精准营销下的大数据分析利用

合集下载

大数据在精准营销中的应用有哪些

大数据在精准营销中的应用有哪些

大数据在精准营销中的应用有哪些在当今数字化的时代,大数据已经成为企业营销领域的重要工具。

通过对海量数据的收集、分析和应用,企业能够实现更精准的营销,提高营销效果和投资回报率。

那么,大数据在精准营销中的具体应用都有哪些呢?首先,大数据能够帮助企业更精确地描绘客户画像。

客户画像是对客户特征、需求、行为等方面的综合描述。

通过收集客户的基本信息、购买历史、浏览记录、社交媒体活动等多维度的数据,企业可以深入了解客户的兴趣爱好、消费习惯、生活方式等。

比如,一个经常在电商平台上购买运动装备、关注健身博主、参加线上健身课程的客户,很可能是一个热爱运动、注重健康的人。

基于这样的客户画像,企业可以向其推送相关的运动产品、健身服务等精准营销信息,从而提高营销的针对性和成功率。

其次,大数据能够实现精准的市场细分。

传统的市场细分方法往往基于有限的几个维度,如地理位置、年龄、性别等。

而大数据能够基于更多的变量,如消费行为、兴趣偏好、社交关系等,将市场细分为更精准、更具个性化的群体。

例如,一家汽车制造商可以通过大数据分析,将市场细分为追求速度与激情的年轻消费者群体、注重家庭出行舒适的中年消费者群体、关注环保节能的高端消费者群体等。

针对不同的细分市场,企业可以制定差异化的营销策略,提供个性化的产品和服务,满足不同客户群体的需求。

再者,大数据有助于预测客户需求和行为。

通过对历史数据的分析,利用数据挖掘和机器学习技术,企业可以预测客户未来的购买意向、需求变化以及行为趋势。

比如,在电商领域,如果一个客户经常购买母婴产品,那么在其孩子即将进入新的成长阶段时,企业可以提前预测其对相关产品的需求,如儿童玩具、学习用品等,并及时向客户推送相关的营销信息。

