什么是形状记忆合金
形状记忆合金介绍

TiNi合金与CuZnAl合金性能对比 合金类型 恢复应变 恢复应力 循环寿命 TiNi合金 最大8% 最大400MPa 105(ε=0.02) 107(ε=0.005) CuZnAl合金 最大4% 最大200MPa 102(ε=0.02) 103(ε=0.005)
耐蚀性
加工性 记忆处理
良好
不良 较易
伪弹性应力应变示意图
29
• 在D点之前应力被取消,例如在点C’,应变通过 几步可恢复:
C’F段:马氏体的弹性恢复; FG段:马氏体向奥氏体转变后引起的应变恢复,F点 是卸载中马氏体能存在的最大应力,在该点开始发生 马氏体向奥氏体的逆相变,随后马氏体量不断减少直 到奥氏体完全恢复(G点), GH段:奥氏体的弹性恢复。
钢的马氏体转变
16
• 为使A(母相)-M(马氏体相)相变产生,M相的化学自 由能必须低于A相。 • 相变需要驱动力,不过冷到适当低于T0(A相和M相 化学自由能达到平衡)的温度,相变不能进行, • 逆相变也需驱动力,必须过热到适当高于T0 的温度 ,相变才能进行。
马氏体相和母相化学 自由能差随温度变化 与马氏体相变的关系
30/100
-140/100 -150/100 -120/30 -180/-10
NiAl
TiNi FePt FePd MoCu
36-38at%Al
49-51at%Ni 25at%Pt 30at%Pd 5-35at%Cu
-100/100
-50/100 /-130 /-100 -250/180
11
23-28at%Au 45-47at%Zn
目前,已在Ni48.8Mn29.7Ga21.5单晶中得到约10%的可恢复 磁感生应变。
未来潜力材料之形状记忆合金

形状记忆合金(shape memory alloys,SMA)是一种由两种以上金属元素构成、能够在温度和应力作用下发生相变的新型功能材料,通过热弹性与马氏体相变及其逆变而具有独特的形状记忆效应、相变伪弹性等特性,广泛应用于航空航天、生物医疗、机械电子、汽车工业、建筑工程等领域。
形状记忆合金按合金种类主要分为镍钛基形状记忆合金(Ni-Ti SMA)、铜基形状记忆合金(Cu SMA)、铁基形状记忆合金(Fe SMA)3类。
其中,镍钛基形状记忆合金包括Ni-Ti-Cu、Ni-Ti-Co、Ni-Ti-Fe、Ni-Ti-Nb等具有较高实用价值的记忆合金;铜基形状记忆合金主要有Cu-Zn、Cu-Zn-Al、Cu-Zn-Sn、Cu-Zn-Si、Cu-Zn-Ga、Cu-Sn等种类;铁基形状记忆合金主要有Fe-Pt、Fe-Mn-Si、Fe-Ni-Co-Ti、Fe-Mn-Al-Ni、Fe-C-Mn-Si-Cr-Ni等种类。
1/形状记忆合金的研究现状形状记忆合金因其独特的形状记忆效应一直是各主要国家的研究热点。
近年来,美国、欧洲、日本等国家和地区针对形状记忆合金制备工艺、成分配比、与先进制造技术结合的研究已取得显著的进展,尤其以4D打印技术为代表的先进制造技术使用形状记忆合金作为原材料,扩展了其在软体机器人、医疗器械、航空航天等领域的应用范围。
(一)中美欧等国开发出多种形状记忆合金制备新工艺,扩大了材料应用范围形状记忆合金/聚合物的制备方法主要有熔炼法、粉末冶金法、喷射沉积工艺、4D打印技术等,再根据应用需求配置后续的锻造、热挤压、轧制、拉拔、冷加工等成型工艺。
其中,熔炼法是传统金属冶金工艺,在真空下将金属原材料通过电子束、电弧、等离子体、高频感应等方式加热后进行熔炼,易产生杂质污染、成分不均匀、能耗高等问题,且需要经过切割加工形成合金产品。
而粉末冶金法则是利用金属或合金粉末进行热等静压和烧结,制备出最终形状的合金产品。
形状记忆合金的性质,应用及效应机制

片状马氏体
板条马氏体
针状马氏体
马氏体相变:
它是母相奥氏体(碳在 γ-Fe 中形 成的间隙固溶体,面心立方 FCC 点阵) 转变为马氏体的过程。
