相似三角形周长比面积比

合集下载

三角形相似,面积比和周长比关系

三角形相似,面积比和周长比关系

三角形相似,面积比和周长比关系三角形是几何学中最基本的图形之一。

在三角形的研究中,相似三角形是一个重要的概念。

相似三角形指的是具有相同形状但大小不同的三角形。

在相似三角形中,它们的边长比例是相等的。

本文将探讨相似三角形的性质以及面积比和周长比之间的关系。

首先,让我们来了解一下什么是相似三角形。

相似三角形的定义是:两个三角形如果它们对应的角相等,那么它们就是相似三角形。

例如,如果两个三角形的对应角度分别为A1、B1、C1和A2、B2、C2,那么当∠A1 = ∠A2,∠B1 = ∠B2,∠C1 = ∠C2时,这两个三角形就是相似三角形。

在相似三角形中,它们的边长比例是相等的。

也就是说,对于相似三角形ABC和DEF,有AB/DE = AC/DF = BC/EF。

这个比例关系可以用来判断两个三角形是否相似。

利用相似三角形的边长比例,我们可以通过已知的一个三角形的边长,计算出另一个相似三角形的边长。

接下来,我们来研究相似三角形的面积比。

面积比是指两个相似三角形的面积之比。

如果一个相似三角形的边长比为a:b,那么它们的面积比就是a²:b²。

这个规律可以通过相似三角形的性质来推导。

由于相似三角形的对应边长比例相等,假设一个相似三角形的边长比为a:b,那么它们的高度比也是a:b。

假设两个相似三角形的面积分别为S1和S2,它们的底边长度分别为c1和c2,高度分别为h1和h2。

根据面积的计算公式S=1/2*底边长度*高度,我们可以得到S1/S2 =(1/2)*c1*h1/(1/2)*c2*h2 = c1*h1/c2*h2 = (a*b)/(a*b) = a²:b²。

最后,我们来探讨相似三角形的周长比。

周长比是指两个相似三角形的周长之比。

如果一个相似三角形的边长比为a:b,那么它们的周长比也是a:b。

这个结论可以通过相似三角形的性质推导得到。

由于相似三角形的对应边长比例相等,假设一个相似三角形的边长比为a:b,那么它们的边长之和也满足这个比例。

相似三角形的周长与面积比例关系

相似三角形的周长与面积比例关系

相似三角形的周长与面积比例关系相似三角形是指具有相同形状但尺寸不同的两个或多个三角形。

在几何学中,相似三角形和比例关系是重要的概念。

本文将探讨相似三角形的周长与面积之间的比例关系。

一、相似三角形的定义和性质相似三角形是指具有相同形状的三角形,其对应的内角相等,而边的比例也相等。

如果两个三角形的对应角相等,且对应边的比例相等,就称这两个三角形是相似的。

相似三角形具有如下性质:1. 相似三角形的对应边比例相等,可以表示为:∠A/∠A'=∠B/∠B'=∠C/∠C'=k(k为常数)。

2. 相似三角形的周长比例等于对应边的比例,表示为:AB/AB'=BC/BC'=AC/AC'=k。

3. 相似三角形的面积比例等于对应边长度的平方比例,表示为:[ABC]/[A'B'C']=(AB/AB')²=(BC/BC')²=(AC/AC')²=k²。

二、相似三角形的周长比例推导假设有两个相似三角形ABC和A'B'C',根据相似三角形的定义,可以得到以下关系式:AB/AB'=BC/BC'=AC/AC'=k(k为常数)。

