风机阻力计算表

合集下载

风机管道送风阻力计算公式

风机管道送风阻力计算公式

风机管道送风阻力计算公式在工业生产中,风机管道送风是一种常见的工艺,它可以为生产线提供必要的空气流动,以保证生产的正常进行。

然而,风机管道送风过程中会产生一定的阻力,影响送风效果和能耗。

因此,了解风机管道送风阻力的计算公式对于优化送风系统设计和节能降耗具有重要意义。

风机管道送风阻力的计算公式可以通过流体力学的基本原理以及管道流体阻力的公式推导得出。

一般来说,风机管道送风阻力可以分为两部分,管道本身的阻力和管道内流体的阻力。

下面将分别介绍这两部分的计算公式。

1. 管道本身的阻力计算公式。

管道本身的阻力是由管道的长度、直径、粗糙度以及流体的流速等因素决定的。

根据流体力学的基本原理,可以得出管道本身的阻力计算公式如下:f = 0.079 / Re^0.25。

其中,f为管道摩阻系数,Re为雷诺数。

雷诺数的计算公式为:Re = ρ v d / μ。

其中,ρ为流体密度,v为流体速度,d为管道直径,μ为流体的动力粘度。

通过这两个公式,可以计算出管道本身的阻力。

2. 管道内流体的阻力计算公式。

管道内流体的阻力是由流体的黏性和管道内流速等因素决定的。

根据流体力学的基本原理,可以得出管道内流体的阻力计算公式如下:ΔP = 0.5 ρ v^2 f L / d。

其中,ΔP为管道内流体的压降,ρ为流体密度,v为流体速度,f为管道摩阻系数,L为管道长度,d为管道直径。

通过这个公式,可以计算出管道内流体的阻力。

综合以上两部分的阻力计算公式,可以得出风机管道送风阻力的总体计算公式如下:ΔP = ΔP1 + ΔP2。

其中,ΔP1为管道本身的阻力,ΔP2为管道内流体的阻力。

通过这个总体计算公式,可以计算出风机管道送风的总阻力。

在实际应用中,可以根据具体的送风系统参数,利用上述计算公式进行阻力的计算。

通过合理的送风系统设计和优化,可以降低送风系统的阻力,提高送风效果,降低能耗,从而达到节能降耗的目的。

除了上述的基本阻力计算公式外,还有一些特殊情况下的阻力计算公式,比如在风机管道弯头、分支、收缩等部位的阻力计算。

风管计算局部阻力系数

风管计算局部阻力系数

风管计算局部阻力系数风管计算局部阻力系数β.3.2局部阻力系数管件”进风口的局部阻力系数/11安装在境上的风管ι∕DO0,0020.VI0.05o.i O.?>1.0伉500.57山饋I6800.盟IJtt∖,QO v 020-510.52o.⅛0.660.720-72>Q. 05OLSO0*M0*50乩50⅞.5Q O P 500*5C 当风世为矩形时* D为流速当■直径"当这种管件的入口处装有两格时.应进行修正。

边璽较薄时,即c5∕Z)<θ.05时$0 = 1 +边壁较厚时,即<5∕β>0. 05H.⅛tJ = ⅛0 ζt式中a—管件的局部阻力系数,见上表;α——購格的局艇力系数.见管件G-乩/1-2不安在端增上的椎形渐缩喇叭IJ577当断面①处有网格时•按式(8∙3∙2)进行修正。