可 以 恰 当 而 简 练 的 定 义 为“ 原 子 联 动 所 引 起 的 切 变 型 点 阵 相 变 ”。母 相 中 的 原 子,不是处在各自零散状态,而是在保
在逆相变过程中,由于两相之间的点阵对应关系单一,且相变时点阵应变非常 小 ,因 而 逆 相 变 时 母 相 变 体 完 全 固 定 不 变 。这 样 一 来 ,逆 相 变 时 必 然 选 取 原 位 向 的 母 相,所以在产生热弹性相变的合金中,形状记忆效应以完全可逆的形式出现。
条件(2)是理所当然的,因为滑移是不可逆过程。也就是说,如果在晶体中出 现 滑 移 ,由 滑 移 导 致 的 变 形 即 使 加 热 也 消 除 不 了 。热 弹 性 马 氏 体 相 变 发 生 的 不 是 滑 移 , 而 是 另 一 种 基 本 的 形 变 机 制 — — 孪 生 。从 微 观 上 看 ,晶 体 原 子 排 列 沿 某 一 特 定 面 镜 像 对 称 。那 个 面 叫 孪 晶 面( 孪 晶 是 指 两 个 晶 体( 或 一 个 晶 体 的 两 部 分 )沿 一 个 公 共 晶 面 构 成 镜 面 对 称 的 位 向 关 系 , 这 两 个 晶 体 就 称 为 " 孪 晶 " , 此 公 共 晶 面 就 称 孪 晶 面 )。 即 实 际 上 它 是 由 位 向 互 为 孪 晶 关 系 的 两 种 马 氏 体 区 构 成 ,每 一 个 马 氏 体 和 母 相 点 阵 之 间 具 有 晶 体 学 上 等 价 的 特 定 点 阵 对 应 关 系 。这 种 具 有 点 阵 对 应 关 系 的 每 个 马 氏 体 称 为 对 应变体。
形状记忆合金(SMA)讲解

Ti-Ni合金呈现记忆效应的两种相变过程 依成分和预处 理条件的不同 母相 母相 马氏体 R相 马氏体 加铁、时效
相变过程都 是热弹性马 氏体相变
R相变出现 记忆效应由两个 相变阶段贡献
R相变不出现 记忆效应由单 一相变贡献
(二) 合金元素对Ti-Ni合金相变的影响
加入合金元素调整相变点
例:加Cu置换Ni 形状记忆效应、力学性能, 合金的价格显著降低 , 加入 Cu 对相变温度有显著影响 , 相变 温区 ( M s - M f ) 、 ( A f - A s ) 都变窄 , 窄滞后记忆合金 例:加Nb 可得到很宽滞后的记忆合金
马氏体相变的特征温度 (形状记忆效应的特征 温度) Ms:马氏体相变开始点 Mf:马氏体相变结束点 As :逆马氏体相变开始点 Af :逆马氏体相变结束点
定义(As-Ms)为马氏体相 变的热滞后 马氏体与母相的平衡温度
∆G(T)PM是母相转变为马氏体的驱动力; ∆Gc PM是母相转变为马氏体的化学驱动力 (∆Gc PM=G M -G P);∆Gnc PM是非化学 驱动力,主要是相变时新旧相体积变化而 产生的应变能;∆Gs是指弹性应变能以外的 相变阻力,近似看作定值。
马氏体相变的临界温度
Ms:马氏体相变开始点 Mf:马氏体相变结束点 As :逆马氏体相变开始
点
Af :逆马氏体相变结束 点
应力诱发马氏体相变
Stress Induced Martensitic Transformation
3.1形状记忆机理
3.1.1热弹性马氏体相变
f.c.c. b.c.t
马氏体相变 (Martensitic Transformation)
• 马氏体相变概述
– – – – 命名,德国人 Adolph Martens 最初的认识:相变产物的特征 深入研究:形核和生长的过程 生长速度
形状记忆合金材料

3.铁系形状记忆合金
•
与Ni-Ti基及Cu基合金相比,铁基合金价格低、
加工性好、机械强度高、使用方便。目前已发现
的铁基形状记忆合金的成分、结构和性能,其中
应用前景最好的合金是FeMnSiCrNi和FeMnCoTi
系。
铁基形状记忆合金的成分和性能
四、形状记忆合金的应用
