桁架结构分析
桁架机械手结构和设计分析

桁架机械手结构和设计分析桁架机械手是一种利用桁架结构设计的机械手臂,具有轻量化、高强度和高稳定性的特点,被广泛应用于工业机器人、航空航天、汽车制造等领域。
在本文中,我们将对桁架机械手的结构和设计进行分析,探讨其优点和应用前景。
一、桁架机械手结构分析1. 桁架结构桁架结构是由多个横竖交错的杆件和节点连接构成的空间结构,能够承受较大的受力,并且具有较高的刚度和稳定性。
采用桁架结构设计的机械手臂能够具有较高的承载能力和较好的运动稳定性。
2. 关节连接桁架机械手的关节连接采用智能化设计,可以实现多自由度的运动,并且具有较大的工作空间。
关节连接的结构设计也决定了机械手的精度和灵活性,因此需要进行精细的设计和优化。
3. 轨迹规划桁架机械手的轨迹规划采用先进的控制算法和传感器技术,可以实现高精度、高速度的运动控制,并且能够适应复杂的工作环境和任务需求。
桁架机械手在实际生产中具有较大的应用前景。
1. 轻量化设计桁架机械手的设计采用轻量化材料和结构设计,能够实现机械手的轻盈、高强度和高稳定性。
轻量化设计也能够减小机械手的能耗和成本,提高其工作效率和经济性。
2. 结构优化3. 控制系统三、桁架机械手的应用前景1. 工业机器人2. 航空航天桁架机械手在航空航天领域具有较大的应用前景,能够实现飞机部件的装配和维护工作,提高生产效率和质量。
桁架机械手也能够适应复杂的空间环境和任务需求,因此具有较大的市场潜力。
3. 汽车制造桁架机械手具有较高的优点和应用前景,能够满足复杂生产环境和任务需求,因此在工业自动化领域具有较大的市场需求和发展空间。
相信随着科技的不断进步和创新,桁架机械手将会在未来的工业自动化中发挥越来越重要的作用。
桁架结构的受力分析与计算

桁架结构的受力分析与计算桁架结构是一种由各种杆件连接而成的稳定结构,被广泛应用于建筑、桥梁、航天器等领域。
在设计和建造桁架结构时,受力分析和计算是至关重要的步骤。
本文将介绍桁架结构的受力分析方法,并给出相应的计算步骤。
一、桁架结构的受力分析桁架结构由杆件和节点组成,杆件通常是直线段或曲线段,节点是连接杆件的固定点。
在受力分析中,需要确定每个节点和杆件的受力情况。
1. 节点的受力分析节点是桁架结构中的重要连接点,它承受着来自相邻杆件的受力。
对于单个节点,可以利用力平衡原理来进行受力分析。
首先,在水平方向上,所有受力要素的水平分力之和应等于零;其次,在竖直方向上,所有受力要素的竖直分力之和也应等于零。
通过解这两个方程,可以求得节点的受力。
2. 杆件的受力分析杆件是桁架结构中起支撑作用的构件,它们承受着来自外力和节点的受力。
在受力分析中,需要确定每个杆件的受力大小和方向。
根据静力平衡原理,杆件上的受力要满足力的平衡条件,即合力为零。
可以利用力的合成和分解的原理来进行受力分析,将受力分解为水平方向和竖直方向的分力。
通过解这些方程,可以求得杆件的受力。
二、桁架结构的受力计算在桁架结构的受力计算中,需要根据受力分析的结果来进行具体的计算。
主要涉及到以下几个方面。
1. 材料的选择和强度计算桁架结构中的杆件通常采用钢材、铝材等材料制作。
在进行强度计算时,需要考虑材料的强度和安全系数。
根据结构所受力的种类(拉力、压力或剪力),选择适当的强度计算公式和安全系数。