A-3安装在端壇上的锥形渐缩喇叭口当断面①处有网格时,应按式(8∙3-2)修正。

八4罩形进风口若断面①处有网格时•应按式(8∙3-2)进行修正。

÷5带成不带凸边的渐缩型罩子。

对于矩形罩子• &系指大角。

管件8 岀风口的局部阻力系数 B-I 直管出风口= 1.0当出口断面处有网格时,应按式(8∙3∙2) 进行修正。

B-2锥形出风口,圆风管Dtf(α)0 10 20 30 40 60 100 140 180 0∙02S 0.50 0.47 0.45 0.43D∙41 0∙40 0.42 D∙45 0.50 0∙05 0.50 0> 45 0.41 0.36D∙33 0.30 0.35 0.42 0.50 0-075 0∙50 0.42 0.35 0.30 £>•26 0.23 0.30 0∙40 0.50 0.10 0∙50 0.39 0.32 0.25 X 220∙ 18 0.27 0.38 0.50 0.150.50 0.37 0.27 0.20 叽160.15 0.2S 0.37 0.50 I 0.600.500.270.180.13Xll0.120.230.360.50IlD»C>0.) 0.2 0∙3 0.4 0.S 0.6 0.7 0.8 ».90 2.5 L8 1.5 L4 1.3 1.2 1.2 1.1 1.1 IS1.30.770.600∙480.410.300∙ 290> 280.2578Z*。

风机计算_通风管道阻力计算

风机计算_通风管道阻力计算

通风管道阻力计算风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。

一、摩擦阻力根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:ΔPm=λν2ρl/8Rs对于圆形风管,摩擦阻力计算公式可改写为:ΔPm=λν2ρl/2D圆形风管单位长度的摩擦阻力(比摩阻)为:Rs=λν2ρ/2D以上各式中λ————摩擦阻力系数ν————风管内空气的平均流速,m/s;ρ————空气的密度,Kg/m3;l ————风管长度,mRs————风管的水力半径,m;Rs=f/Pf————管道中充满流体部分的横断面积,m2;P————湿周,在通风、空调系统中既为风管的周长,m;D————圆形风管直径,m。

矩形风管的摩擦阻力计算我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。

再由此求得矩形风管的单位长度摩擦阻力。

当量直径有流速当量直径和流量当量直径两种;流速当量直径:Dv=2ab/(a+b)流量当量直径:DL=1.3(ab)0.625/(a+b)0.25在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。

二、局部阻力当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。

局部阻力按下式计算:Z=ξν2ρ/2ξ————局部阻力系数。

局部阻力在通风、空调系统中占有较大的比例,在设计时应加以注意,为了减小局部阻力,通常采用以下措施:1. 弯头布置管道时,应尽量取直线,减少弯头。

风管阻力计算

风管阻力计算

通风管道阻力计算对于空调通风专业来说,我们最终的目的是让整个系统达到或接近设计及业主的要求。

对于整套空调系统而言主要应该把握几个关键的参数:风量、温度、湿度、洁净度等。

可见无论空调是否对新风做处理,我们送到房间的风量是一定要达到要求。

否则别的就更不用考虑了。

管道内风量主要是由风管内阻力影响的。

风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。

下边为标准工况且没有扰动的情况下的计算,如实际不是标准工况且有扰动需要进行修正。

一:摩擦阻力(沿程阻力)计算摩擦阻力(沿程阻力)计算一:(公式推导法)根据流体力学原理,无论矩形还是圆形风管空气在横断面形状不变的管道内流动时的摩擦阻力(沿程阻力) 按下式计算:ΔPm=λν2ρL/2D以上各式中:ΔPm———摩擦阻力(沿程阻力),Pa。

λ————摩擦阻力系数【λ根据流体不同情况而改变不具有规律性,不可用纯公式计算,只能靠实验得到许多不同状态的半经验公式:其中最常用的公式为:,《K-管壁的当量绝对粗糙度,mm (见表1-1);D-风管当量直径,mm(见一下介绍) ;Re雷诺数判断流体流动状态的准则数,(见表1-1);其实λ一般由莫台图所得,见图】莫台曲线图表1-1 一般通风管道中K、Re、λ的经验取值ν————风管内空气的平均流速,m/s; 【其中ν=Q/F;Q为管内风量m3/S,F为管道断面积M2 ;其中矩形风管F=a×b;圆形风管F=πD2 /4,一般设计也直接选风速见表1-2】表1-2 一般通风系统中常用空气流速(m/s)ρ————空气的密度,Kg/m3;【在压力B0=101.3kPa、温度t0=20℃、一般情况下取ρ=1.205Kg/m3; 见表1-3】L ———风管长度,m 【横断面形状不变的管道长度】D———风管的当量直径,m; 【矩形风管流速当量直径:;流量当量直径:;圆形风管D为风管直径】摩擦阻力(沿程阻力)计算二:(比摩阻法)由以上计算看出计算V和D较容易而计算λ难度很大,所以我们选择查表更合适快捷。