这种基于预测的精准营销能够提前满足客户的需求,提高客户的满意度和忠诚度。

另外,大数据还能够优化营销渠道的选择和投放策略。

不同的营销渠道在触达客户的效果上存在差异。

通过大数据分析,企业可以了解不同渠道的用户特征、流量来源、转化率等指标,从而选择最适合目标客户群体的营销渠道。

大数据分析在精准营销中的应用

大数据分析在精准营销中的应用

大数据分析在精准营销中的应用随着互联网的发展,大数据分析逐渐成为企业决策和营销之中的重要部分。

大数据分析能够通过收集、处理和分析大量的数据,提高企业的效率和利润。

其中,精准营销是大数据分析最为重要的应用之一。

大数据分析的本质是将数据转化为可用信息,然后基于这些信息进行决策。

在传统营销中,推广活动通常都是针对广大消费者群体的,效果难以控制和预测。

而大数据分析可以帮助企业找到潜在的目标客户,并进行个性化的营销活动,从而提高营销效果和ROI(投资回报率)。

在精准营销中,大数据分析主要有以下几个应用:1.消费者画像对于任何一家企业而言,了解其目标客户是至关重要的。

而消费者画像能够帮助企业更深入地了解目标客户,并针对其兴趣、需求和行为制定营销策略。

消费者画像包括消费者的年龄、性别、地点、工作、教育背景、生活习惯等重要信息。

通过大数据分析,企业可以对这些信息进行收集和整合,并能够发现潜在的消费者偏好和需求,从而更加精确地制定营销策略。

2.预测消费者需求大数据分析可以对消费者的历史购买记录、浏览行为以及社交媒体数据进行分析,从而预测消费者的未来需求。

企业可以通过这些信息来了解消费者的兴趣、需求和购买决策过程,并据此进行个性化的产品推荐和定制服务。

3.定向广告投放传统广告通常都是面向广大消费者群体,而定向广告可以更加精准地投放到目标客户中。

大数据分析可以帮助企业营销人员根据消费者的标签、位置和行为等因素来制定广告推送策略。

例如,当消费者在搜索某种特定的产品时,企业可以通过搜索引擎广告的方式将与其搜索词相关的广告推送给其。

这样一来,不仅可以提高广告投放的转化率,还能节省广告投放的成本。

4.增强客户忠诚度企业也可以通过大数据分析来增强客户忠诚度。

营销人员可以基于消费者画像和购买历史数据,向客户提供有价值的产品建议和升级服务。

另外,在消费者投诉或退款等情况下,企业也可以通过大数据分析来及时处理问题,提高客户满意度。

总之,大数据分析在精准营销中是非常有用的应用之一。

大数据在精准营销中的应用

大数据在精准营销中的应用

大数据在精准营销中的应用在当今数字化的时代,大数据已经成为企业营销领域的重要利器。

精准营销作为一种能够有效提高营销效果和投资回报率的策略,与大数据的结合更是为企业带来了前所未有的机遇和挑战。

大数据究竟是什么呢?简单来说,大数据就是海量的、多样化的数据集合,这些数据的规模之大、类型之多、生成速度之快,使得传统的数据处理方式难以应对。

它包括了消费者的行为数据、购买记录、浏览历史、社交互动等各种信息。

而精准营销则是基于对目标客户的深入了解,将营销信息准确地传递给最有可能感兴趣和购买的客户群体。

大数据在精准营销中的应用首先体现在对消费者的精准画像上。

通过收集和分析消费者在各种线上和线下渠道的行为数据,企业能够了解消费者的兴趣爱好、消费习惯、生活方式等多方面的特征。

比如,一个消费者经常在电商平台上购买运动装备,浏览健身相关的网页和社交媒体内容,那么就可以将其画像为一个对运动健身有浓厚兴趣的人。

基于这样的精准画像,企业可以为其推送与运动健身相关的产品和服务,大大提高营销的针对性和成功率。

其次,大数据能够帮助企业实现精准的市场细分。

市场细分是将整个市场划分为具有相似需求和特征的子市场的过程。

以往,企业往往依靠有限的市场调研和经验来进行市场细分,但这种方式往往不够准确和全面。

而借助大数据,企业可以基于大量的数据进行更精细、更准确的市场细分。

例如,一家服装企业可以根据消费者的购买记录、身材数据、时尚偏好等因素,将市场细分为不同的风格、尺码和价格段的子市场,从而为每个子市场制定更具针对性的营销策略。