2. 荷载的计算桁架结构在使用过程中会承受各种形式的荷载,如静荷载、动荷载、地震荷载等。
荷载的计算是桁架结构设计的重要一环。
需要根据设计要求和建筑规范,合理计算各种荷载的大小和作用方向,以确定结构的强度和稳定性。
3. 结构的稳定性计算桁架结构在承受荷载作用时,需要保持结构的稳定性,避免产生倾覆和失稳等安全隐患。
在进行结构的稳定性计算时,需要考虑结构的整体平衡和节段局部稳定性问题。
第三章 桁架结构解析

第三章桁架结构第一节桁架结构的特点由简支梁发展成为桁架的过程――简支梁在均布荷载作用下,沿梁轴线弯曲,剪力的分布及截面正应力的分布(分为受压区和受拉区两个三角形)在中和轴处为零。
截面上下边缘处的正应力最大,随着跨度的增大,梁高增加。
根据正应力的分布特点,要节省材料,减轻自重,先形成工字型梁――继续挖空成空腹形式――最后,中间剩下几根截面很小的连杆时,就发展成为“桁架”。
由此可见,桁架是从梁式结构发展产生出来的。
桁架的实质是利用梁的截面几何特征的几何因素――构件截面的惯性矩I增大的同时,截面面积反而可以减小。
梁结构的梁高加大时,自重随之增加很多,桁架结构无此弊端。
Z在实际工作中,由于其自重轻,用料经济,易于构成各种外形适应不同的用途,桁架成为一种应用极广泛的形式,除经常用于屋盖结构外,(我们常说的屋架),还用于皮带运输机栈桥、塔架和桥梁等。
(如图示各种组合屋架、武汉长江大桥采用的桁架形式等)一.桁架结构计算的假定(基本特点)1.杆件与杆件之间相连接的节点均为铰接节点2.所有杆件的轴线都在同一平面内。
(这一平面称为桁架的中心平面)3.所有外力(包括荷载与支座反力)都作用在桁架的中心平面内,且集中作用在节点上实际桁架与上述假定是有差别的,尤其是节点铰接的假定。
例如:木桁架常常为榫接,它与铰接的假定是接近的。
而钢桁架有些杆件在节点处是连续的,腹杆采用的是节点板焊接或铆接,节点具有一定的刚性;混凝土节点构造往往采用刚性连接。
尽管如此,科学试验和工程实践均表明,上述不符合假定的因素对桁架影响很小,只要采取适当的构造措施,就能保证这些因素产生的应力对结构和杆件不会造成危害。
故桁架在计算中仍按“节点铰接”处理。
假定3 “集中力作用在节点上”是保证桁架各杆件仅承受轴向力的前提。
对于桁架上直接搁置屋面板或屋架下弦承受吊顶荷载时,当上下弦间有荷载作用时,则会使原来杆件的受力形式发生变化(纯压、纯拉变为压弯、拉弯构件),从而使得上、下弦截面尺寸变大,材料用料增加。
基本桁架结构分析

基本桁架结构分析桁架结构是一种由直线构成的基本结构,它由若干个直线杆件和节点连接而成。
桁架结构广泛应用于航空航天、桥梁、建筑以及其他工程领域,因其轻巧、刚性好、承载能力强而备受青睐。
本文将就基本桁架结构进行分析,探讨其基本原理和应用。
一、基本桁架结构的构成基本桁架结构主要由杆件和节点构成。
杆件可以是刚性杆,也可以是弹性杆。
节点则是将杆件连接在一起的关键部分。
杆件和节点的连接关系直接影响整个桁架结构的刚度和稳定性。
二、基本桁架结构的力学原理基本桁架结构在受力作用下分为拉杆和压杆两种杆件。
拉杆主要受拉力作用,而压杆主要受压力作用。
在实际应用中,桁架结构往往通过连接节点的方式形成稳定的结构。
当外力作用于基本桁架结构时,结构的内力分布会发生变化,从而达到平衡状态。
