时间序列分析方法2

合集下载

数据分析中的时间序列分析方法

数据分析中的时间序列分析方法

数据分析中的时间序列分析方法时间序列分析是数据分析中常用的一种方法,通过对时间序列数据的分析,可以揭示出数据的趋势、周期性和随机变动等规律,从而为决策提供有力的支持。

本文将介绍几种常用的时间序列分析方法。

一、平滑法(Smoothing)平滑法是一种常见的时间序列分析方法,其主要目的是去除数据中的随机波动,揭示出数据的长期趋势。

平滑法最常用的方法包括简单移动平均法、加权移动平均法和指数平滑法等。

简单移动平均法将一段时间内的数据取平均值,加权移动平均法则对不同时间的数据进行加权计算,而指数平滑法则是根据数据的权重递推计算平滑值。

二、分解法(Decomposition)分解法是将时间序列数据分解为趋势、季节性和随机成分三个部分的方法。

通过分析趋势部分,可以了解数据的长期变化趋势;分析季节性部分,可以揭示出数据中的周期性变动;而随机成分则代表了不可预测的波动。

常用的分解法有加法分解和乘法分解两种方式。

加法分解是将时间序列数据减去趋势和季节性成分,得到的剩余部分就是随机成分;乘法分解则是将时间序列数据除以趋势和季节性成分,得到的结果同样是随机成分。

三、自回归移动平均模型(ARMA)自回归移动平均模型是一种常用的时间序列预测方法,通过对时间序列数据的自相关和移动平均相关进行建模,可以预测未来时间点的值。

ARMA模型是AR模型和MA模型的结合,AR模型用于描述数据的自相关关系,而MA模型则用于描述数据的移动平均相关关系。

ARMA模型的具体建模过程包括模型的阶数选择、参数估计和模型检验等。

四、季节性ARIMA模型(SARIMA)季节性ARIMA模型是在ARIMA模型的基础上加入季节性成分的一种模型。

季节性ARIMA模型主要用于处理具有明显季节性规律的时间序列数据。

与ARIMA模型类似,季节性ARIMA模型也包括模型阶数选择、参数估计和模型检验等步骤,不同的是在建模时需要考虑季节性的影响。

五、灰色系统模型(Grey Model)灰色系统模型是一种特殊的时间序列预测方法,主要适用于数据样本较少或者数据质量较差等情况。

管理数量方法与分析第三章_时间序列分析二

管理数量方法与分析第三章_时间序列分析二

消费价格指数
110
80
消费价格指数 3 期移动平均预测 5期移动平均预测
50
86
88
90
92
94
96
98
00 20
年份
19
19
19
19
19
19
消费价格指数移动平均趋势
19
例题3.3.3
书上P92 例题3.7;
3.3.2
数学模型法
数学模型法 在对原有时间序列进行分析的基 础上,根据其发展变动的特点,寻找一个与之相匹配 的趋势曲线方程,并以此来测定长期趋势变动规律 的方法. 常用的趋势线数学模型 线性趋势与非线性趋势
年份 价格指数 1986 1987 1988 1989 118 1990 103.1 1991 103.4 1992 1993
106.3 107.3 118.8
106.4 114.7
年份
价格指数
1994
1995
1996
1997
102.8
1998
99.2
1999
98.6
2000
100.4
124.1 117.1 108.3
首先将移动平均数作为长期趋势值加以剔除, 再测定季节变动的方法.
具体方法如下
(1)计算移动平均趋势值 T(季度数据采用4项移动 平均 ,月份数据采用 12项移动平均 ),并将其结果进 行“中心化”处理.即将移动平均的结果再进行一 次二项的移动平均,即得出“中心化移动平均 值”(CMA) (2)计算移动平均的比值Y/T=SI,也称为修匀比率
具体做法
Y1 bt1 Y2 bt 2
Y1 Y2 b t1 t 2
Y1 , Y2 分别代表原时间序列实际观察中各部分 的平均数.