再者,大数据有助于预测消费者的需求和行为。

通过对历史数据的分析和挖掘,企业可以发现消费者行为的模式和趋势,从而预测他们未来的需求和购买行为。

比如,在电商领域,根据消费者过去的购买周期和浏览行为,企业可以预测他们何时可能需要再次购买某些产品,并提前为他们推送相关的促销信息。

这种基于预测的精准营销能够在消费者需求产生之前就与他们建立联系,提高销售的机会。

营销之道如何利用数据分析实现精准营销

营销之道如何利用数据分析实现精准营销

营销之道如何利用数据分析实现精准营销精准营销是现代营销的关键,而数据分析则成为实现精准营销的重要工具。

通过对大数据的深入分析和挖掘,市场营销人员能够更好地了解消费者行为和需求,有针对性地制定营销策略,提高市场反应和营销效果。

本文将详细介绍如何利用数据分析实现精准营销。

一、数据收集与整合要利用数据分析实现精准营销,首先需要收集和整合各种相关数据。

这些数据可以来自于多个渠道,包括线上渠道如电商平台、社交媒体,线下渠道如门店和客户服务中心等。

市场营销人员需要设计合理的数据收集机制,确保数据的全面性和准确性。

同时,还需要把不同渠道的数据进行整合,建立统一的数据存储和管理系统,方便后续的数据分析和应用。

二、数据清洗与预处理收集到的原始数据往往存在噪声和缺失等问题,需要进行数据清洗和预处理。

在数据清洗过程中,应该去除重复数据、纠正错误数据,并对缺失值进行处理。

此外,还需要对数据进行标准化和规范化,确保数据的一致性和可比性,为后续的数据分析打下基础。

三、数据分析与挖掘在数据清洗和预处理完成后,就可以进行数据分析和挖掘工作了。

数据分析的方法有很多种,包括统计分析、数据挖掘和机器学习等。

市场营销人员可以根据具体情况选择合适的分析方法,对数据进行深入挖掘和分析。

通过数据分析,可以了解消费者的购买偏好、消费习惯和生活方式等信息,为制定精准营销策略提供支持。

四、消费者画像与细分基于数据分析的结果,可以建立消费者画像和细分。

通过对消费者行为和特征的分析,可以将消费者划分为不同的群体,并对每个群体进行细致的描述和分析。

消费者画像和细分可以帮助市场营销人员更好地了解目标客户群体,从而制定更加精准的营销策略和沟通方案。

五、个性化推荐与定制化营销通过对消费者画像和细分的分析,可以进行个性化推荐和定制化营销。

个性化推荐是指根据消费者的偏好和需求,向其推荐个性化的产品或服务。

而定制化营销则是根据消费者的特征和购买历史,量身定制营销方案,提供个性化的购物体验。

大数据在精准营销中的应用

大数据在精准营销中的应用

大数据在精准营销中的应用在当今数字化的时代,大数据已经成为企业营销的重要工具。

通过对海量数据的收集、分析和应用,企业能够更精准地了解消费者的需求和行为,从而制定更有效的营销策略,提高营销效果和投资回报率。

大数据的出现为企业提供了前所未有的洞察消费者的能力。

过去,企业往往只能通过有限的市场调研和销售数据来推测消费者的喜好和需求,这种方式不仅成本高,而且结果往往不够准确和全面。

而现在,随着互联网和移动设备的普及,消费者在网络上的每一次搜索、浏览、购买和评价等行为都能被记录下来,形成庞大的数据资源。

这些数据包含了丰富的信息,如消费者的兴趣爱好、购买习惯、消费能力、地理位置等,为企业了解消费者提供了更全面、更深入的视角。

例如,当消费者在电商平台上浏览商品时,他们的浏览历史、收藏夹、购买记录等数据都会被记录下来。

通过对这些数据的分析,企业可以了解消费者对不同产品的关注度和购买意愿,从而预测消费者未来的购买需求,并向他们推荐相关的产品。

又如,社交媒体平台上的用户数据,包括发布的内容、关注的话题、互动的对象等,也能反映出用户的兴趣和需求,为企业的精准营销提供线索。

大数据在精准营销中的应用主要体现在以下几个方面:首先是目标客户的精准定位。

通过对大数据的分析,企业可以将消费者细分为不同的群体,根据每个群体的特征和需求,制定针对性的营销策略。

比如,对于年轻消费者群体,企业可以采用更时尚、个性化的营销方式;对于老年消费者群体,则可以强调产品的实用性和便利性。

