a a -=2,则a______0。
8、12-的相反数是_________。
9、 38-=_____,38-=_____。
10、绝对值小于π的整数有_________________。
二、选择题:11、代数式12+x ,x ,y ,2)1(-m ,33x 中一定是正数的有( )。
A 、1个B 、2个C 、3个D 、4个12、若73-x 有意义,则x 的取值范围是( )。
A 、x >37-B 、x ≥ 37-C 、x >37D 、x ≥37 13、若x ,y 都是实数,且42112=+-+-y x x ,则xy 的值( )。
A 、0 B 、21 C 、2 D 、不能确定 14、下列说法中,错误的是( )。
A 、4的算术平方根是2B 、81的平方根是±3C 、8的立方根是±2 D、立方根等于-1的实数是-115、64的立方根是( )。
A 、±4B 、4C 、-4D 、1616、已知04)3(2=-+-b a ,则ba 3的值是( )。
A 、 41 B 、- 41 C 、433 D 、43 17、计算33841627-+-+的值是( )。
A 、1B 、±1C 、2D 、718、有一个数的相反数、平方根、立方根都等于它本身,这个数是( )。
A 、-1B 、1C 、0D 、±1第三章 图形的平移与旋转一. 填空题.1.平移是由_________________________________________所决定。
2. 平移不改变图形的 和 ,只改变图形的 。
3.钟表的分针匀速旋转一周需要60分,它的旋转中心是___________,经过20分,分针旋转___________度。
4.如图四边形ABCD 是旋转对称图形,点__________是旋转中心,旋转了_________度后能与自身重合,则AD=__________,AO=__________,BO=_____________。
5.△111C B A 是△ABC 平移后得到的三角形,则△111C B A ≌△ABC ,理由 ;6.△ABC 和△DCE 是等边三角形,则在此图中,△ACE 绕着c 点 旋转 度可得到△BCD.第八题7. 如图,四边形AOBC,它绕着O 点旋转到四边形DOEF 位置,在这个旋转过程中:旋转中心是_________,旋转角是_________经过旋转点A 转到__________,点C 转到__________,点B 转到__________线段OA 与线段________,线段OB 与线段________,线段BC 与线段________是对应线段。
四边形OACB 与四边形ODFE 的形状、大小______________。
8.如图,图案绕中心旋转_______度(填最小度数) 次和原来图案互相重合.9.在平行四边形、矩形、菱形、正方形、等腰梯形这五种图形中,既是轴对称图形,又是中心对称图形的是_____________.二.选择题:1.下列图形中,是由(1)仅通过平移得到的是( )2.在以下现象中,属于平移的是( )① 温度计中,液柱的上升或下降; ② 打气筒打气时,活塞的运动;③ 钟摆的摆动; ④ 传送带上,瓶装饮料的移动F E ODCB A第七题 OB DC AA 1B 1C 1 A CB ACDE B第六题(A )① ,② (B )①, ③ (C )②, ③ (D )② ,④3. 将长度为5cm 的线段向上平移10cm 所得线段长度是( )(A )10cm (B )5cm (C )0cm (D )无法确定4. 如图可以看作正△OAB 绕点O 通过( )旋转所得到的A.3次B.4次C.5次D.6次5.下列运动是属于旋转的是( )A.滾动过程中的篮球的滚动B.钟表的钟摆的摆动C.气球升空的运动D.一个图形沿某直线对折过程6.ΔABC 是直角三角形,如图(a ),先将它以AB 为对称轴作出它的轴对称图形,然后再平移得到的图形应该是( ); A C A C C C B A B B (a) C B A B 7.下列说法正确的是( ) A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B.平移和旋转的共同点是改变图形的位置C.图形可以向某方向平移一定距离,也可以向某方向旋转一定距离D.由平移得到的图形也一定可由旋转得到8.将图形按顺时针方向旋转900后的图形是( )A B C D9、如图,所给的图案由ΔABC 绕点O 顺时针旋转( )前后的图形组成的。