却到Ms点以下,马氏体晶核随温度下降逐渐长大,弯度回升
是马氏体片又反过来同步地随温度上升而缩小,这种马氏体 叫热弹性马氏体。
•
•
在Ms以上某一温度对合金施加外力也可引起马氏体转变,
形成的马氏体叫应力诱发马氏体。 有些应力诱发马氏体也属弹性马氏体,应力增加时马氏 体长大,反之马氏体缩小,应力消除后马氏体消失,这种马 氏体叫应力弹性马氏体。
•
如在NiTi合金中,加入W,会产生明显的固溶 强化,提高NiTiW合金的强度和力学性能。但是W
的加入不会改变整个NiTi合金的相变温度。
2.Cu系形状记忆合金
•
Cu基记忆合金分为Cu-Al系和Cu-Zn系,比NiTi
合金生产成本低(10%),而且加工性能好,应用日益
广泛,但是相变温度稳定性差,韧性不好;但是价格
四、形状记忆合金的应用
五、形状记忆合金的发展
六、形状记忆合金的制备
一、形状记忆效应
原来弯曲的合金丝被拉直后,当温度升高到 一定值时,它又恢复到原来弯曲的形状。人们把 这种现象称为形状记忆效应(SMF),具有形状
记忆效应的金属称为形状记忆合金(SMA)。
形状记忆效应有三种形式:单程形状记忆效应,
双程形状记忆效应,全程形状记忆效应。
4.马氏体相变
•
形状记忆合金名词解释

形状记忆合金名词解释
形状记忆合金,简称SMA(Shape Memory Alloy),是一种具有记忆能力的特殊金属材料。
它在经历一定的变形之后,可以通过受热或其他外界刺激的方式恢复到最初的形状。
这种记忆效应是由于SMA 内部晶体结构的特殊性质所致。
形状记忆合金广泛应用于各个领域,包括机械、航空航天、医疗和电子等。
它具有优异的弹性、耐腐蚀性和耐疲劳性,可用于制造变形器件、阀门以及控制系统等。
其独特的性能和应用前景使得形状记忆合金成为材料科学和工程学领域的研究热点之一。
形状记忆合金原理、性质与应用
体
合
称
为
一
个
马
氏
体
片
群
,(a)实线:孪晶界及变体之间的界 面。虚线:基准面;
如图3-1。
(b)在 (01 1 ) 标准投影图中,四个 形状记忆合金原理、性变质和体应的用惯习面法线的位置
通常的形状记忆合金根据马氏体与母相 的晶体学关系,共有六个这样的片群,形成 24种马氏体变体。每个马氏体片群中的各个 变体的位向不同,有各自不同的应变方向。 每个马氏体形成时,在周围基体中造成了一 定方向的应力场,使沿这个方向上变体长大 越来越困难,如果有另一个马氏体变体在此 应力场中形成,它当然取阻力小、能量低的 方向,以降低总应变能。由四种变体组成的 片群总应变几乎为零,这就是马氏体相变的 自适应现象。
形状记忆合金原理、性质和应用
如 图 3-2 所 示,记忆合金 的 24 个 变 体 组 成六个片群及 其晶体学关系, 惯习面绕6个 {110} 分 布 , 形 成6个片群。
图3-2 24个自适应马氏体变体
形状记忆合金原理、性质和应用
每片马氏体形成时都伴有形状的变化。 这种合金在单向外力作用下,其中马氏体顺 应力方向发生再取向,即造成马氏体的择优 取向。当大部分或全部的马氏体都采取一个 取向时,整个材料在宏观上表现为形变。对 于应力诱发马氏体,生成的马氏体沿外力方 向择优取向,在相变同时,材料发生明显变 形,上述的24个马氏体变体可以变成同一取 向的单晶马氏体。
形状记忆合金原理、性质和应用
母相受力生成马氏体并发生形变,或先 淬火得到马氏体,然后使马氏体发生塑性变 形,变形后的合金受热(温度高于As)时,马 氏体发生逆转变,回复母相原始状态;温度 升高至Af时,马氏体消失,合金完全回复到 原来的形状。但是具有热弹性马氏体相变的 材料并不都具有形状记忆效应,这一点可以 从热力学上给予证明,在此不详细讨论。
Ti-Ni形状记忆合金
形状记忆机理
形状记忆效应是由于合金中发生了热 弹性或应力诱发马氏体相变.热弹性马氏体 和应力诱发马氏体统称为弹性马氏体.只有 弹性马氏体相变才能产生形状记忆效应.