风机计算通风管道阻力计算

风机计算通风管道阻力计算

通风管道阻‎力计算风管内空气‎流动的阻力‎有两种,一种是由于‎空气本身的‎粘滞性及其‎与管壁间的‎摩擦而产生‎的沿程能量‎损失,称为摩擦阻‎力或沿程阻‎力;另一种是空‎气流经风管‎中的管件及‎设备时,由于流速的‎大小和方向‎变化以及产‎生涡流造成‎比较集中的‎能量损失,称为局部阻‎力。

一、摩擦阻力根据流体力‎学原理,空气在横断‎面形状不变‎的管道内流‎动时的摩擦‎阻力按下式‎计算:ΔPm=λν2ρl‎/8Rs对于圆形风‎管,摩擦阻力计‎算公式可改‎写为:ΔPm=λν2ρl‎/2D圆形风管单‎位长度的摩‎擦阻力(比摩阻)为:Rs=λν2ρ/2D‎以上各式中‎λ————摩擦阻力系‎数ν————风管内空气‎的平均流速‎,m/s;ρ————空气的密度‎,Kg/m3;l ————风管长度,mRs————风管的水力‎半径,m;Rs=f/Pf————管道中充满‎流体部分的‎横断面积,m2;P————湿周,在通风、空调系统中‎既为风管的‎周长,m;D————圆形风管直‎径,m。

矩形风管的‎摩擦阻力计‎算我们日常用‎的风阻线图‎是根据圆形‎风管得出的‎,为利用该图‎进行矩形风‎管计算,需先把矩形‎风管断面尺‎寸折算成相‎当的圆形风‎管直径,即折算成当‎量直径。

再由此求得‎矩形风管的‎单位长度摩‎擦阻力。

当量直径有‎流速当量直‎径和流量当‎量直径两种‎;流速当量直‎径:Dv=2ab/(a+b)流量当量直‎径:DL=1.3(ab)0.625/(a+b)0.25在利用风阻‎线图计算是‎,应注意其对‎应关系:采用流速当‎量直径时,必须用矩形‎中的空气流‎速去查出阻‎力;采用流量当‎量直径时,必须用矩形‎风管中的空‎气流量去查‎出阻力。

二、局部阻力当空气流动‎断面变化的‎管件(如各种变径‎管、风管进出口‎、阀门)、流向变化的‎管件(弯头)流量变化的‎管件(如三通、四通、风管的侧面‎送、排风口)都会产生局‎部阻力。

局部阻力按‎下式计算:Z=ξν2ρ/2‎ξ————局部阻力系‎数。

送风系统阻力计算

送风系统阻力计算

Hsk'''=ω 2γ ζ =ζ
4
kq/2
1800×1800, r=1220 ζ 4=Kθ Kcζ
Δ0
P.110
P.113 P.111 P.111 Δ Hj'''=ζ Hsk''' ddl=2ab/(a+b) 〖5〗P.4 〖5〗P.7
Kc Kθ ⑶ ⑷ ⑸ 局部阻力 当量直径 摩擦阻力系数 Δ Hj''' ddl λ
ζ F0 V ω Hsk" Δ Hj2'
/ m2 m3/h m/s Pa pa
DL5145
ω =V/(2× 3600F0) Hsk"=ω γ
2 kq/2
Δ Hj2'=ζ Hsk"
3240×1800~1800×1800
总管面积 支管面积
F1 F2 a2 b2 F2/F1
m
2
m2 m m / m/s m/s m/s ° / 〖5〗P.217 Hsk'=ω 2γ
侧支管截面积
F2 a1 b1 F2/F1
m
2
m m / m/s m/s m/s / / pa P.121 Δ Hj=ζ Hky
主管流速 正支管流速 侧支管流速
ω0 ω1 ω2 ω 2/ω 1
正支管阻力系数 ⑷ ⑸ ① ② ③ ④ ⑹ 7.2 ⑴ ⑵ ⑶ ⑷ ⑸ ⑹ 7.3 局部阻力 摩擦阻力计算 当量直径 摩擦阻力系数 风管长度 摩擦阻力 总阻力 空预器出口汇集风道 流速 热风比重 动压头 当量直径 风管长度 摩擦阻力 热风道二次风分流三通 主管规格 主管截面积 支管规格 支管截面积 主管入口流速 主管入口动压 侧支管流量 支管流速 支管动压