A. 450、900、1350B. 900、1350、1800C.450、900、1350、1800D.450、1800、225010、将如图1所示的Rt △ABC 绕直角边BC 旋转一周,所得几何体的左视图是( )11、如图,边长为1的正方形ABCD 绕点A 逆时针旋转030到正方形///AB C D ,则图中阴影部分面积为( )A 、313-B 、33C 、314-D 、12D A B CC BA 图1第四章四边形性质探索一、选择题1.平行四边形ABCD中,对角线AC、BD交于点O(如图),则图中全等三角形的对数为()A.2B.3C.4D.52.下列图形中,是轴对称图形但不是中心对称图形的是()A.平行四边形B.矩形C.菱形D.正三角形3.在等腰梯形中,下列结论错误的是()A.两条对角线相等B.上底中点到下底两端点的距离相等C.相邻的两个角相等D.过上、下底中点的直线是它的对称轴4.已知一个多边形的内角和等于它的外角和,则这个多边形是()A.三角形B.四边形C.五边形D.六边形5.如图,在矩形ABCD中,横向阴影部分是矩形,另一阴影部分是平行四边形,依照图中标注的数据,计算图中空白部分的面积,其面积是()A. bc-ab+ac+c2B. ab-bc-ac+c2C. a2+ab+bc-acD. b2-bc+a2-ab6.菱形的边长为5,一条对角线长为8,另一条对角线长为()A.4B.6C.8D.107.如图,周长为68的矩形ABCD被分成了7个全等的矩形,则矩形ABCD的面积为()A.98B.196C.280D.2848、在正方形ABCD中,点E是BC边的中点,若DE=5,则四边形ABED的面积为()A.10B.15C.20D.259、在平行四边形中,四个角之比可以成立的是 ( )A、1:2:3:4B、2:2:3:3C、2:3:3:2D、2:3:2:3二、填空题10.用同一种正多边形作平面镶嵌应满足的条件是__________________.11.平行四边形的一边长为8,一条对角线长为6,则另一对角线a的长应为_______.12.在正方形ABCD的边BC的延长线上取一点E,使EC=AC,连结AE交CD于F,那么∠AFC等于_______;若AB=2,那么△ACE的面积为_______.13.矩形的面积为12 cm2,一条边长为3 cm,则矩形的对角线长为_______.14.菱形的周长为40 cm,两个相邻内角的度数的比为1∶2,则菱形的面积为_______.15.如下图,梯形ABCD中,AB∥CD,AD=BC=DC,∠A=45°,DE⊥AB于E,且DE=1,那么梯形ABCD的周长为_______,面积为_______.16.一个正多边形的内角和为720°,则这个正多边形的每一个内角等于_______.17.如下图,在梯形ABCD中,AD∥BC,∠ABC=90°,△BCD为正三角形,BC=8 cm,则梯形ABCD的面积等于_______.18、在□ABCD中,∠B=70°,则∠A=______,∠D=______19、在□ABCD中,∠A = 2∠B,则∠C =20. 铺设地板的60×60规格的瓷砖的形状是( )A. 矩形B. 菱形C. 正方形D. 梯形.21. 一正多边形的每个外角都是300, 则这个多边形是( )A. 正方形B. 正六边形C. 正八边形D. 正十二边形.22. 下面给出的图形能密铺的是( )A. 正五边形B. 三角形C. 正十边形D. 正十二边形.23. 一矩形两对角线之间的夹角有一个是600, 且这角所对的边长5cm,则对角线长为( )A. 5 cmB. 10cmC. 52cmD. 无法确定24.如图,正方形ABCD的对角线相交于点O,点O是正方形A′B′C′O的一个顶点,如果两个正方形的边长相等,那么正方形A′B′C′O绕点O无论怎样转动,两个正方形重叠部分的面积,总等于一个正方形面积的四分之一,你能说明这是为什么吗?25.如图,矩形ABCD中,E为AD上一点,EF⊥CE交AB于F,若DE=2,矩形ABCD的周长为16,且CE=EF,求AE的长.第五章 《位置的确定》一、选择题1. 点M 在x 轴的上侧,距离x 轴5个单位长度,距离y 轴3个单位长度,则M 点的坐标为( ) A. (5,3) B. (-5,3)或(5,3)C. (3,5)D. (-3,5)或(3,5)2. 设点A (m ,n )在x 轴上,位于原点的左侧,则下列结论正确的是( )A. m=0,n 为一切数B. m=O ,n <0C. m 为一切数,n=0D. m <0,n=03.在已知M (3,-4),在x 轴上有一点与M 的距离为5,则该点的坐标为( )A. (6,0)B. (0,1)C. (0,-8)D. (6,0)或(0,0)4. 在坐标轴上与点M (3,-4)距离等于5的点共有( )A. 2个B. 3个C.4个D. 1个5. 在直角坐标系中A (2,0)、B (-3,-4)、O (0,0),则△AOB 的面积为( )A. 4B. 6C. 8D. 36. 在坐标平面内,有一点P (a ,b ),若ab=0,那么点P 的位置在…( )A. 原点B. x 轴上C. y 轴D. 坐标轴上7. 若0 xy ,则点P (x,y )的位置是( ) A. 在数轴上 B. 在去掉原点的横轴上C. 在纵轴上D. 在去掉原点的纵轴上8. 如果直角坐标系下两个点的横坐标相同,那么过这两点的直线( )A. 平行于x 轴B. 平行于y 轴C. 经过原点D. 以上都不对9. 直角坐标系中,一个图案上各个点的横坐标和纵坐标分别乘以正数a (a >1),那么所得的图案与原来图案相比( )A.形状不变,大小扩大到原来的a 2倍B. 图案向右平移了a 个单位C. 图案向上平移了a 个单位D. 图案沿纵向拉长为a 倍二、填空题1. 点A (a ,b )和B 关于x 轴对称,而点B 与点C (2,3)关于y 轴对称,那么,a= _______ ,b=_______ , 点A 和C 的位置关系是________________。