如何进行时间序列数据处理(二)

如何进行时间序列数据处理(二)

时间序列数据处理是一项重要的数据分析方法,它在各个领域都有广泛的应用。

通过对时间序列数据的处理,我们可以揭示出数据背后的趋势、周期和季节性等规律,从而为决策提供有力的支持。

下面将从数据预处理、趋势分析、周期分析和季节性分析四个方面来讨论如何进行时间序列数据处理。

一、数据预处理在进行时间序列数据处理之前,我们首先需要对数据进行预处理,以确保数据质量和完整性。

数据预处理的主要步骤包括数据清洗、数据平滑、缺失值处理和异常值处理。

数据清洗是指对原始数据进行去噪和去除异常值等处理,以消除数据中的噪声干扰。

数据平滑是指对数据进行平滑处理,以减少数据的波动性,使数据更加稳定。

缺失值处理是指对数据中的缺失值进行填补或删除,以确保数据的完整性。

异常值处理是指对数据中的异常值进行识别和处理,以排除异常数据对分析结果的干扰。

二、趋势分析趋势分析是指对时间序列数据的长期变化态势进行分析和预测。

通过趋势分析,我们可以揭示数据背后的基本发展趋势和方向。

常用的趋势分析方法包括移动平均法、指数平滑法和回归分析法等。

移动平均法是一种比较简单的趋势分析方法,它通过计算数据的平均值来剔除数据中的随机波动,从而揭示出数据的长期变化趋势。

指数平滑法是一种更为灵活和敏感的趋势分析方法,它通过对数据进行加权平均来揭示出数据的长期变化趋势。

回归分析法是一种基于数学模型的趋势分析方法,它通过建立变量之间的函数关系来描述数据的长期变化趋势。

三、周期分析周期分析是指对时间序列数据中周期性变动的规律性进行分析和预测。

通过周期分析,我们可以揭示数据背后的周期性波动和变动周期。

常用的周期分析方法包括傅里叶分析法、小波分析法和自相关分析法等。

傅里叶分析法是一种基于频谱分析的周期分析方法,它通过将时间序列数据转换到频域上进行分析,从而揭示出数据的周期性波动。

小波分析法是一种更为细致和精确的周期分析方法,它通过将时间序列数据分解为多个频率组成的子序列来揭示数据的周期性波动。

2-2第二章时间序列分析法

2-2第二章时间序列分析法

(1)简单平均法
例2:设某电网2001-2004年个季度的发电量如表2-5所示,试
用简易计算法列出发电量的一次线性趋势方程,再用简单平
均法计算出季节指数,并以次预测2005年该电网全年及各季
度的发电量。
表2-5
年次 季节
2001
2002
一 二 三 四 全年
(1) 1206030 1283687 1211133 1328247 5029097
n
4
b ty 3213072 160653.6
t2
20
y=a+bt=5459952+160653.6t
2005年t=5,代入公式,得到y=6263220 根据表2-5的调整后季节指数,2005年各季度 发电量为: 一季度:6263220×0.9666/4=1513507 二季度:6263220×1.0081/4=1578488 三季度:6263220×0.9768/4=1529478 四季度:6263220×1.0485/4=1641747
2、指数的分类 (1)个体指数:反映某一具体经济现象动态变动的相
对数
(2)综合指数:反映全部经济现象动态变动的相对数
(3)数量指标指数:它是表明经济活动结果数量 多少的指数。
(4)质量指标指数:它是表明经济工作质量好坏 的指数。
(5)定基指数:它是指各个指数都是以某一个固 定时期为基期而进行计算的一系列指数。
季别平均 季节指数
(6) 1319460 1375988 1333301 1431204 1364988
(7) 0.9666 1.0081 0.9768 1.0485 4.0000
调整后季 节指数 (8)
0.9666 1.0081 0.9768 1.0485 4.0000

时间序列分析-王燕-习题4答案

时间序列分析-王燕-习题4答案

6、方法一:趋势拟合法income<-scan('习题4.6数据.txt')ts.plot(income)由时序图可以看出,该序列呈现二次曲线的形状。

于是,我们对该序列进行二次曲线拟合:t<-1:length(income)t2<-t^2z<-lm(income~t+t2)summary(z)lines(z$fitted.values, col=2)方法二:移动平滑法拟合选取N=5income.fil<-filter(income,rep(1/5,5),sides=1)lines(income.fil,col=3)7、(1)milk<-scan('习题4.7数据.txt')ts.plot(milk)从该序列的时序图中,我们看到长期递增趋势和以年为固定周期的季节波动同时作用于该序列,因此我们可以采用乘积模型和加法模型。

在这里以加法模型为例。

z<-scan('4.7.txt')ts.plot(z)z<-ts(z,start=c(1962,1),frequency=12)z.s<-decompose(z,type='additive') //运用加法模型进行分解z.1<-z-z.s$seas //提取其中的季节系数,并在z中减去(因为是加法模//型)该季节系数ts.plot(z.1)lines(z.s$trend,col=3)z.2<-ts(z.1)t<-1:length(z.2)t2<-t^2t3<-t^3r1<-lm(z.2~t)r2<-lm(z.2~t+t2)r3<-lm(z.2~t+t2+t3)summary(r1)summary(r2)summary(r3) ##发现3次拟合效果最佳,故选用三次拟合ts.plot(z.2)lines(r3$fitt,col=4)pt<-(length(z.2)+1) : (length(z.2)+12)pt1<-pt ##预测下一年序列pt2<-pt^2pt3<-pt^3pt<-matrix(c(pt1,pt2,pt3),byrow=T,nrow=3)/*为预测时间的矩阵。