风管阻力计算方法

风管阻力计算方法

PA——空气过滤器、冷热盘管等空调装置的阻力之和(Pa)☆推荐的风管压力损失分配(按送风与回风管之阻力)系统特征风机单一回风在设备附近单一回风有回风管的单一回风在中等回风管系统的多样回风有大规模回风管系统的多样回风送风% 90 80 70 60 50回风% 10 20 30 40 50☆低速风管系统的推荐和最大流速m/s应用场所(空调风管中功能段)住宅公共建筑工厂推荐最大推荐最大推荐最大室外空气入口 2.5 4.0 2.5 4.5 2.5 8.0 空气过滤器 1.3 1.5 1.5 1.8 1.8 1.8 加热排管 2.3 2.5 2.5 3.0 3.0 3.5 冷却排管 2.3 2.3 2.5 2.5 3.0 3.0 风机出口 6.0 8.5 9.0 11.0 10.0 14.0 主风管 4.0 6.0 6.0 8.0 9.0 11.0 支风管(水平) 3.0 5.0 4.0 6.5 5.0 9.0 支风管(垂直) 2.5 4.0 3.5 6.0 4.0 8.0 ☆低速风管系统的最大允许流速m/s应用场所以噪声控制以磨擦阻力控制主风管送风主管回风主管送风支管回风支管住宅 3.0 5.0 4.0 3.0 3.0 公寓、饭店房间 5.0 7.5 6.5 6.0 5.0 办公室、图书馆 6.0 10.0 7.5 8.0 6.1 大礼堂、戏院 4.0 6.5 5.5 5.0 4.0 银行、高级餐厅7.5 10.0 7.5 8.0 6.0 百货店、自助餐厅9.0 12.0 7.5 8.0 6.0 工厂12.5(上限) 15.0 9.0 11.0 7.5一、摩擦阻力根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:ΔPm=λν2ρl/8Rs对于圆形风管,摩擦阻力计算公式可改写为:ΔPm=λν2ρl/2D圆形风管单位长度的摩擦阻力(比摩阻)为:Rs=λν2ρ/2D以上各式中λ———摩擦阻力系数ν———风管内空气的平均流速,m/s;ρ———空气的密度,Kg/m3;l———风管长度,mRs———风管的水力半径,m;Rs=f/Pf———管道中充满流体部分的横断面积,m2;P———湿周,在通风、空调系统中既为风管的周长,m;D———圆形风管直径,m。

风机管道阻力计算

风机管道阻力计算

管道的阻力计算标签:管道阻力计算时间:2010-03-16 23:17:19 点击:23 回帖:0上一篇:婴儿矫正平板足的必要性(图)下一篇:富士变频器一级代理|富士温控表管道的阻力计算风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。

通常直管中以摩擦阻力为主,而弯管以局部阻力阻力为主(图6-1-1)。

图6-1-1 直管与弯管(一)摩擦阻力1.圆形管道摩擦阻力的计算根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:(6-1-1)对于圆形风管,摩擦阻力计算公式可改为:(6-1-2)圆形风管单位长度的摩擦阻力(又称比摩阻)为:(6-1-3)以上各式中λ——摩擦阻力系数;v——风秘内空气的平均流速,m/s;ρ——空气的密度,kg/m3;l——风管长度,m;Rs——风管的水力半径,m;f——管道中充满流体部分的横断面积,m2;P——湿周,在通风、空调系统中即为风管的周长,m;D——圆形风管直径,m。