由此可以推导相似三角形的周长比例。

设ABC的周长为L1, A'B'C'的周长为L2。

根据定义可知:AB/AB'=BC/BC'=AC/AC'=k。

则有L1=k(AB+BC+AC),L2=k(AB'+B'C'+A'C')。

因此,L1/L2=(k(AB+BC+AC))/(k(AB'+B'C'+A'C'))=AB+BC+AC/AB'+B'C'+A'C'。

根据相似三角形的定义,AB/AB'=BC/BC'=AC/AC',可以将k代入上式,得到L1/L2=3k/3k=1。

相似三角形的周长和面积比较

相似三角形的周长和面积比较
摄影学:在拍摄照片时,可以利用相似三角形来调整相机的角度和位置,以获得更好的拍摄效果。
04
相似三角形的周长和面积比较的注意事项
相似三角形的判定条件
定义法:根据相似三角形的定义,通过比较对应角和对应边来判定两个三角形是否相似。
平行法:当两个三角形有一组对应的边平行时,这两个三角形相似。
角-边角法:当两个三角形有两个对应的角相等,并且这两个角所夹的边成比例时,这两个三角形相似。
相似三角形在桥梁建设中的应用:在桥梁建设中,可以利用相似三角形来计算桥墩的高度和位置,以确保桥梁的稳定性和安全性。
相似三角形在航空摄影中的应用:在航空摄影中,可以利用相似三角形的性质来计算建筑物的高度和宽度,以及地面的距离和位置。
相似三角形在建筑设计中的应用
利用相似三角形测量建筑物的高度
利用相似三角形设计建筑物的窗户和门
计算方法:利用相似三角形的性质,将相似三角形的边长比例与周长比例相等,从而计算出周长
应用:在解决实际问题时,可以利用相似三角形的周长比较来推导其他相关量的大小关系
周长的比较
添加标题
添加标题
添加标题
添加标题
相似三角形的周长比等于边长比的绝对值
相似三角形的周长与边长成正比
相似三角形的周长比等于相似比的绝对值
测量工具的精度:确保使用高精度的测量工具,以减小误差。
测量方法的准确性:采用多次测量求平均值的方法,提高测量准确性。
相似三角形的选择:选择相似度高、形状接近的三角形进行比较。
计算过程的准确性:仔细核对计算过程,避免因计算错误导致误差。
实际应用中的注意事项
确保两个三角形相似,否则无法进行周长和面积的比较。
周长比等于任意一边长的比
02

相似三角形周长比等于相似比,面积比等于相似比平方

相似三角形周长比等于相似比,面积比等于相似比平方

A
E
B
4、如图,在正方形网格上有 △A1B1C1 和△A2B2C2 ,这两个 三角形相似吗?如果相似,求 出△A1B1C1和△A2B2C2的面积比。
4:1
B2
A1
A2
C2 C1
B1
全等三角形与相似三角形性质比较
全等三角形
相似三角形
对应边相等
对应边的比等于相似比(对应边成比例)
对应角相等
对应角相等
S2
F
G
M B
S3 N
S4 C
如图在 ABCD中,AE:AB=1:2 (1)△AEF与△CDF的周长之比_1_:_2___
(2)若△AEF的面积为8,则△CDF的面积 _3_2___
D
C
j F
A
E
B
四边形 ABCD是 ,点E是BC的延长线上 的一点,而且CE:BC=1:3,若△DGF的面积 为9,试求:(1)△ABG的面积(2)△ADG 与△BGE的周长比和面积比
还是让我们一起走近今天的数学课 堂来探究其中的奥秘吧?
问题
图 中 (1) 、 (2) 、 (3) 分 别 是 边长为1、2、3的等边三角形, 相似吗?
(2)与(1)的相似比=____, (2)与(1)的面积比=____;周长比=____ (3)与(1)的相似比=——, (3)与(1)的面积比=____;周长比=____
大标牌用油漆
2听

2.两个相似多边形面积的比9:16, (1)其中较小的多边形的周长为36cm ,则另 一个多边形的周长 48cm。
(2)两个多边形的周长之和是42cm,则两个多边 形的周长分别是 18cm,24cm。
典型例题
例1、如图,在△ABC中,点D、E分别分别 在AB、AC上,DE∥BC,AD:DB=3︰2. 求四边形DBCE与△ADE的面积的比。