形状记忆效应示意图
形状记忆合金 的特点
机械性质十分优良,能恢复的形变可高达10 %(一般金属材料<0.1%); 加热时产生的回复应力非常大,可达500MPa; 无通常金属呈现的"疲劳断裂"现象; 可感受温度,外力变化并通过调整内部结构 来适应外界条件——对环境刺激的自适应性.
形状记忆效应简易演示实验
形状记忆效应
形状记忆效应是指,在高温下处理成 一定形状的金属急冷下来,在低温相状态下 经塑性变形为另一种形状,然后加热到高温 相成为稳定状态的温度时,通过马氏体逆相 变恢复到低温塑性变形前的形状的现象. 具有这种效应的金属,通常是由两种 以上的金属元素构成的合金,故称为形状记 忆合金.
预压缩
受热扩张后
植入腔道内效果
医用腔内支架的应用原理示意
消化道内支架
血管内支架
胆道内支架
日常生活
电加热水壶的手柄控制器,暖气阀门, 电加热水壶的手柄控制器,暖气阀门,防烫 伤阀,空调调节器,电冰箱自动开关, 伤阀,空调调节器,电冰箱自动开关,高温 报警装置等. 报警装置等. 特点:结构简单,可靠性高,成本低. 特点:结构简单,可靠性高,成本低. 通电加热使其发生伸( ——可人为控制其 通电加热使其发生伸(缩)——可人为控制其 伸缩. 伸缩.
电子和机械工程
应用:管接头,紧固圈,连接套管,紧固铆钉等 应用:管接头,紧固圈,连接套管,紧固铆钉等. 优点:夹紧力大,接触密封可靠, 优点:夹紧力大,接触密封可靠,避免了由于焊接 而产生的冶金缺陷; 而产生的冶金缺陷; 适于不易焊接的接头,如严禁明火的管道连接, 适于不易焊接的接头,如严禁明火的管道连接,焊 接工艺难以进行的海底输油管道修补等; 接工艺难以进行的海底输油管道修补等; 金属与塑料等不同材料可以通过这种连接件连成一 体; 安装时不需要熟练的技术. 安装时不需要熟练的技术.
形状记忆合金材料的应用5则范文
形状记忆合金材料的应用5则范文第一篇:形状记忆合金材料的应用形状记忆合金材料的性质与应用综述【摘要】形状记忆合金是一种新型功能材料,在各个领域有着广泛的应用。
本文简要介绍了形状记忆合金的特性、应用以及发展前景。
【关键词】形状记忆合金应用发展现状【引言】形状记忆合金(Shape Memory Alloys, SMA),是一种在加热升温后能完全消除其在较低的温度下发生的变形,恢复其变形前原始形状的合金材料。
最早关于形状记忆效应的报道是由Chang 及Read等人在1952年做出的。
他们观察到Au-Cd合金中相变的可逆性。
[3]后来在Cu-Zn合金中也发现了同样的现象,但当时并未引起人们的广泛注意。
直到1962年,Buehler及其合作者在等原子比的Ti-Ni合金中观察到具有宏观形状变化的记忆效应,才引起了科学界与工业界的重视。
这种新型功能材料目前已广泛用于电子仪器、汽车工业、医疗器械、空间技术和能源开发等领域。
一、形状记忆合金的分类1、单程记忆效应:形状记忆合金在较低的温度下变形,加热后可恢复变形前的形状,这种只在加热过程中存在的形状记忆现象称为单程记忆效应。
2、双程记忆效应:某些合金加热时恢复高温相形状,冷却时又能恢复低温相形状,称为双程记忆效应。
3、全程记忆效应:加热时恢复高温相形状,冷却时变为形状相同而取向相反的低温相形状,称为全程记忆效应。