三、基本桁架结构的应用1. 桥梁结构:基本桁架结构被广泛应用于桥梁建设中。
它的轻巧结构和刚性特点使得桁架桥成为常见的选择。
桁架桥的杆件和节点通过焊接或螺栓连接,能够承受大跨度的荷载并实现结构的稳定。
2. 建筑结构:在一些大跨度建筑物的设计中,基本桁架结构也得到了广泛应用。
桁架结构能够减少建筑物的自重,提供更大的内部空间,并满足建筑物的稳定性要求。
3. 航天航空领域:基本桁架结构在航天航空领域中应用广泛。
航天器或飞机的机身结构常采用桁架结构,这种结构不仅能够满足刚性和轻量化要求,还能够承受复杂的外部荷载。
四、基本桁架结构的优缺点基本桁架结构的优点主要体现在其轻量化、刚性好、承载能力强以及施工方便等方面。
其缺点则在于构造复杂、设计要求高,并且对连接节点和焊接工艺有较高的要求。
五、基本桁架结构的设计方法1. 确定结构载荷:在设计桁架结构之前,需要明确结构所受的荷载类型和作用方向,包括静力荷载、动力荷载等。
2. 选择杆件和节点:根据实际需求和结构要求,选择合适的杆件和节点材料,并确定其形状和尺寸。
3. 分析结构力学特性:通过强度和刚度分析,计算各个杆件和节点的内力分布及变形情况,并进行优化设计。
钢桁架结构稳定性分析

钢桁架结构稳定性分析钢桁架结构是一种常见的建筑结构,具有较高的强度和稳定性。
然而,在设计和施工过程中,必须对钢桁架结构的稳定性进行全面的分析,以确保其能够承受外部荷载和维持长期的结构安全。
1. 引言钢桁架结构在建筑和桥梁领域被广泛使用,因其高度稳定和较轻的自重而备受青睐。
然而,当受到外力作用时,钢桁架结构的稳定性可能会受到影响。
为了确保结构的安全性,需要对钢桁架结构的稳定性进行全面的分析。
2. 钢桁架结构的力学特性钢桁架结构采用桁架原理,通过连接各个节点和构件来形成稳定的结构。
在分析钢桁架结构的稳定性之前,首先需要了解其力学特性,包括受力分布、节点之间的连接方式和构件的材料力学性质等。
3. 稳定性分析的基本原理稳定性分析是评估结构在外力作用下是否会出现失稳或破坏的过程。
对于钢桁架结构的稳定性分析,可以采用静力学方法或有限元分析方法。
静力学方法是一种基于力的平衡和杆件刚度的简化方法,而有限元分析方法则可以更准确地模拟结构的力学特性。
4. 钢桁架结构的稳定性失效模式钢桁架结构在受力作用下可能会出现不同的稳定性失效模式,如屈曲失稳、扭曲失稳和屈服失稳等。
屈曲失稳是指结构发生整体屈曲,而扭曲失稳则是指结构在扭矩作用下发生局部扭曲。
屈服失稳是指构件的材料达到屈服极限。
5. 稳定性分析的计算方法为了评估钢桁架结构的稳定性,可以采用不同的计算方法,如强度设计法、极限状态设计法和可靠性设计法等。
强度设计法基于结构材料的强度和荷载的大小来评估结构的稳定性。
极限状态设计法和可靠性设计法则考虑到荷载变化和结构参数的不确定性。
6. 影响钢桁架结构稳定性的因素钢桁架结构的稳定性受到多种因素的影响,包括结构几何形状、材料强度、结构连接方式和荷载的大小和作用方式等。
其中,结构几何形状对结构的稳定性影响最为显著。
7. 稳定性分析的案例研究为了更好地理解钢桁架结构的稳定性分析,可以通过实际案例进行研究。
例如,可以对某个具体的钢桁架结构进行模拟计算,评估其在不同荷载作用下的稳定性,并通过结构优化设计来提高其稳定性。
4典型结构有限元分析