这样的精准定位能够大大提高营销的效果,避免资源的浪费。

其次是营销内容的个性化定制。

基于对消费者的深入了解,企业可以为每个消费者提供个性化的营销内容。

比如,根据消费者的购买历史和浏览偏好,为他们推送符合其兴趣的产品推荐、优惠信息和广告。

这种个性化的营销内容能够更好地吸引消费者的注意力,提高他们对营销活动的参与度和购买意愿。

再者是营销渠道的精准选择。

大数据可以帮助企业了解不同渠道的用户特征和流量分布,从而选择最适合目标客户群体的营销渠道。

如何通过大数据分析实现精准营销

如何通过大数据分析实现精准营销

如何通过大数据分析实现精准营销随着互联网的快速发展和智能设备的普及,大数据分析已经成为企业实现精准营销的重要工具。

通过对海量数据的收集、整理和分析,企业可以更好地了解消费者的需求和行为,从而制定更精准的营销策略。

本文将介绍如何通过大数据分析实现精准营销的方法和步骤。

一、数据收集要实现精准营销,首先需要收集大量的数据。

数据的来源可以包括企业内部的销售数据、客户数据,以及外部的市场调研数据、社交媒体数据等。

企业可以通过建立客户关系管理系统(CRM)、购物网站、社交媒体平台等渠道来收集数据。

此外,还可以通过与第三方数据提供商合作,获取更多的数据资源。

二、数据整理与清洗收集到的数据往往是杂乱无章的,需要进行整理和清洗,以便后续的分析工作。

数据整理包括数据的分类、归档和标注等工作,清洗则是指对数据中的错误、重复、缺失等问题进行修正和处理。

只有经过整理和清洗的数据才能为后续的分析工作提供准确可靠的基础。

三、数据分析数据分析是实现精准营销的核心环节。

通过对数据进行统计、挖掘和建模,可以发现消费者的行为模式、偏好和需求,从而为企业制定精准的营销策略提供依据。

常用的数据分析方法包括数据挖掘、机器学习、人工智能等。

企业可以利用这些方法来进行用户画像、购买预测、推荐系统等分析工作。

四、精准营销策略制定在数据分析的基础上,企业可以制定精准的营销策略。

根据消费者的需求和行为模式,企业可以进行个性化的产品推荐、定制化的营销活动等。

例如,通过分析用户的购买历史和浏览记录,企业可以向用户推荐符合其兴趣和需求的产品;通过分析用户的社交媒体行为,企业可以制定针对性的广告投放策略。

五、效果评估与优化精准营销的过程是一个不断迭代的过程。

企业需要对营销策略的效果进行评估和优化,以不断提升营销的精准度和效果。

通过对营销活动的数据进行监测和分析,企业可以了解到营销活动的效果如何,从而对策略进行调整和优化。

六、隐私保护在进行大数据分析的过程中,企业需要注意保护用户的隐私。

大数据在精准营销中的应用研究

大数据在精准营销中的应用研究

大数据在精准营销中的应用研究一、引言随着信息技术的高速发展,大数据已经渗透到各行各业中,其中包括营销行业。

大数据技术的应用,使得精准营销成为可能。

精准营销借助大数据技术,对消费者进行细分,实现个性化、差异化的营销策略,提高了营销效果。

本文将探讨大数据在精准营销中的应用,分析其优势和挑战,并提出相应的建议。

二、大数据在精准营销中的应用1. 消费者细分大数据技术可以对海量数据进行分析,将消费者进行细分。

通过对消费者的购买行为、浏览记录、搜索历史等数据的分析,可以了解消费者的需求和偏好,从而将消费者划分为不同的群体,为每个群体制定个性化的营销策略。

2. 精准推荐基于大数据的精准推荐系统,可以根据消费者的历史数据和行为预测其未来的购买意向,向消费者推荐相应的产品或服务。

例如,电子商务平台可以通过用户的浏览和购买记录,推送相关的产品或活动信息,提高转化率。

3. 营销效果评估大数据技术可以收集和分析营销活动的效果数据,帮助企业了解营销策略的效果。

通过对营销数据进行分析,企业可以优化营销策略,提高投资回报率。

三、优势与挑战1. 优势大数据在精准营销中的优势主要体现在以下几个方面:(1)个性化推荐:基于大数据的精准推荐系统能够根据消费者的历史数据和行为预测其未来的购买意向,实现个性化推荐,提高转化率。

