汽车车载网络技术及其应用
车联网技术及其在我国客车行业的应用

车联网技术及其在我国客车行业的应用随着信息化、智能化、网络化的快速发展,车联网技术也日益成熟和普及。
车联网技术是指通过各种先进的信息技术实现车辆与外部环境的信息交互和互动,从而提高车辆的安全性、经济性、舒适性和智能化水平。
下面将从车联网技术的发展现状和在我国客车行业的应用等方面来详细介绍。
一、车联网技术的发展现状目前,全球范围内的车联网技术主要集中于车载终端、车载通信、地理信息系统等方面,整个产业链逐步成形。
其中,车载终端通过集成GPS定位、GSM/GPRS通信、运行状态监测设备等技术,实现车辆远程监控和管理;车载通信则通过无线通信、蓝牙技术等手段,实现车辆与外部信息的交互;地理信息系统则可为驾驶人员提供交通信息和路线规划等服务。
此外,车联网技术还应用在智能互联、车辆诊断、智能导航、道路交通管理等领域。
二、车联网技术在我国客车行业的应用1. 车辆管理方面在车辆管理方面,车联网技术可实现在线监测车辆的行驶情况、车速、油耗、发动机温度等运行数据,并通过云平台进行数据分析与管理,提高车辆的使用效率和经济效益。
同时,车辆管理部门可通过车联网技术,实时获取车辆的位置信息和状态,做到全程监控和管控。
2. 乘客体验方面车载WIFI、多媒体娱乐等技术的应用,可提升乘客的舒适感和体验度。
同时,通过车联网技术实现在线购票、在线服务等功能,也能为乘客带来更好的服务体验。
3. 安全保障方面车辆远程监控、车载视频监控等技术的应用,可提高车辆的安全性和管理效率。
同时,车联网技术还可与相关机构的信息系统进行对接,实现道路交通信息共享,对减少车辆事故、提高道路交通流畅度等方面发挥积极作用。
总之,车联网技术的应用将为我国客车行业带来诸多的机遇和发展空间。
在未来,随着技术的不断进步和完善,车联网技术将逐步普及和应用,实现更加智能和便捷的出行体验。
车联网技术早已不再是概念,在国内已经有很多企业和市场已经开展了很多实践。
那么,车联网技术在市场上的运用和效果如何呢?接下来我们将会结合一些数据来进行分析。
车联网安全技术及应用

车联网安全技术及应用随着人们的生活水平的不断提高和科技的不断发展,汽车作为交通工具的使用也得到了广泛的普及。
同时,随着车辆智能化的逐步推进,车联网技术也逐渐成为人们关注的话题。
然而,车联网技术所带来的便利性也带来了安全性问题。
本文将重点对车联网安全技术及应用进行探讨。
一、车联网技术的定义与特点车联网技术是指通过互联网、物联网、云计算等技术手段实现车辆之间、车辆与道路两旁设施之间、车辆与用户、服务提供商之间的信息互联和智能化服务的一种技术应用。
与传统汽车相比,车联网拥有以下几个特点:1.丰富多彩的应用场景。
车联网技术可以应用于道路交通管理、车联网终端、车联网应用、车联网安全等领域。
在生活中可以实现车辆自主驾驶,实行无人驾驶技术,大大提高汽车的行驶安全性和驾驶的便利性。
2.强大的信息获取与传输功能。
车联网技术通过多种传感器实现了车辆运行状态和驾驶员驾驶状态的实时监控,为驾驶员制定科学安全驾驶方案提供了支持。
3.高效的数据处理与应用能力。
车联网技术将车辆与用户之间的信息传输实时化、智能化,让驾驶员在车辆行驶过程中随时获得所需的信息,大大便利驾驶员行驶过程。
4.保障汽车网络的安全性。
车联网技术通过多种安全措施,对车载系统数据的传输、车辆网络的保护和用户隐私进行保护。
二、车联网安全存在的问题车联网技术的不断推广与发展,也带来了一系列的问题。
车联网技术所存在的安全问题主要体现在以下几个方面:1.数据泄露。
车联网终端设备的数据容易受到攻击和破坏,导致车联网数据泄露。
2.恶意软件攻击。
车载终端设备的操作系统运行在互联网连接环境下,面临着来自网络攻击、恶心软件攻击等多种安全威胁。