摩擦阻力系数λ与空气在风管内的流动状态和风管管壁的粗糙度有关。

在通风和空调系统中,薄钢板风管的空气流动状态大多数属于紊流光滑区到粗糙区之间的过渡区。

通常,高速风管的流动状态也处于过渡区。

只有流速很高、表面粗糙的砖、混凝土风管流动状态才属于粗糙区。

计算过渡区摩擦阻力系数的公式很多,下面列出的公式适用范围较大,在目前得到较广泛的采用:(6-1-4)式中K——风管内壁粗糙度,mm;D——风管直径,mm。

进行通风管道的设计时,为了避免烦琐的计算,可根据公式(6-1-3)和(6-1-4)制成各种形式的计算表或线解图,供计算管道阻力时使用。

只要已知流量、管径、流速、阻力四个参数中的任意两个,即可利用线解图求得其余的两个参数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
xx空 调风 系统 最不 利点 水力 计算
一.风管最不利点沿程阻力计
算:
编制:
系统编号
EA-4-4
风管材
1.薄钢板
绝对粗糙度k(mm) 0.15
序号
管段编号
风管断面尺寸 a(mm) b(mm)
当量直径 管段长度
m
m
风量 m3/h
流速 m/s
单位摩擦 阻力 pa/m
摩擦阻力 pa
S.A
1--2 1000 500 0.667
1.防火(排烟)阀 2000 800
0.5
0
0.00
/
弯头
②90度
2000 800
0.4
0
0.00
/
弯头
②90度
2000 800
0.4
0
0.00
/
大小头
2.由大到小
2000 800
0.4
0
0.00
/
弯头 弯头 弯头 风口
②90度
1800 1200 0.4
0
0.00
/
②90度
1800 1200 0.27
1.7
4000 2.22 0.08
0.1
2--3
/
27.5 6500 /
/
/
3--4
/
6.0 6500 /
/
/
4--5
/
9.8 6500 /
/
/
5--6
/
14.0 21500 /
/
/
6--7
/
4.0 21500 /
/
/
7--8
/
30.0 21500 /
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
阻力系数
编制:
绝对粗糙度
风量 m3/h
流速 m/s
0.15
局部阻力 pa
/
/
/
/
/
/
S.A
风口
5.格栅式风口
500 370 13.98
0
0.00
/
三通
2.合流(主风管)
600 300
0.3
0
0.00
/
三通
2.合流(主风管)
/
0
/
/
三通
2.合流(主风管)
/
0
/
/
三通
2.合流(主风管)
/
0
/
/
弯头
②90度
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
///Fra bibliotek//
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
最不利管段沿程阻力小计
0.1
二.风管最不利点局部阻力计算:
系统编号 序号 R.A
EA-4-4 管件编号
风管材料 管件名称
1.薄钢板
尺寸 a(mm) b(mm)
600 300 0.27
0
0.00
/
三通
2.合流(主风管)
/
0
/
/
弯头
②90度
600 300 0.27
0
0.00
/
三通
2.合流(主风管)
/
0
/
/
三通
2.合流(主风管)
/
0
/
/
三通
2.合流(主风管)
/
0
/
/
三通
2.合流(主风管)
/
0
/
/
风阀
1.防火(排烟)阀
600 300
0.5
0
0.00
/
消声器
1.阻抗复合式
0.5
0
0.00
/
三通
1.合流(支风管) 3250 550
0.4
0
0.00
/
三通
1.合流(支风管) 3250 550
0.4
0
0.00
/
风阀
1.防火(排烟)阀 2000 800
0.5
0
0.00
/
弯头
②90度
2000 800
0.4
0
0.00
/
三通
2.合流(主风管) 2000 800
0.3
0
0.00
/
风阀
0
0.00
/
④45度
1800 1200 0.11
0
0.00
/
5.格栅式风口
2000 2000 13.98
0
0.00
/
最不利管段
沿程阻力小
0.0

风系统最不
利点总阻力
0.1
(Pa)
选择风机总 阻力(Pa)
0.1
600 300 0.55
0
0.00
/
大小头
1.由小到大
600 300
0.3
0
0.00
/
静压箱
突扩
600 300
0.4
0
0.00
/
静压箱
突缩
600 300 0.35
0
0.00
/
大小头
1.由小到大
600 300
0.3
0
0.00
/
风阀
5.止回阀
600 300
0.5
0
0.00
/
风阀
1.防火(排烟)阀
600 300
相关文档
最新文档