二、形状记忆合金的特性1、形状记忆效应:合金在某一温度下受外力而变形,当外力去除后,仍保持其变形后的形状,但当温度上升到某一温度,材料会自动回复到变形前原有的形状,似乎对以前的形状保持记忆,这种效应称为形状记忆效应。
2、超弹性:在高于Af点、低于Md点的温度下施加外应力时产生应力诱发马氏体相变,卸载就产生逆相变,应变完全消失,回到母相状态,表观上呈现非线性拟弹性应变,这种现象称为超弹性。
3、高阻尼特性:形状记忆合金在低于Ms点的温度下进行热弹性马氏体相变,生成大量马氏体变体(结构相同、取向不同),变体间界面能和马氏体内部孪晶界面能都很低,易于迁移,能有效地衰减振动、冲击等外来的机械能,因此阻尼特性特别好。
TiNi系形状记忆合金的记忆原理及其应用现状
TiNi系形状记忆合金的记忆原理及其应用现状TiNi合金是一种拥有良好形状记忆效应的记忆合金,它在低温相下发生适当的变形后,加热到某一温度(逆相变点)之上,发生逆相变的同时能够回复到变形前的形状。
对TiNi合金的形状记忆原理、特性及其在各个领域的应用进行了较为系统的描述。
标签:TiNi合金;形状记忆效应;记忆合金1 引言形状记忆合金(Shape Memory Alloy,SMA)作为一种新型的功能材料,近些年受到人们广泛的关注。
形状记忆合金主要有TiNi基,Cu基,Fe基和铁磁SMA等,它们发生形状记忆效应的机制不尽相同。
其中热弹性马氏体相变机制的TiNi基形状记忆合金因具有优良的形状记忆特性、超弹性和循环寿命等优点,是目前研究最深入、商业应用最广泛的SMA。
TiNi合金是迄今为止发现的形状记忆合金中记忆特性最好的一种,具有独特的超弹性、形状记忆性能、高强度、低模量和耐腐蚀性能。
与铜基记忆合金相比,TiNi合金晶粒较小,抗疲劳性能更高,记忆性能更加稳定。
对TiNi系记忆合金的研究可以追溯到1963年,美国海军武器实验室的Buehler等人发现等原子比的Ti-Ni合金具有非常良好的形状记忆功能。
随后,1969年,Raychem公司第一次将Ti-Ni系记忆合金制作成管接头,应用在美国F14战斗机上,这一应用,掀起了国际上对记忆合金研究与开发的热潮。
近些年来,对TiNi系记忆合金及其应用的研究已经取得了非常大的突破。
本文综合评述了TiNi系记忆合金的记忆原理、优点、应用现状以及其未来发展前景。
2 TiNi形状记忆合金的记忆原理形状记忆合金(shape memory alloy)简称SMA,它处于正相变温度(正相变点)以下时,受适当力产生变形之后,当加热到临界温度(逆相变点)之上,发生逆相变的同时恢复其原始形状,这种现象称之为形状记忆效应,它是某些呈现马氏体相变的合金所具有的一种奇特的性能。
TiNi系记忆合金可以感知到温度的变化,并且它能随着温度的变化发生相变,将热能转化成机械能,输出外力、位移、储存并且释放能量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
什么是形状记忆合金
有一种记忆方法是形状记忆法,你在运用过这种方法吗?那你有知道什么是形状记忆合金吗?下面和一起来了解什么是形状记忆合金吧,希望对你有帮助!