相似三角形的周长与面积

相似三角形的周长与面积

相似三角形的周长与面积相似三角形------周长与面积一:知识回顾1、相似三角形的周长比等于相似比。

2、相似三角形面积比等于相似比的平方。

3、如图一:△ABC 中,若BD :CD=n :m ,则S△ABD :S △ACD =n :m4、如图二:△ABC 和△BCD 同底,则两个三角形面积之比等于两个三角形高之比。

图二二:例题讲解1、(2009年天津市)在ABC△和DEF△中,22AB DE AC DF A D==∠=∠,,,如果ABC △的周长是16,面积是12,那么DEF △的周长、面积依次为( )A .8,3B .8,6C .4,3D .4,6 2、(2009年济宁市)如图,在长为8 cm 、宽为4 cm 的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是( ) A. 2 cm 2 B. 4 cm 2 C. 8 cm 2 D. 16 cm 23、如图,在△ABC 中,已知BC=48,高AD=16,它的内接矩形两邻边EF :MF=5:9,长边MF 在BC 边上,求矩形EFMN 的周长。

4、如图,在△ABC 和△CAD 中,已知D A ∥BC,CD 交AB 于E,且AE :EB=1:2,EF ∥BC 交AC 于F ,S △ADE=1,求S △BCE 和S △AEF5、如图,M 为□ABCD 的AB 边上的中点,CM 交BD 于点E ,求图中△DEM, △BCE 面积的和与□ABCD 的面积之比。

6:如图1,矩形EFGH 内接于△ABC ,AD ⊥BC 于D ,交EH 于P ,若矩形的周长为24,BC=10,AP=16,求BPCS .7、某生活小区的居民筹集资金1600元,计划在一块上、D G F 图1下底分别为10m ,20m 的梯 形空地上种植花木(如图)(1)他们在△AMD 和△BMC 地带上种植太阳花,单价为8元/m 2,当△AMD 地带种满花后(图中阴影部分),共花了160元,请计算种满△BMC 地带所需的费用.(2)若其余地带要种的有玫瑰和茉莉花两种花木可供选择,单价分别为12元/m 2和10元/m 2,应选择种哪种花木,刚好用完所筹集的资金?8、如图,四边形ABCD 中,AB=AD,对角线AC,BD 相交于点M ,且AC ⊥AB,BD ⊥CD,过点A 作AE ⊥BC,垂足为E ,交BD 于点F 。

相似三角形的周长比与面积比

相似三角形的周长比与面积比
N
M
Q
P
E
D
C
B
A
解:设正方形PQMN是符合要求的△ABC的高AD与PN相交于点E。设正方形PQMN的边长为x毫米。 ∵PN∥BC ∴△APN∽ △ABC ∴
AE
AD
=
PN
BC
因此 ,得 x=48(毫米)。答:----。
80–x
高线
角平分线
中线
想一想
相似三角形的相似比与对应边上高线比有什么关系?
例如: ΔABC∽ΔA/B/C/ ,AD BC于 D, A / D / B / C /于D / , 求证:
A
B
A /
①相似三角形的对应高线之比等于相似比。
A
B
C
D
A /
B /
C /
D /
②相似多边形面积的比等于相似比的平方.
知 识 归 纳
(1)相似三角形对应的 比等于相似比.
相似三角形(多边形)的性质:
(3)相似 面积的比等于相似比的平方.
多边形
多边形
(2)相似 周长的比等于相似比.
三角形
三角形
高线
角平分线
∴△DEF的周长为
×24=12
面积为
4
3
例2、如图,在△ABC中,D是AB的中点, DE∥BC则: S △ADE : S △ABC = S △ADE: S 梯形DBCE =
01
03
02
(1)相似三角形对应的 比等于相似比.
(3)相似 面积的比等于相似比的平方.
2:3
4:9
3:2
3: 2
3:2
2:3
例 题 讲 解
例1、如图在ΔABC 和ΔDEF中,AB=2DE,AC=2DF,∠A=∠D,ΔABC的周长是24,面积是 ,求ΔDEF的周长和面积。