时间序列分析方法

时间序列分析方法

时间序列分析方法时间序列分析是一种常见的统计分析方法,它研究的是定量和定性的数据的动态变化情况,能反映系统潜在变化的趋势和规律,并且能通过预测技术预测未来趋势。

时间序列分析是研究随时间变化的数据可靠性和有效性的重要工具,能够发现其中的趋势和变化规律,从而帮助企业和投资者更全面地了解各种现象,更好地进行决策和行为分析。

时间序列分析可以通过应用不同的统计方法来完成,例如自相关分析、序列回归分析、协整和非线性统计分析等。

1.自相关分析自相关分析(AutoRegressive Analysis)是分析时间序列上延迟自身的统计方法,主要是描述时间序列动态变化趋势和长时间趋势。

它主要利用某一特定时刻以前t个时刻的数据来预测该时刻的值,并用一个具有时间序列模型来计算,如指数移动平均(EMA)和ARMA (Autoregressive Moving Average)等。

自相关分析的优点是简单容易,能够充分发挥时间序列的短期显著特征,缺点是只能反映短期的趋势,无法发现和分析长期的趋势。

2.序列回归序列回归(Sequence Regression)是一种统计学方法,它根据时间序列的趋势,建立一种回归关系,利用某一特定时刻以前n个时刻的数据,预测该时刻的数值,并以此来表示时间序列的趋势,如线性回归、非线性回归等。

序列回归的优点是能够表示时间序列上一些重要的长期特征,缺点是忽略了时间序列上短期的变化特征。

3.协整分析协整分析(Cointegration Analysis)是指时间序列上两个或多个序列的滞后值的长期关系。

它通过检验两个序列的相关度分析系统的同步变化,检测出两个长期运动不相关的非零均值,并利用协整分析模型来预测未来的发展趋势。

协整分析的优点是能够发现时间序列上的长期趋势,缺点是忽略了短期变化特征,而且模型拟合效果不太好。

4.非线性统计分析非线性统计分析(Nonlinear Statistical Analysis)是时间序列分析的一种方法,它可以用来描述一个序列的非线性变化特性,如分析非线性的自相关系数、分析变量的越界规律、预测变量系统整体特性,如混沌理论等。

时间序列数据分析的方法与应用

时间序列数据分析的方法与应用

时间序列数据分析的方法与应用时间序列数据是指按照时间顺序记录的一系列数据,根据时间序列数据可以分析出数据的趋势、周期和季节性等特征。

时间序列数据分析是一种重要的统计方法,广泛应用于经济学、金融学、气象学、交通运输等领域。

时间序列数据的特点是有时间的先后顺序,时间上的变化会对数据产生影响。

时间序列数据分析一般包括两个主要步骤:模型识别与模型估计。

模型识别是指根据时间序列数据的特点来选择适当的模型,而模型估计是指利用已有的时间序列数据对模型中的参数进行估计。

下面主要介绍时间序列数据分析的方法和应用。

一、时间序列数据分析的方法1.时间序列图时间序列图是最简单、直观的分析方法,通过画出时间序列数据随时间的变化趋势,可以直观地观察到数据的趋势、季节性和周期性等信息。

2.平稳性检验平稳性是时间序列数据分析的基本假设,平稳时间序列具有恒定的均值和方差,不随时间而变化。

平稳性检验是为了验证时间序列数据是否平稳,常用的平稳性检验方法有ADF检验和KPSS检验等。

3.拟合ARIMA模型在时间序列数据分析中,ARIMA模型是一种常用的预测模型,它是自回归移动平均模型的组合,用来描述时间序列数据的自相关和滞后相关关系。

通过对已有的时间序列数据进行拟合ARIMA模型,可以得到时间序列数据的参数估计,从而进行未来的预测。

4.季节性调整时间序列数据中常常存在季节性变动,为了剔除季节性影响,可以进行季节性调整。

常用的季节性调整方法有季节性指数法和X-11法等。

5.平滑法平滑法是一种常用的时间序列数据分析方法,通过计算移动平均值或指数平滑法对数据进行平滑处理,可以减小数据的波动性,更好地观察到数据的趋势和周期性。

二、时间序列数据分析的应用1.经济学领域时间序列数据在宏观经济学和微观经济学中有广泛的应用。

例如,对GDP、通胀率、失业率等经济指标进行时间序列数据分析,可以发现经济的周期性波动和长期趋势,为经济政策的制定提供参考。

2.金融学领域金融市场中的价格、交易量等数据都是时间序列数据,通过时间序列数据分析可以揭示金融市场的规律。

应用时间序列分析sas (2)