形状记忆合金的定义形状记忆合金(Shape Memory Alloys,),简称SMA,是一种在加热升温后能完全消除其在较低的温度下发生的变形,恢复其变形前原始形状的合金材料,即拥有“记忆"效应的合金。
在航空航天领域内的应用有很多成功的范例。
人造卫星上庞大的天线可以用记忆合金制作。
发射人造卫星之前,将抛物面天线折叠起来装进卫星体内,火箭升空把人造卫星送到预定轨道后,只需加温,折叠的卫星天线因具有“记忆”功能而自然展开,恢复抛物面形状。
形状记忆合金简介形状记忆合金(shape memory alloy)在临床医疗领域内有着广泛的应用,例如人造骨骼、伤骨固定加压器、牙科正畸器、各类腔内支架、栓塞器、心脏修补器、血栓过滤器、介入导丝和手术缝合线等等,记忆合金在现代医疗中正扮演着不可替代的角色。
记忆合金同我们的日常生活也同样休戚相关。
形状记忆合金具有形状记忆效应(shape memory effect) ,以记忆合金制成的弹簧为例,把这种弹簧放在热水中,弹簧的长度立即伸长,再放到冷水中,它会立即恢复原状。
利用形状记忆合金弹簧可
以控制浴室水管的水温:在热水温度过高时通过"记忆"功能,调节或关闭供水管道,避免烫伤。
也可以制作成消防报警装置及电器设备的保险装置。
当发生火灾时,记忆合金制成的弹簧发生形变,启动消防报警装置,达到报警的目的。
还可以把用记忆合金制成的弹簧放在暖气的阀门内,用以保持暖房的温度,当温度过低或过高时,自动开启或关闭暖气的阀门。
形状记忆合金的形状记忆效应还广泛应用于各类温度传感器触发器中。
形状记忆合金另一种重要性质是伪弹性(pseudoelasticity,又称超弹性,superelasticity) ,表现为在外力作用下,形状记忆合金具有比一般金属大的多的变形恢复能力,即加载过程中产生的大应变会随着卸载而恢复[2-3] 。
这一性能在医学和建筑减震以及日常生活方面得到了普遍应用。
例如前面提到的人造骨骼、伤骨固定加压器、牙科正畸器等[4] 。
用形状记忆合金制造的眼镜架,可以承受比普通材料大得多的变形而不发生破坏(并不是应用形状记忆效应,发生变形后再加热而恢复)
形状记忆合金应用形状记忆合金由于具有许多优异的性能,因而广泛应用于航空航天、机械电子、生物医疗、桥梁建筑、汽车工业及日常生活等多个领域。
航空航天工业
形状记忆合金已应用到航空和太空装置。
如用在军用飞机的液压系统中的低温配合连接件,欧洲和美国正在研制用于直升飞机的智能水平旋翼中的形状记忆合金材料。
由于直升飞机高震动和高噪声使用
受到限制,其噪声和震动的来源主要是叶片涡流干扰,以及叶片型线的微小偏差。
这就需要一种平衡叶片螺距的装置,使各叶片能精确地在同一平面旋转。
目前已开发出一种叶片的轨迹控制器,它是用一个小的双管形状记忆合金驱动器控制叶片边缘轨迹上的小翼片的位置,使其震动降到最低。
还可用于制造探索宇宙奥秘的月球天线,人们利用形状记忆合金在高温环境下制做好天线,再在低温下把它压缩成一个小铁球,使它的体积缩小到原来的千分之一,这样很容易运上月球,太阳的强烈的辐射使它恢复原来的形状,按照需求向地球发回宝贵的宇宙信息。
另外,在卫星中使用一种可打开容器的形状记忆释放装置,该容器用于保护灵敏的锗探测器免受装配和发射期间的污染。
机械电子产品
1970 年美国用形状记忆合金制作F-14 战斗上的低温配合连接器,随后有数以百万以上的连件的应用[5]。
形状记忆合金作为低温配合连接在飞机的液压系统中及体积较小的石油、石化、电工业产品中应用。
另一种连接件的形状是焊接的网状金属丝,用于制造导体的金属丝编织层的安全接头。
这种接件已经用于密封装置、电气连接装置、电子工程机械装置,并能在-65~300℃可靠地工作。
已开发出的密封系统装置可在严酷的环境中用作电气件连接[6]。