(2)提高营销效果:通过大数据技术对营销效果进行实时监测和评估,企业可以及时调整营销策略,提高投资回报率。

(3)降低成本:通过精准营销,企业可以降低不必要的营销投入,提高营销效率。

2. 挑战尽管大数据在精准营销中有诸多优势,但也面临着一些挑战:(1)数据安全与隐私保护:大数据的收集和使用涉及到消费者的隐私保护问题。

企业需要严格遵守相关法律法规,确保消费者的数据安全和隐私权益。

(2)数据处理能力:大数据的数据量庞大、类型多样,企业需要具备强大的数据处理能力,才能有效地分析和利用这些数据。

(3)数据质量:数据的来源和品质可能存在差异,影响精准营销的效果。

大数据分析技术在电商精准营销中的应用

大数据分析技术在电商精准营销中的应用

大数据分析技术在电商精准营销中的应用近年来,随着互联网的快速发展,电子商务成为当今社会商业活动的主流形式。

同时,大数据技术的兴起也让企业能够更好地利用那些已经产生的大量数据来解决业务问题。

大数据分析技术的应用,有效提升了电商精准营销的能力,帮助商家更准确地洞察消费者需求、优化服务、提高销售效果。

首先,大数据分析技术能够帮助企业深入洞察消费者需求,从而进行精准营销。

通过对海量的用户数据进行统计分析,企业能够了解消费者的兴趣、购买行为以及消费偏好等信息。

例如,电商平台可以利用大数据技术分析用户的浏览记录、搜索历史和购买记录,了解用户的兴趣爱好,从而推送个性化的商品和服务。

这样一来,就能够更好地满足消费者的需求,提高销售转化率。

其次,大数据分析技术还能帮助企业优化服务,提升用户体验。

在电商平台中,用户的购物体验对于企业的生存和发展至关重要。

通过大数据分析技术,企业可以实时监测用户在平台上的行为,分析用户感兴趣的商品、页面停留时间等关键指标。

通过这些数据分析,企业可以优化网站的用户界面、商品推荐、搜索引擎等服务,提高用户的购物体验,增加用户的满意度和忠诚度。

此外,大数据分析技术在电商精准营销中还能够帮助企业进行销售预测和库存管理。

通过对历史销售数据的分析,企业可以找到销售的规律和趋势,预测未来的销售情况。

这样一来,企业可以更准确地制定销售计划和库存管理策略,避免因过低或过高的库存造成的损失。

此外,对销售数据的分析还可以帮助企业优化商品定价,制定合理的促销政策,提高销售利润。

然而,大数据分析技术在电商精准营销中的应用也面临一些挑战。

首先,数据的质量和准确性是影响分析结果的关键因素。

如果企业采集的数据质量不高或者数据存在错误,那么分析结果就会受到影响,无法准确预测和决策。

因此,建立完善的数据采集、清洗和校验机制,保证数据的准确性和完整性至关重要。

其次,大数据分析技术在电商精准营销中的应用也涉及到用户隐私保护的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大数据模式下的精准营销
于大部份营销者来说,网站再定向(onsite retargeting)是其中一个最重要的营销手段,所谓网站再定向的意思是对曾访问您网站的用户进行宣传,在他们浏览网络时向其展示广告。