3.物理攻击。
车辆物理结构的操作系统若未经特殊加固,易受制于物理攻击,如拦截、篡改车辆上传信息等。
4.车辆主人身份欺诈。
车辆主人身份可以被攻击者欺骗,并将他们的车辆在线操纵。
5.消息伪装。
消息伪装是指消息发送方将信息传达给另一方时假装自己是其他合法的车辆或模拟器。
汽车车载网络系统

汽车车载网络系统随着科技的不断发展和人们对汽车智能化的追求,汽车车载网络系统逐渐成为当今汽车行业的热门话题。
本文将探讨汽车车载网络系统的定义、特点以及对汽车行业和用户的影响。
一、汽车车载网络系统的定义汽车车载网络系统是指以计算机网络技术为基础,将汽车内部各种电子设备和外部网络连接起来,实现数据传输和信息交互的一种系统。
它使得驾驶者和乘车人员可以享受到丰富的多媒体娱乐、导航服务和智能化交通管理等功能。
二、汽车车载网络系统的特点1. 多媒体娱乐功能:汽车车载网络系统可以连接到互联网,通过内置的娱乐系统提供音乐、视频、游戏和电子书等娱乐内容,提升驾乘体验和乘车舒适度。
2. 导航和交通服务:车载网络系统可以实时获取道路交通信息、导航地图和实时天气等数据,为驾驶者提供最佳的导航路线规划和交通状况提示,提高驾驶的安全性和便利性。
3. 远程监控与控制:通过车载网络系统,驾驶者可以远程监控车辆的状态、位置和安全状况,并且可以通过手机应用远程控制车内设备,例如调整座椅、开启空调等。
4. 车辆诊断和维护:车载网络系统可以对汽车进行实时的故障诊断,提醒驾驶者及时维修和保养车辆,增加车辆的可靠性和安全性。
5. 智能交通管理:车载网络系统可以与周围车辆和交通设施进行通信,实现智能化的交通管理和车辆控制,提高道路交通效率和整体安全性。
三、汽车车载网络系统对汽车行业的影响1. 产品升级与差异化竞争:车载网络系统成为了汽车企业产品升级的关键要素,企业需要加大技术投入,提升产品的网络化和智能化水平,以满足消费者对于汽车智能化的需求。
2. 智能网联汽车发展:车载网络系统是智能网联汽车的基础和核心技术之一。
通过车联网技术的应用,汽车可以实现与其他车辆、道路设施和云端服务的无缝连接,为驾驶者和行人提供更加智能化的交通出行体验。
3. 数据安全与隐私保护:车载网络系统的发展也带来了数据安全和隐私保护的重要问题。
汽车企业需要加强数据加密和安全防护措施,以保护用户的个人信息和驾驶数据不被非法获取和使用。
汽车车载网络技术论文

汽车车载网络技术论文车载网络是现代汽车电子技术发展的必然趋势,下面是小编为大家精心推荐的汽车车载网络技术论文,希望能够对您有所帮助。
汽车车载网络技术论文篇一汽车车载网络技术的应用探讨【摘要】车载网络是现代汽车电子技术发展的必然趋势,本文就车载网络形成的必要性及其应用进行了分析,并对车载网络的发展前景做了研究,以便更好地理解新一代汽车电子控制系统。
【关键词】车载网络;车身系统;动力传动系统;安全系统;信息系统1.汽车的网络化在传统汽车中,开关、继电器、电磁仪表等与电子相关的零部件构成了汽车电器,它们之间信息交互是建立在点对点电气信号连接基础上的。
电气信号的种类也局限于模拟信号和开关信号。
实施信号连接的电线束,通常称为线束。
汽车中电器的技术含量和数量是衡量汽车性能的一个重要标志。
汽车电器技术含量和数量的增加,意味着汽车性能的提高。
但汽车电器的增加,同样使汽车电器之间的信息交互桥梁—线束和与其配套的电器接插件数量成倍上升。
在1955年平均一辆汽车所用线束总长度为45米;而到了2002年,一辆汽车所用的平均线束总长度达到了4000米。
线束的增加不但占据了车内的有效空间,增加了装配和维修的难度,提高了整车成本,而且妨碍了整车可靠性的提高。
为了在提高性能与控制线束数量之间寻求一种有效的解决途径,在20世纪80年代初,出现了一种基于数据网络的车内信息交互方式—车载网络。