应用时间序列分析sas (2)

应用时间序列分析 SAS什么是时间序列分析?时间序列分析是一种统计学方法,用于处理连续性的数据,这些数据是按照时间顺序收集的。

它的目的是通过分析过去的数据模式和趋势来预测的趋势。

时间序列分析可用于各种领域,如经济学、气象学、股票市场预测等。

时间序列数据通常具有以下特征:•趋势:随着时间的推移,数据的整体趋势可能会上升或下降。

•季节性:数据可能会显示出固定周期的重复模式,如每年的季节性变化。

•周期性:数据可能会显示出非固定周期的重复模式,如商业周期。

•随机性:数据可能会受到许多随机因素的影响,如市场波动或天气变化。

为什么要使用 SAS 进行时间序列分析?SAS(Statistical Analysis System)是一种功能强大的统计分析和数据管理软件。

它提供了丰富的数据分析和建模工具,特别适合应用于时间序列数据分析。

以下是使用 SAS 进行时间序列分析的一些主要优势:1.多种统计模型:SAS 提供了多种用于时间序列分析的统计模型,包括自回归移动平均模型(ARMA)、自回归积分移动平均模型(ARIMA)、季节性自回归移动平均模型(SARIMA)等。

这些模型可以帮助我们更好地理解时间序列数据的模式和趋势。

2.强大的数据处理能力:SAS 提供了丰富的数据处理功能,包括数据清洗、数据转换、变量选择等。

这些功能可以帮助我们对时间序列数据进行预处理,以便更好地应用统计模型进行分析。

3.可视化工具:SAS 提供了各种可视化工具,如图表和图形,可以帮助我们更直观地理解时间序列数据的模式和趋势。

这些可视化工具还可以帮助我们有效地呈现分析结果。

4.自动化分析:SAS 具有自动化分析的能力,可以帮助我们快速而准确地进行时间序列分析。

通过编写脚本和宏,可以自动化执行重复的分析任务,提高工作效率。

使用 SAS 进行时间序列分析的基本步骤以下是使用 SAS 进行时间序列分析的基本步骤:1.导入数据:,需要将时间序列数据导入 SAS 中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 度量同一对象得到的数据也构成总体,数据之间的差异 是绝对的,因为存在不可消除的随机测量误差;
• 个体表现为某个数值是随机的,但是,它们取得某个数 值的机会是不同的,即它们按一定的规律取值,即它们 的取值与确定的概率相对应。
样本和样本容量
• 总体中抽出若干个个体组成的集体称为样本。样本中 包含的个体的个数称为样本的容量,又称为样本的大 小。
Var(x+y)=Var(x )+Var(y )=Var(x-y) • Var(a+bx)=b2Var(x) • a,b为常数,x,y为两个相互独立的随机变量,则
(ax+by)=a2Var(x)+b2Var(y) • Var(x)=E(x2)-(E(x))2
数学期望与方差的图示
• 数学期望描述随机变量的集中程度,方差描述随机变 量的分散程度。
• 随机变量离均差平方的数学期望,叫随机变量的方差, 记作Var(x)。方差的算术平方根叫标准差。
若X为连续型随机变量,则X的方差以下式给出:
V X xEFra bibliotekx2
x
dx
2 V x Varx E x
xE x
2
E
x x 2
方差的意义
• 离均差和方差都是用来描述离散程度的,即描述X对于 它的期望的偏离程度,这种偏差越大,表明变量的取 值越分散。
• 如果了解总体的一般水平和离散程度,就已经对总体有 了粗略的了解;
• 在很多情况下,了解这两个数字特征还是求出总体分布 的基础和关键。
数学期望的性质
• 如果a、b为常数,则