4典型结构有限元分析结构有限元分析是一种重要的工程分析方法,用于确定和评估各种结构的力学行为。
桁架和梁结构是常见的结构形式之一,下面将介绍这两种结构的有限元分析方法及其应用。
1.桁架结构有限元分析桁架结构是由桁架梁和节点组成的三维刚性体系,广泛应用于大跨度建筑和桥梁等工程中。
桁架结构的有限元分析方法有以下几个步骤:步骤一:建立有限元模型首先,需要建立桁架结构的有限元模型,可以使用各种商用有限元软件。
桁架梁可以用梁单元进行建模,节点可以用节点单元进行建模。
根据实际情况,可以选择不同的单元类型和网格划分方法。
步骤二:施加边界条件和荷载根据实际情况,需要给模型施加合适的边界条件和荷载。
边界条件包括固支、铰支和滑移支等。
荷载可以是点荷载、线荷载或面荷载。
步骤三:求解有限元方程根据桁架结构的几何和力学特性,可以得到有限元方程。
然后,利用数值计算方法求解有限元方程,确定桁架结构的位移、应力和反力等。
步骤四:分析和评估结果分析和评估有限元分析结果,可以得到桁架结构的应力分布、变形情况和稳定性等。
根据评估结果,可以进行优化设计和加强措施的制定。
2.梁结构有限元分析梁结构是由梁和支座组成的一维刚性体系,广泛应用于各种工程中,如建筑、桥梁和机械等。
梁结构的有限元分析方法有以下几个步骤:步骤一:建立有限元模型首先,需要建立梁结构的有限元模型,可以使用各种商用有限元软件。
梁可以用梁单元进行建模,支座可以用支座单元进行建模。
根据实际情况,可以选择不同的单元类型和网格划分方法。
步骤二:施加边界条件和荷载根据实际情况,需要给模型施加合适的边界条件和荷载。
边界条件包括固支、铰支和滑移支等。
荷载可以是点荷载、线荷载或面荷载。
步骤三:求解有限元方程根据梁结构的几何和力学特性,可以得到有限元方程。
然后,利用数值计算方法求解有限元方程,确定梁结构的位移、应力和反力等。
步骤四:分析和评估结果分析和评估有限元分析结果,可以得到梁结构的应力分布、变形情况和稳定性等。
桁架结构分析

2013-2014年度学生研究计划(SRP)“桁架结构模型结构优化及试验”结题论文姓名骆辉军学院土木与交通学院专业土木工程(卓越全英班)学号 201230221450指导老师范学明时间 2014年10月一.实验背景随着科学技术的发展和计算机软件技术的应用,应用相关的软件来进行桁架结构模型的优化已经可以成为现实。
桁架结构中的桁架指的是桁架梁,是格构化的一种梁式结构。
桁架结构常用于大跨度的厂房、展览馆、体育馆和桥梁等公共建筑中。
由于大多用于建筑的屋盖结构,桁架通常也被称作屋架。
在桥梁结构中,桁架结构也应用广泛。
只受结点荷载作用的等直杆的理想铰结体系称桁架结构。
它是由一些杆轴交于一点的工程结构抽象简化而成的。
合理地设计桁架结构,就能够最大限度地利用材料的强度,起到减轻桁架重量,节省材料的目的,从而也能为工程实际应用提供相关的依据和参考。
但桁架的结构模型形式千变万化,仅仅从理论上分析桁架的受力特征和破坏特征,而不进行相应的试验研究是无法取得实质性的进展的。
正是基于这样一个原则,我们需要在理论研究的基础上通过试验来优化桁架的结构模型,在各式各样的桁架结构中挑选出受力合理的结构,最大限度地使材料的强度得以利用。
研究桁架结构模型优化的意义桁架结构中,各杆件受力均以单向拉、压为主,通过对上下弦杆和腹杆的合理布置,可适应结构内部的弯矩和剪力分布。