汽车制造商根据各个地方不同速度的要求,将会制定出几个不同标准的车载网络。
“对于所有的汽车制造商来说,车载网络中的很多运行都涉及到工业标准,” 通用汽车公司的一位研究电子动力传输的专家Dennis Bogden说。
“如果你获得高速的数据是通过链接一个网络,而低速的数据又是链接另一个网络的话,我们就早已经停止了各种各样的技术尝试,因为我们需要的仅仅是一个车载网络。
”2.车载网络的应用车载网络按照应用加以划分,大致可以分为4个系统:车身系统、动力传动系统、安全系统、信息系统。
车联网的通信技术与应用

车联网的通信技术与应用随着物联网技术的发展,车联网在我们的生活中越来越普及。
作为物联网的一种应用,车联网与汽车制造商、互联网企业、车载电子设备制造商之间的合作也越来越密切。
而车联网的通信技术是其实现的基础,本文将介绍车联网的通信技术及其应用。
一、车联网的通信方式目前,车联网主要采用以下三种通信方式:1. 蜂窝网络通信蜂窝网络通信是车联网最主流、最常使用的一种通信方式。
它利用移动通讯网络,将汽车联网设备中的信息传输到服务平台。
蜂窝网络通信技术的优点是信号覆盖广、信号稳定。
但它也有一些缺点,比如需耗费较多的能量,网络延迟可能较高。
2. 车载AD-Hoc网络通信车载AD-Hoc网络通信是指汽车间进行的直接通信,不经过移动通信网络。
这种方式通常用于车辆间的短距离通信,比如车辆在行驶时,可及时交换信息,从而共同排除交通拥堵、提高道路安全性。
它的好处是通信速度快,传输速率高,而且不会受到外界因素的影响。
3. 卫星通信卫星通信主要用于远程地区的车辆通信,如渔船、卡车等。
由于这种车辆可能行驶范围较偏远,无法进行普通的移动通信,所以卫星通信显得尤为重要。
它的优点是信号稳定、覆盖范围广,缺点是传输延迟较高,费用较贵。
二、车联网的应用场景车联网的应用场景与范围非常广泛。
目前,车联网主要被用于以下几种场景:1. 智能导航智能导航是车联网最为普及的一种应用,它能够帮助驾驶者确认当前车辆位置、规划路线、查询交通信息等。
而且它还能针对不同司机的驾驶喜好和经验,为驾驶者提供个性化的导航服务。
2. 智能安全车联网在智能安全方面的应用非常广泛。
通过车载摄像头、雷达等传感器设备,车辆可以实现自动避让、智能制动等功能,大大提高了道路交通的安全性。
3. 智能服务车联网通过服务平台,提供了多种智能化的服务,比如维修保养、远程诊断、预约驾考、充电服务等。
利用车联网,驾驶者可以随时随地获取到所需的服务信息,实现了极大程度的便捷。
三、车联网发展的问题与挑战虽然车联网已经取得了可喜的进展,但在发展过程中也暴露出了一些问题和挑战,比如:1. 安全问题车联网所搭载的数据很多都是隐私信息,比如行驶路线、车主个人信息等。
(论文)浅谈汽车车载网络的应用

浅谈汽车车载网络的应用来源:中国论文下载中心作者:段春艳编辑:studa20摘要:车载网络是现代汽车电子技术发展的必然趋势,本文就车载网络形成的必要性及其应用进行了系统地分析,以便更好地理解新一代汽车电子控制系统。
关键词:车载网络车身系统动力传动系统安全系统信息系统一、引言随着汽车工业日新月异的发展,现代汽车上使用了大量的电子控制装置,许多中高档轿车上采用了十几个甚至二十几个电控单元,而每一个电控单元都需要与相关的多个传感器和执行器发生通讯,并且各控制单元间也需要进行信息交换,如果每项信息都通过各自独立的数据线进行传输,这样会导致电控单元针脚数增加,整个电控系统的线束和插接件也会增加,故障率也会增加等诸多问题。
为了简化线路,提高各电控单元之间的通信速度,降低故障频率,一种新型的数据网络CAN 数据总线应运而生。
CAN总线具有实时性强、传输距离较远、抗电磁干扰能力强;在自动化电子领域的汽车发动机控制部件、传感器、抗滑系统等应用中,CAN的位速率可高达1Mbps。