E(aY+b)=aE(Y)+b
• 如果X、Y为两个随机变量,则

E(X+Y)=E(X)+E(Y)
• 如果g(x)和f(x)分别为X的两个函数,则
• 一般情况下,采用方差来描述离散程度。因为离均差 的和为0,无法体现随机变量的总离散程度。
• 事实上正偏差大亦或负偏差大,同样是离散程度大。 方差中由于有平方,从而消除了正负号的影响,并易 于加总,也易于强调大的偏离程度的突出作用。
方差的性质
• Var(c )=0 • Var(c+x)=Var(x ) • Var(cx)=c2Var(x) • x,y为相互独立的随机变量,则

E[g(X)+f(X)]=E[g(X)]+E[f(X)]
• 如果X、Y是两个独立的随机变量,则

E(X.Y)=E(X).E(Y)
方差
• 如果随机变量X的数学期望E(X)存在,称[X-E(X)]为随 机变量X的离均差。显然,随机变量离均差的数学期望 是0,即
E [ X-E(X) ] = 0
• 是连续型随机变量的方差
时间序列分析方法
确定型时间序列模型的参数估计
教学大纲
• 参数估计的基础知识 • 时间序列平滑方法 • 时间序列模型的回归方法
参数估计的基础知识
总体和个体
研究对象的全体称为总体,组成总体的每个基本单位称为个体。
• 按组成总体的个体的多寡分为:有限总体和无限总体;
• 总体具有同质性:每个个体具有共同的观察特征,而与 其它总体相区别;
• 每一次具体抽样所得的数据,就是n元随机变量的一 个观察值,记为(X1,……,Xn)。
• 通过总体的分布可以把总体和样本连接起来。
样本与所抽自的总体具有相同的分布
• 某一次具体的抽样的具体的数值(y1,……,yn);
• 一次抽样的可能结果,它的每一次观察都是随机地从总体 中(每一个个体有同样的机会被选入)抽取一个,所以它 是一组随机变量(y1,y2,……,yn)
• 每一次抽样都来自同一总体(分布),也就是每一次抽样 都带来了与总体一样的分布信息。所以,样本与所来自的 总体分布相同。
统计量
• 设(y1,y2,……,yn)为一组样本观察值,函数 f( y1,y2,……,yn )若不含有未知参数,则称为 统计量。
• 统计量一般是连续函数。由于样本是随机变量,因而 它的函数也是随机变量,所以,统计量也是随机变量。
• 抽样是按随机原则选取的,即总体中每个个体有同样 的机会被选入样本。
随机变量
根据概率不同而取不同数值的变量称为随机变量RV
• 一个随机变量具有下列特性:可以取许多不同的数值, 取这些数值的概率为p,p满足:0 p 1
• 随机变量以一定的概率取到各种可能值,按其取值情 况随机变量可分为两类:离散型随机变量和连续型随 机变量
• 统计量一般用它来提取由样本带来的总体信息。
样本与总体之间的关系
• 样本是总体的一部分,是对总体随机抽样后得到的集 合
• 对观察者而言,总体是未知的,能够观测到的只是样 本的具体情况
• 我们所要做的就是通过对这些具体样本的情况的研究, 来推知整个总体的情况
对总体的描述——随机变量的数字特征
• 数学期望 • 方差 • 数学期望与方差的图示
研究数字特征的必要性
• 总体是一个随机变量。对总体的描述就是对随机变量的 描述。随机变量的分布是对随机变量最完整的描述
• 求出总体的分布往往不是一件容易的事情;
• 在很多情况下,我们并不需要全面考察随机变量的变化 情况,只需要了解总体的一些综合指标。一般说来,常 常需要了解总体的一般水平和它的离散程度;
– 离散型随机变量的取值是有限的,最多是可列多 个
– 连续型随机变量的取值充满整个数轴或某个区间
离散型随机变量与连续型随机变量




1.0 1.0
y 10 20 30 40 50
离散型随机变量
y 连续型随机变量
总体、随机变量、样本间的联系
• 总体就是一个随机变量,所谓样本就是n个(样本容 量n)相互独立且与总体有相同分布的随机变量 x1,……,xn。
1方差同、期望变大
2期望同、方差变小
5
5
10
5
样本分布的数字特征
• 样本分布函数 • 样本平均数 • 样本方差
样本平均数
• 总体的数字特征:是一个固定不变的数,称为参数; • 样本的数字特征:是随抽样而变化的数,是一个随机变量,称为
统计量。 • 样本平均数的定义
对于样本x1 , x2 , xn ,称
x 1 n
x
n i 1
i
为样本平均数。
• 样本平均数用来描述样本的平均水平。
样本方差和标准差
• 样本方差和标准差的定义
对于样本x1, x2 , xn,称
s x x 2 1 n n 1 i1
i
2
x x 以及s 1 n n 1 i1
相关文档
最新文档