此手段之所以重要是因为在第一次接触中真正转化为购买的只占2%,而没有产生购买就离开网站的人群体高达98%。

网站再定向的威力在于它能够帮助你吸引很多的潜在客户,由于这些用户之前已经访问了您的网站一次,这意味着他们确实对您的产品和服务感兴趣。

当你不断向这些用户显示相关的广告,将能够吸引他们回访并完成购买。

理论上,网站再定向技术听起来完美,但执行起来,却可能让很多广告主走入死胡同,因为它只能够覆盖到旧有的访客,而无法接触新访客。

对于广告主来说,网站再定向是一把双刃刀,它虽然能带来绝佳的ROI,却由于覆盖度不足,会在无形中扼杀销售机会。

其实无论是广告数据或购买行为数据,网络都能记录下来,而网络的实时记录特性,让它成为当下广告主实现定位营销的不二之选。

随着技术不断革新,广告主精细化定位的需求也不断得到满足。

在随后的篇幅中,我们会简单地对比几大定位技术,并通过电商案例分析来讨论如何让这些数据技术协同起来,促成客户从浏览广告到掏钱购买的转化,实现广告主的收益最大化。

大数据—定向的基础
网络营销的精细化定位潜力只有在大数据的支持下才能完全发挥出来。

图中的数据金字塔划分出了数据的四个层级。

最底层是广告表现数据,是关于广告位置和其表现的信息。

具体而言,就是广告位的尺寸、在网页的位置、以往的点击率、可见曝光(viewable impr ession)等指标。

再上一层就是受众分类数据。

如今,市场上的数据提供商可以通过用户的线上和线下的行为,来收集到广告受众的兴趣、需求等数据。

这些不会涉及个人真实身份的信息会被分析,并划分为不同的群組,例如性价比追求者、网购达人等。

有了受众分类数据,广告主可以在互联网上按自己的需求和品牌的特性来投放。

受众分类数据的针对性更强,也能带来比单纯依赖广告表现数据更好的点击率与转换率,因为它提供了消费者行为和偏好等宝贵信息。

第三层是搜索动机数据。

搜索再定向是个用于发掘新客户的技术。

它的出现让我们能够发掘出那些很可能会购物的用户,因为他们已经开始搜索与广告主产品相关的信息了。

那些具有高商业价值的数据可以进一步被筛选出来,广告主可以将具有高购买意愿的人们再定向到自己的产品信息上来。

而位居数据金字塔顶端的是站内客户数据,这指的是用户在广告主网站上的用户行为数据,包括了用户浏览的页面,下载的信息,以及加入购物车的商品等数据。

网站用户通常是那些已经了解过品牌并且对公司也熟悉的一群人。

对于广告主来说,金字塔四层的数据都独具价值。

举例而言,广告表现数据是每个广告主都首先会关注的信息,因为这些信息在大多数广告管理平台和广告交易平台都能轻易获得的。

同时,那些与用户需求和偏好相关的数据,能够助力广告主更好地实现精细化营销。

因此,要想针对性地影响消费者购买路径的每个过程,我们就需要把这四层的数据分析整合,才能制定一个更全面的营销方案。

以下,我们将分享一个真实的案例,让广告主明白应当如何打通各层数据,制定覆盖消费者购买路径的精准定位的营销方案。

案例分享
背景:爱点击的客户,国内最知名的电子商务网站之一,希望能提高ROI(投资回报率)和线上交易数量
挑战:客户已经使用了网站再定向技术来实现一个较好的ROI,但是,从再站内定向所带动的交易数量开始有下降的趋势。

优化策略︰利用多重数据的整合,提升转化漏斗每一阶段的人群数目,以提升总转化量
第一步:网站再定向
广告主会发现网站内再定向带来的购买转化量有限,这是因为大部份广告主只会再定向曾经将商品加入购物车的访客。

要想提升网站再定向的效果,最优的方法是根据用户浏览过的页面进行属性分类,并呈现具有针对性的内容。

具体参考下图:
有了全面的追踪和分类,再定向受众数量的基数大幅增加。

在短短两个星期内,交易数量显着提升,尤其是来自老访客的成交量更是大幅提升44%。

第二步:搜索再定向(search retargeting)及购买第三方受众分类数据
一方面,再定向可以有效地召回老访客,增大重复进入网站及购买的可能性。

但同时,广告主还应该考虑怎么能增加新访客,以保证转化漏斗有足够的新增流量。

首先,我们利用搜索关键词捕捉有兴趣的用户,然后储存有关的用户数据,最后,在交易平台上将合适的广告呈现给该用户。

此外,我们还会关注第三方受众分类数据中那些有着同样行为特征的用户信息,整合在一起进行精准投放。

在进行搜索再定向及购买受众数据后,新客户所带来的成交大幅度上升254%,广告效果花费CPA下降29%,同时增加该网站整体的浏览量。

第三步:利用机器学习(Machine Learning)进一步扩大客户的数量
机器学习的强大之处在于,它可以通过帮助广告主找到与自己当前客户行为相似的新用户来进行定位广告投放。

XMO的算法可以对比客户的CRM消费者数据与第三方受众数据,并预测出哪些网络用户会有特定的购买倾向。

在这个案例中,XMO能通过机器学习来不断产生新的受众,平均每周能够细分出一个有着230万样本的人群。

通过将广告投放到我们已有的目标受众群和由机器学习锁定的新目标受众,我们可以看到非常喜人的广告效果,虽然CPA轻微上升14%,但新客户成交量大幅增长26%说明了机器学习能有效地为广告主发掘新客户。

什么是机器学习(Machine Learning)?
(摘自维基百科Wikipedia)
机器学习是人工智能的核心,根据数据或以往的经验,通过设计算法来模拟背后机制和预测行为,并获取新的数据。

这是一个重新组织已有的知识结构使之不断改善自身性能的过程。

研究者可以
通过机器学习来抓取现有数据的特征来预测未知的概率分布,找到新的具有相同特征的数据并加入库中。

机器学习中最关键的就是开发出能智能识别复杂模式并能智能化决策的算法。

观点总结
多渠道数据的整合可以在两方面帮助广告主提高广告表现。

首先,此举可以增加广告受众总数,并会为广告主赢得源源不断的访问量。

第二,多渠道数据整合后的定向还能促进消费者购买漏斗的每一个过程,广告主通常利用网站再定向技术来召回“购物车放弃者”或者流失的老客户,但实际上,广告主应该把注意力放在现有客户和新客户的比例。

总而言之,从搜索动机数据,到受眾分类数据,到最终的机器学习,都能促进购买漏斗的顶端访客数量的增加。

结合上创意的策略定制、精准的位置选择,客户的转化率将会提高,广告主也将挖掘出更多的商机。

相关文档
最新文档