同时,它可以廉价地用于交通运载工具电气系统中。
二、CAN总线简介CAN,全称为“Controller Area Network”,即控制器局域网,是由ISO定义的串行通讯总线,主要用来实现车载各电控单元之间的信息交换,形成车载网络系统,CAN数据总线又称为CAN—BUS总线。
它具有信息共享,减少了导线数量,大大减轻配线束的重量,控制单元和控制单元插脚最小化,提高可靠性和可维修性等优点。
CAN被设计作为汽车环境中的微控制器通信,在车载各电子控制装置ECU之间交换信息,形成汽车电子控制网络。
其工作采用单片机作为直接控制单元,用于对传感器和执行部件的直接控制。
每个单片机都是控制网络上的一个节点,一辆汽车不管有多少块电控单元,不管信息容量有多大,每块电控单元都只需引出两条导线共同接在节点上,这两条导线就称作数据总线(Bus)。
CAN数据总线中数据传递就像一个电话会议,一个电话用户就相当于控制单元,它将数据“讲入”网络中,其他用户通过网络“接听”数据,对这组数据感兴趣的用户就会利用数据,不感兴趣的用户可以忽略该数据。
车联网技术的应用场景分析

车联网技术的应用场景分析随着智能技术的不断发展和普及,车联网技术也成为了当前汽车行业的一个趋势。
车联网通过将汽车与互联网连接,将信息传递和处理带入到了新的领域。
车联网技术将汽车变得更加智能、更加安全、更加节能,为我们的生活带来了极大的便利。
在这篇文章中,我们将会探讨车联网技术的应用场景,帮助我们更好地了解这一领域。
一、车联网技术的概述首先,我们需要了解什么是车联网技术。
车联网技术是一种将汽车与互联网连接的技术,通过将汽车与互联网以及其他汽车之间建立起联系,发挥出更多的功能。
车联网技术主要通过车载终端设备、通信网络和数据处理平台来实现。
车载终端设备包括车辆识别装置、GPS位置传感器、车辆诊断接口等。
通信网络包括移动通信、卫星通信、互联网等,数据处理平台则包括云计算、大数据、人工智能等技术。
车联网技术可以为我们提供更多的服务和更好的驾驶体验。
例如,车联网技术可以将车辆的位置信息、油耗、维修情况等信息上传到云端,车主可以通过手机等终端设备随时了解车辆的各项情况。
车联网技术还可以为驾驶员提供行车记录、路线规划、车内娱乐等服务。
智能化的车载终端设备还可以通过语音识别、手势识别等方式帮助驾驶员更加安全地驾驶车辆。
二、车联网技术的应用场景车联网技术的应用场景非常广泛,下面我们将介绍一些典型的应用场景。
1.车辆智能驾驶随着人工智能和机器学习等技术的不断发展,自动驾驶汽车已经成为了一种趋势。
自动驾驶车辆可以依靠各种传感器、车载摄像头、雷达等设备对车辆所处的场景进行识别和分析,并做出智能决策。
例如,车辆可以自动感知道路规划、停车、超车等动作,为驾驶员提供更加便利的驾驶体验。
同时,自动驾驶车辆还可以通过智能化的路径规划、速度控制等方式帮助驾驶员更加安全地驾驶车辆。
2.车辆安全保障车联网技术可以通过各种传感器、摄像头等设备对车辆及其周边环境进行监测和控制,从而提供更好的安全保障。
例如,车辆可以通过智能化的交通信号控制、绕路规划、动态路径优化等方式提高驾驶的安全性。
车联网技术的实现原理及其应用

车联网技术的实现原理及其应用现代社会中,汽车已经成为了人们生活中必不可少的交通工具。
而随着科技的不断发展,车联网技术也逐渐兴起,已经成为了汽车行业中一个不可或缺的领域。
那么,车联网技术到底是什么?它的实现原理又是怎样的?本文将从这几个方面来为您详细解读。
一、什么是车联网技术?车联网技术(Connected Car Technology),顾名思义是指汽车和网络之间建立的互联互通的技术系统。