由于水平方向的拉、压内力实现了自身平衡,整个结构不对支座产生水平推力。
结构布置灵活,应用范围非常广。
桁架梁和实腹梁(即我们一般所见的梁)相比,在抗弯方面,由于将受拉与受压的截面集中布置在上下两端,增大了内力臂,使得以同样的材料用量,实现了更大的抗弯强度。
在抗剪方面,通过合理布置腹杆,能够将剪力逐步传递给支座。
这样无论是抗弯还是抗剪,桁架结构都能够使材料强度得到充分发挥,从而适用于各种跨度的建筑屋盖结构。
更重要的意义还在于,它将横弯作用下的实腹梁内部复杂的应力状态转化为桁架杆件内简单的拉压应力状态,使我们能够直观地了解力的分布和传递,便于结构的变化和组合。
平面桁架结构的有限元分析

平面桁架结构的有限元分析平面桁架结构是一种经常在建筑和工程领域中使用的结构形式。
它由直杆组成,连接在节点上,形成一个稳定的平面结构。
平面桁架结构的设计和分析需要使用有限元分析方法来确定结构的受力状态和稳定性。
本文将介绍平面桁架结构的有限元分析方法,包括模型建立、加载条件、应力和变形分析等。
首先,建立平面桁架结构的有限元模型。
模型应包括杆件和节点两个基本元素。
杆件是结构的主要受力元素,节点是杆件的连接点。
通过连接节点和杆件,可以构建起整个桁架结构。
在有限元模型中,每个节点被赋予一个坐标,每个杆件的长度和截面积也需要定义。
通过这些信息,可以建立结构的有限元模型。
加载条件是进行有限元分析的第二个关键步骤。
加载条件包括结构所承受的外部力和约束条件。
外部力是指作用于结构上的力,包括重力、风力、地震力等。
约束条件是指限制结构自由运动的条件,例如固定节点或滑动支座等。
在有限元分析中,将这些加载条件应用到有限元模型中,以模拟真实结构的受力情况。
然后进行应力和变形分析。
在有限元分析中,结构的应力分布和变形情况可以通过求解有限元方程来得到。
有限元方程是由结构的力平衡和材料的应力-应变关系所组成的方程组。
通过求解有限元方程,可以计算出结构中每个节点的应力和变形情况。
这些结果可以用来评估结构的安全性和稳定性。
在进行有限元分析时,需要注意一些细节。
首先,选择合适的材料模型和参数。
不同的材料具有不同的力学特性,例如弹性模量、屈服强度等。
选择适当的材料模型和参数,以获得准确的分析结果。
其次,进行网格划分和单元类型选择。
将结构划分为小单元,并选择适当的单元类型,以确保每个单元的形状和大小适合结构的几何形状。
最后,进行后处理和结果分析。
得到应力和变形结果后,可以进行结果的可视化和分析,以评估结构的性能。
总之,平面桁架结构的有限元分析是一种有效的工具,可以用于评估结构的受力状态和稳定性。
通过合适的模型建立、加载条件选择以及应力和变形分析等步骤,可以得到准确的分析结果,为结构的设计和优化提供有力支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013-2014年度学生研究计划(SRP)“桁架结构模型结构优化及试验”结题论文姓名骆辉军学院土木与交通学院专业土木工程(卓越全英班)学号 201230221450指导老师范学明时间 2014年10月一.实验背景随着科学技术的发展和计算机软件技术的应用,应用相关的软件来进行桁架结构模型的优化已经可以成为现实。