相似三角形面积比周长比的关系

相似三角形面积比周长比的关系

相似三角形面积比周长比的关系相似三角形,这个话题听起来好像有点儿严肃,但实际上它可以变得很有趣。

想象一下,你在课堂上,老师提到相似三角形时,你可能会想到那些古老的数学书,里面的图形看起来就像是从别的维度里掉下来的。

可实际上,相似三角形就像是生活中的那些好朋友,虽然看起来大小不同,但它们的性格、特点却是一样的。

你知道吗,相似三角形之间不仅有形状的相似,还有面积和周长的关系,真的是一门神奇的学问!先说说周长。

我们平常生活中常常听到“好事成双”,其实在这里,周长的比例也是成双的。

如果你有两个相似的三角形,一个大一个小,它们的周长比就像那种“你有我有”的朋友关系。

如果大三角形的边长是小三角形的两倍,那它们的周长比就是2:1。

是不是很简单?只要记住,边长比决定周长比,简单明了,没毛病!这就好比你和朋友一起去吃饭,你点了两份,他点了一份,结账的时候,大家一起按比例分摊,多简单啊!说完了周长,再聊聊面积。

面积比就有点儿不一样了。

我们来举个例子,假设大三角形的边长是小三角形的两倍,面积就不是简单的2:1了,而是变成了2的平方,即4:1。

这就是让人感到神奇的地方!面积的比例是边长比的平方,这就好比你看一棵树,树的高度翻了一番,树的叶子、果实可能会成倍增长,瞬间变得生机勃勃。

面积比就像是一个放大镜,让你看到小三角形与大三角形之间的真实差异。

这种关系在生活中随处可见。

想想看,你在超市里买水果,看到同样的苹果,大小不同,价格也有差异。

这就好比是周长与面积的关系,虽然看似简单的水果,却包含了很多的数学原理在里面。

更有趣的是,生活中的许多现象都可以用这种比例来解释。

比如,跑步的时候,你的速度和路程也是成正比的,你跑得越快,花的时间就越少,这不就跟周长面积比有点儿相像吗?。

好啦,回到相似三角形。

其实这些看似枯燥的数学知识,真的是有趣得很,尤其是当你把它们和生活结合起来的时候。

记得有一次,我和朋友们去野营,看到两座相似的山,一座高一座矮。

相似三角形的面积比与周长比的应用

相似三角形的面积比与周长比的应用

相似三角形的面积比与周长比的应用在几何学中,相似三角形是指具有相同形状但大小不一的三角形。

而相似三角形的面积比与周长比是一种重要的几何关系,可以应用在各种实际问题中。

本文将探讨相似三角形的面积比与周长比的应用。

一、相似三角形的定义与性质相似三角形是指具有相同形状但大小不一的三角形。

两个三角形相似的条件是它们对应角度相等。

相似三角形的性质包括边长比例相等、角度相等以及面积比例相等等。

二、相似三角形的面积比的应用1. 面积比的计算相似三角形的面积比等于它们边长比的平方。

假设有两个相似三角形,边长比为a:b,则它们的面积比为a²:b²。

2. 面积比的应用举例(1)建筑物的放大和缩小在建筑规划中,经常需要将设计图纸上的建筑物按照比例进行放大或缩小。

如果已知两个相似建筑物的边长比为a:b,则它们的面积比为a²:b²。

通过计算面积比,可以得知放大或缩小后的建筑物的面积变化情况。

(2)地图的绘制地图是一种将地球表面按比例缩小至纸面上的平面图。

在制作地图时,需要将地球上的各个地区按照比例进行缩小,并保持相似性。

相似三角形的面积比可以帮助绘制出比例准确的地图。

三、相似三角形的周长比的应用1. 周长比的计算相似三角形的周长比等于它们边长比的比例。

假设有两个相似三角形,边长比为a:b,则它们的周长比为a:b。

2. 周长比的应用举例(1)相似物体的放大和缩小在工程制图或模型制作中,常常需要将实物或图纸上的物体按照比例进行放大或缩小。

已知两个相似物体的边长比为a:b,则它们的周长比为a:b。

通过计算周长比,可以得知放大或缩小后的物体的周长变化情况。