它主要利用车载无线通信网络和移动互联网技术,将汽车与互联网、移动终端设备进行连接,实现互联互通、信息共享以及远程控制等功能。
车联网技术主要由三个部分组成,一是汽车网络技术,包括通信模块、传感器、数据处理器等,二是移动网络技术,包括移动终端、移动网络、软件应用等,三是云技术,包括云服务、云计算、云存储等。
二、车联网技术的实现原理车联网技术的实现原理主要借助了车载终端、智能手机、云平台等技术。
具体而言,车联网技术主要是通过以下方式实现的:1、车载终端车载终端是车辆内部的一个设备,主要负责将汽车的状态信息和用户的行车数据传输到移动终端和云端,包括车速、油量、里程、GPS定位等数据。
车载终端通过自身的通信技术和周围的环境信息交换,能够将行车数据传输到云端,提供给用户进行查询和分析。
2、智能手机智能手机是车联网技术中非常重要的一个部分。
通过一个车载无线网络或者用蓝牙连接到车载终端,智能手机能够获取车辆的实时信息,包括汽车的燃油量、里程数、压力等指标。
智能手机在车辆驾驶中扮演了重要的角色,能够实现远程车辆控制、导航、信息查询等功能。
3、云平台车联网技术的另一个重要组成部分就是云平台,它是一个用户的信息存储和处理中心,负责车辆信息和用户数据的累积、存储和分析,能够提供实时的大数据分析和反馈。
无论用户在哪里,都可以通过云平台对自己的车辆进行控制和查询。
三、车联网技术的应用车联网技术的应用非常广泛,主要包括车辆智能控制、车辆安全、交通管理等方面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汽车车载网络技术及其应用
【摘要】随着信息技术的飞速发展,汽车功能越来越完善,汽车设计也更加人性化。
汽车上的电子设备数量急剧增加,使得各设备之间的连接和通讯越来越困难。
如何解决电气设备的增加与设备间通讯差、传输效率低的矛盾已成为汽车工程师急需解决的问题。
本文介绍了汽车车载网络的分类、主要网络协议及其应用情况,指出了今后汽车网络研究的动向。
【关键词】汽车;车载网络;数据总线;应用
随着汽车电子化程度的不断提高,电子控制单元的大量引入,汽车综合控制系统中大量的控制信号需要实时交换,传统线束已远远不能满足这种需求。
从20世纪80年代起,众多国际知名汽车公司、电子元器件公司及科研机构针对上述问题,在借鉴计算机网络技术和现场总线技术的基础上,开发出各种适用于汽车环境的汽车网络技术。
目前车载网络主要应用在车身控制系统、动力传递系统、信息系统和安全系统等领域。
车载网络系统已成为汽车构造的一个重要组成部分。
1.车载网络技术及类型
1.1车载网络
车载网络是计算机网络技术与自动化控制技术相结合产生的新兴技术领域,它支持汽车向智能化发展。
人们把所有点对点连接映射为一个通信介质(总线),所有电子控制单元(ECU)共享总线、数据以位连续的形式传输,总线网络由此产生。
1.2汽车车载网络的类型
汽车车载网络系统的分类很多,类型也不完全相同。
美国汽车工程协会(SAE)根据数据传输速度的高低,定义了3类网络,其中,A类网络为面向传感器、执行器的低速网络;B类网络为面向数据共享的中速网络;C 类网络为面向实时控制的高速网络,数据传输网络如表1所示。
近年来,汽车行业迅猛发展,世界各大汽车研究所加大了汽车研究力度,汽车厂商加大研究成本推出了许多新的汽车通用协议。
现今的汽车通用协议很难归类到原先的SAE定义的三类网络中。
现今网络大致分为5类,借鉴SAE的分类方式,可将这五类网络称为A、B、C、D、E类网络协议。
1.2.1 A类网络协议
A类网络有多种通信协议,根据目前发展和使用的状况,该类网络的主流协议将是LIN。
LIN是用于连接智能传感器、执行器的低成本串行通信网络。
LIN