桁架结构中的桁架指的是桁架梁,是格构化的一种梁式结构。
桁架结构常用于大跨度的厂房、展览馆、体育馆和桥梁等公共建筑中。
由于大多用于建筑的屋盖结构,桁架通常也被称作屋架。
在桥梁结构中,桁架结构也应用广泛。
只受结点荷载作用的等直杆的理想铰结体系称桁架结构。
它是由一些杆轴交于一点的工程结构抽象简化而成的。
合理地设计桁架结构,就能够最大限度地利用材料的强度,起到减轻桁架重量,节省材料的目的,从而也能为工程实际应用提供相关的依据和参考。
但桁架的结构模型形式千变万化,仅仅从理论上分析桁架的受力特征和破坏特征,而不进行相应的试验研究是无法取得实质性的进展的。
正是基于这样一个原则,我们需要在理论研究的基础上通过试验来优化桁架的结构模型,在各式各样的桁架结构中挑选出受力合理的结构,最大限度地使材料的强度得以利用。
研究桁架结构模型优化的意义桁架结构中,各杆件受力均以单向拉、压为主,通过对上下弦杆和腹杆的合理布置,可适应结构内部的弯矩和剪力分布。
由于水平方向的拉、压内力实现了自身平衡,整个结构不对支座产生水平推力。
结构布置灵活,应用范围非常广。
桁架梁和实腹梁(即我们一般所见的梁)相比,在抗弯方面,由于将受拉与受压的截面集中布置在上下两端,增大了内力臂,使得以同样的材料用量,实现了更大的抗弯强度。
在抗剪方面,通过合理布置腹杆,能够将剪力逐步传递给支座。
这样无论是抗弯还是抗剪,桁架结构都能够使材料强度得到充分发挥,从而适用于各种跨度的建筑屋盖结构。
更重要的意义还在于,它将横弯作用下的实腹梁内部复杂的应力状态转化为桁架杆件内简单的拉压应力状态,使我们能够直观地了解力的分布和传递,便于结构的变化和组合。
由于杆件之间的互相支撑作用,且刚度大,整体性好,抗震能力强,所以能够承受来自多个方向的荷载。
而且具有结构简单,运输方便等优点,其应用于各个工程领域。
古代木构建筑,而今的2008北京奥运会的主体育馆鸟巢;太空中的大型可展天线,地面上的跨海大桥,随处都可见到桁架的身影。
由于桁架的结构模型千变万化,不同的桁架结构形式对桥梁或者屋架的受力特征有很大的影响,因而,研究桁架结构模型的优化具有重大的意义。
二.实验的相关资料1.桁架结构的常见构造方式桁架指的是桁架梁,是格构化的一种梁式结构,即一种由杆件彼此在两端用铰链连接而成的结构。
桁架由直杆组成的一般具有三角形单元的平面或空间结构,桁架杆件主要承受轴向拉力或压力,从而能充分利用材料的强度,在跨度较大时可比实腹梁节省材料,减轻自重和增大刚度。
由于大多用于建筑的屋盖结构,桁架通常也被称作屋架。
桁架结构常用于大跨度的厂房、展览馆、体育馆和桥梁等公共建筑中。
其主要结构特点在于,各杆件受力均以单向拉、压为主,通过对上下弦杆和腹杆的合理布置,可适应结构内部的弯矩和剪力分布。
由于水平方向的拉、压内力实现了自身平衡,整个结构不对支座产生水平推力。
结构布置灵活,应用范围非常广。
桁架梁和实腹梁(即我们一般所见的梁)相比,在抗弯方面,由于将受拉与受压的截面集中布置在上下两端,增大了内力臂,使得以同样的材料用量,实现了更大的抗弯强度。
在抗剪方面,通过合理布置腹杆,能够将剪力逐步传递给支座。
这样无论是抗弯还是抗剪,桁架结构都能够使材料强度得到充分发挥,从而适用于各种跨度的建筑屋盖结构。