将形状记忆合金制作成一个可打开和关闭快门的弹簧,用于保护雾灯免于飞行碎片的击坏。
用于制造精密仪器或精密车床,一旦由于震动、碰撞等原因变形,只需加热即可排除故障。
在机械制造过程中,
各种冲压和机械操作常需将零件从一台机器转移到另一台机器上,现在利用形状记忆合金开发了一种取代手动或液压夹具,这种装置叫驱动汽缸,它具有效率高灵活,装夹力大等特点。
生物医疗
用于医学领域的TiNi 形状记忆合金,除了利用其形状记忆效应或超弹性外,还应满足化学和生物学等方面的要求,即良好的生物相容性。
TiNi 可与生物体形成稳定的钝化膜。
在医学上TiNi 合金主要应用有:
(a)牙齿矫形丝用超弹性TiNi 合金丝和不锈钢丝做的牙齿矫正丝,其中用超弹性TiNi 合金丝是最适宜的。
通常牙齿矫形用不锈钢丝CoCr 合金丝,但这些材料有弹性模量高,弹性应变小的缺点。
为了给出适宜的矫正力,在矫正前就要加工成弓形,而且结扎固定要求熟练。
如果用TiNi 合金作牙齿矫形丝,即使应变高达10%也不会产生塑性变形,而且应力诱发马氏体相变(stress-induced martensite)使弹性模量呈现非线型特性,即应变增大时矫正力波动很少。
这种材料不仅操作简单,疗效好,也可减轻患者不适感。
(b) 脊柱侧弯矫形各种脊柱侧弯症(先天性、习惯性、神经性、佝偻病性、特发性等)疾病,不仅身心受到严重损伤,而且内脏也受到压迫,所以有必要进行外科手术矫形。
目前这种手术采用不锈钢制哈伦敦棒矫形,在手术中安放矫形棒时,要求固定后脊柱受到的矫正力保持在30~40kg以下,一但受力过大,矫形棒就会破坏,结果不仅是脊柱,而且连神经也有受损伤的危险。
同时存在矫形棒安放后矫
正力会随时间变化,大约矫正力降到初始时的30%时,就需要再进行手术调整矫正力,这样给患者在精神和肉体上都造成极大痛苦。
采用形状记忆合金制作的哈伦顿棒,只需要进行一次安放矫形棒固定。
如果矫形棒的矫正力有变化,以通过体外加热形状记忆合金,把温度升高到比体温约高5℃,就能恢复足够的矫正力。
另外,外科中用TiNi 形状记忆合金制做各种骨连接器、血管夹、凝血滤器以及血管扩张元件等。
同时还广泛应用于口腔科、骨科、心血管科、胸外科、肝胆科、泌尿科、妇科等,随着形状记忆的发展,医学应用将会更加广泛。
建筑结构
利用形状记忆合金的伪弹性性能和动阻尼特性,形状记忆合金被用于被动控制结构受地震影响,起到抗震的作用。
应运于结构振动的主动阻尼控制等。
日常生活
(a) 防烫伤阀在家庭生活中,已开发的形状记忆阀可用来防止洗涤槽中、浴盆和浴室的热水意外烫伤;这些阀门也可用于旅馆和其他适宜的地方。
如果水龙头流出的水温达到可能烫伤人的温度(大约48℃)时,形状记忆合金驱动阀门关闭,直到水温降到安全温度,阀门才重新打开。
(b) 眼镜框架在眼镜框架的鼻梁和耳部装配TiNi 合金可使人感到舒适并抗磨损,由于TiNi 合金所具有的柔韧性已使它们广泛用于改变眼镜时尚界。
用超弹性TiNi 合金丝做眼镜框架,即使镜片热
膨胀,该形状记忆合金丝也能靠超弹性的恒定力夹牢镜片。
这些超弹性合金制造的眼镜框架的变形能力很大,而普通的眼镜框则不能做到。
(c) 移动电话天线和火灾检查阀门使用超弹性TiNi金属丝做蜂窝状电话天线是形状记忆合金的另一个应用。
过去使用不锈钢天线,由于弯曲常常出现损坏问题。
使用TiNi形状记忆合金丝移动电话天线,具有高抗破坏性受到人们普遍欢迎。
因此常用来制作蜂窝状电话天线和火灾检查阀门。
火灾中,当局部地方升温时阀门会自动关闭,防止了危险气体进入。
这种特殊结构设计的优点是,它具有检查阀门的操作,然后又能复位到安全状态;这种火灾检查阀门在半导体制造业中得到使用,在半导体制造的扩散过程中使用了有毒的气体;这种火灾检查阀也可在化学和石油工厂应用。