采用SCI、UART等通用硬件接口,配以相应的驱动程序,成本低廉,配置灵活,适应面较广,主要包括:电动车窗、对舒适要求高的电动座椅、车内照明系统和车外照明系统,它们的传输速度一般为1Kb/s~20Kb/s。
表2是A类汽车车载网络协议的内容。
1.2.2 B类网络协议
B类网络对实时性要求不太高,主要面向独立模块之间的数据共享。
根据目前发展和使用的状况,该类网络的主流协议是低速CAN、SAEJ1850和V AN。
B 类车载网络协议如表3所示。
1.2.3 C类网络协议
C类网络对实时性要求高,主要面向高速、实时闭环控制的多路传输网,如动力系统。
根据目前发展和使用的状况,该类网络的主流协议是高速CAN (ISO11898-2)、正在发展的TTP/C和FlexRay等协议。
C类车载网络协议如表4所示。
目前,高速CAN仍为C类网络协议的主流,但是,作为一种事件驱动型总线,CAN无法为下一代线控系统(X-By-Wire系统)提供所需的容错功能或带宽,因为X-By-Wire系统实时性和可靠性要求都很高,随着下一代汽车中引进X-By-Wire系统,TTP/C和FlexRay会显示优势。
它们之间的竞争还要持续一段时间,在未来的线控系统中,到底哪一种标准更具有生命力尚难定论。
1.2.4 D类网络协议
D类网络协议传输协议是在对网络传输效率较高的情况下产生的,它的传输速率基本在300Kb/s~500Kb/s,主要面向多媒体通信系统、导航系统等高速率传输模块。
D类车载网络协议如表4所示。
1.2.5 E网络协议
E类网络主要面向乘客的安全系统,主要应用与车辆被动安全领域。
在E类网络应用场合中可能存在2条或多条总线。
2.车载网络技术的应用
2.1CAN的用状况
车身控制使用的CAN网络,以CAN为主网,控制电控发动机、自动变速系统、ABS系统等车身安全模块,并将转速、车速、油温等共享至全车,实现汽车智能化控制。
目前汽车上的网络连接方式主要采用2条CAN,一条用于驱动系统的高速
CAN,速率达到500kb/s。
主要面向实时性要求较高的控制单元,如发动机、自动变速箱、ABS、电动机等;另一条用于车身系统的低速CAN,速率是100kb/s。
主要是针对车身控制的,如车灯、电动车门、电动车窗等信号的采集以及反馈。
其特征是信号多但实时性要求低,因此实现成本较低。
2.2 LIN的应用状况
典型的LIN总线应用是汽车中的联合装配单元,如:电动门锁、方向盘、电动座椅座椅、空调、照明控制系统、湿度传感器等。
对于这些成本比较敏感的单元,LIN可以使那些机械元件如智能传感器、制动器或光敏器件得到较广泛的使用。
这些元件可以很容易的连接到汽车网络中并得到十分方便的维护和服务。
在LIN实现的系统中通常将模拟信号量用数字信号量所替换,这将使总线性能优化。
2.3 局域网的应用状况
目前,国内外中高档轿车,如上海大众帕萨特B5和波罗、一汽大众宝来和奥迪A6、广州本田、东风雪铁龙等车采用了LAN技术。
应用的典型LAN结构包括:ABS电控单元、照明电控单元、电动座椅电控单元、车门电控单元、车载电话电控单元和汽车动态电控单元等。
3.结束语
汽车电控装置的增加提高了轿车的动力性,经济性和舒适性,但是在进行信息传递时,有几个信号就要有几条信号传输线。
在追求经济及实用的今天,粗大的线束不但占用了汽车上的宝贵资源,而且也越来越难以将它安装到隐蔽的位置。
最终的结果就是电控单元端子数增加,线路复杂,故障率增多,汽车可靠性降低,并且使维修更加困难,故推广使用车载网络系统十分必要,而且具有较强的技术推广应用前景。
参考文献:
[1]杨生辉,赫扎特.车载网络技术[J].汽车运用,2010(1):37~38.
[2]曹万科.CAN协议车载网络若干关键理论研究[D].东北大学,2008.
[3]杨宇.汽车车载网络技术的应用探讨[J].科技向导(信息技术),2012(8):328.。