(2)道路规划在城市规划或交通规划中,需要对不同区域之间的道路进行规划。

如果两个区域的形状相似,可以利用相似三角形的周长比来确定道路的长度比例,从而给出合理的道路规划方案。

四、相关实际问题的解决方法1. 已知两个相似三角形的面积和一个三角形的面积和周长,如何求另一个三角形的周长?解决这类问题可以利用相似三角形的面积比与周长比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

AD AB k A1D1 A1B1
(1)如图,△ABC∽△A'B'C',相似比为k1,它们的面积比 A' 是多少? A
B
D
C
B'
D'
C'
如图,分别作出△ABC和△A'B'C'的高AD和A'D'. ∵ ∠ADB =∠A/D/B/ ∴ △ABD∽△A'B'D' ∠B=∠B'
1 BC AD 2 1 B' C ' A' D' 2
证明:∵△ABC∽△A′B′C′ ∴∠B=∠B′ 又∵AD、A′D′是高线 ∴∠ADB=∠A′D′B′=90° ∴△ABD∽△A′B′D′
∴ AD ___ A′D′ B D A
A/
C
B/
D/ C/
=
AB ___ A′B′
= K
①相似三角形的对应高 线之比等于相似比。
相似三角形对应角平分线的比等于相似比
A D C B' D'
B
分别连接AC,A'C' 则△ABC∽△A'B'C',△ADC∽△A'C'D',
C'
S ABC k2 S A ' B ' C ' S ACD k2 S A ' C ' D '
S ABC k S A' B 'C '
2
S ACD k 2 S A'C ' D '
相似三角形周长比面积比
温故知新
(1)相似三角形有哪些判定方法?
定义,平行,(SSS),(SAS),(AA),
(2)相似三角形有什么性质? 对应角相等,对应边成比例; (3)什么叫相似比? 相似多边形对应边的比叫相似比
如果两个三角形相似,它 们的周长之间有什么关系? 两个相似多边形呢? B
A
A' C C'
证明:
∵ △ ABC∽ △ A1B1C1 ∴ ∠B = ∠B1,∠BAC = ∠B1A1C1 ∵ AD,A1D1分别是∠BAC和∠B1A1C1的角平分线 ∴ ∠BAD = ∠B1A1D1 ∴ △ ADB∽△ A1D1B1(角角)

AD AB k A1 D1 A1 B1
相似三角形对应中线的比等于相似比
相似三角形周长的比等于相似比
相似多边形周长的比等于相似比
想一想 三角形中,除了角和边外,还有三种主要线段:
高线,角平分线, 中线高线 Nhomakorabea角平分线
中线
思 考 相似三角形的相似比与对应边上高线比有什么 关系?
已知:ΔABC∽ΔA/B/C/ ,AD BC于 D, A / D / B / C /于D / , 求证: AD AB k A' D ' A' B '
1 k B' C 'k A' D' 2 k2 1 B' C ' A' D' 2
AD AB S△ ABC k S△ A'B 'C ' A' D' A' B '
这样,得到: 相似三角形面积的比等于相似比的平方.
(2)如图,四边形ABCD相似于四边形A'B'C'D',相似比 A' 为k2,它们的面积比是多少?
S四边形ABCD =k 2 S四边形A'B'C'D'
S ABC S ACD k 2 S A' B 'C ' S A'C ' D '
相似多边形面积的比等于相似比的平方.
B'
如果△ABC∽△A'B'C',相似比为k,那么 AB BC CA k A' B' B' C ' C ' A' 因此 从而 得到:
AB=k A'B',BC=kB'C',CA=kC'A' AB BC CA kA ' B' kB ' C ' kC ' A' k A' B' B' C 'C ' A' A' B' B' C 'C ' A'
相关文档
最新文档