从力学方面分析,桁架外形与简支梁的弯矩图相似时,上下弦杆的轴力分布均匀,腹杆轴力小,用料最省;从材料与制造方面分析,木桁架做成三角形,钢桁架采用梯形或平行弦形,钢筋混凝土与预应力混凝土桁架为多边形或梯形为宜。
桁架的高度与跨度之比,通常,立体桁架为1/12~1/16,立体拱架为1/20~1/30,张拉立体拱架为1/30~1/50,在设计手册和规范中均有具体规定。
桁架的使用范围很广,在选择桁架形式时应综合考虑桁架的用途、材料和支承方式、施工条件,其最佳形式的选择原则是在满足使用要求前提下,力求制造和安装所用的材料和劳动量为最小。
三角形桁架在沿跨度均匀分布的节点荷载下,上下弦杆的轴力在端点处最大,向跨中逐渐减少;腹杆的轴力则相反。
三角形桁架由于弦杆内力差别较大,材料消耗不够合理,多用于瓦屋面的屋架中。
梯形桁架和三角形桁架相比,杆件受力情况有所改善,而且用于屋架中可以更容易满足某些工业厂房的工艺要求。
如果梯形桁架的上、下弦平行就是平行弦桁架,杆件受力情况较梯形略差,但腹杆类型大为减少,多用于桥梁和栈桥中。
多边形桁架也称折线形桁架。
上弦节点位于二次抛物线上,如上弦呈拱形可减少节间荷载产生的弯矩,但制造较为复杂。
在均布荷载作用下,桁架外形和简支梁的弯矩图形相似,因而上下弦轴力分布均匀,腹杆轴力较小,用料最省,是工程中常用的一种桁架形式。
空腹桁架基本取用多边形桁架的外形,无斜腹杆,仅以竖腹杆和上下弦相连接。
杆件的轴力分布和多边形桁架相似,但在不对称荷载作用下杆端弯矩值变化较大。
优点是在节点相交会的杆件较少,施工制造方便。
桁式组合拱桥是由两个悬臂桁架支承一个桥梁拱组成,它除保持桁式拱结构的用料省、跨越能力大、竖向刚度大等特点外,更具有桁梁的特性和可以采用无支架悬臂安装的方法施工,使桁式组合拱桥具有一定的竞争能力。
我国贵州省建造桁式组合拱桥数量最多,国内较知名的有以下几座:(1)贵州省剑河大桥,桥梁跨径为150m,桥面宽为11m,建于1985年;(2)四川省牛佛大桥,桥梁跨径为160m,桥面宽为11m,建于1990年;(3)贵州省江界河大桥,桥梁跨径为330m,桥面宽为12m,建于1995年。
贵州省剑河大桥2.桁架结构常见材料的截面形式、强度等材料性能参数桁架的几种常用材料:1.钢材:而通常用于桁架中的钢材主要有两种:①碳素结构钢:强度:含碳量约0.05%~0.70%,个别可高达0.90%。
可分为普通碳素结构钢和优质碳素结构钢两类。
而用于结构工程中常用的是普通碳素钢。
一般Q195、Q215、Q235钢碳的质量分数低,因为焊接性能好,塑性、韧性好,有一定强度,常轧制成薄板、钢筋、焊接钢管等,用于桥梁、建筑等结构。
而“Q”表示钢材的屈服点。
②低合金钢:强度:典型碳素结构钢的最小屈服点为235MPa。
而典型低合金高强度钢的最小屈服点为345MPa。
因此,根据其屈服点的比例关系,低合金高强度钢的使用允许应力比碳素结构钢高1.4倍。
与碳素结构钢相比,使用低合金高强度钢可以减小结构件的尺寸,使重量减轻。
必须注意,对于可能出现弯曲的构件,其许用应力必须修正,以达到保证结构的坚固性。
有时用低合金高强度钢取代碳素结构钢但不改变断面尺寸,其唯一的目的是在不增加重量的情况下而得到强度更高更耐久的结构;成形性能:具有适当的成形性能,容易地和经济地进行热或冷加工以制成工程结构的各种部件;2.钢筋混凝土:由于混凝土的抗拉强度远低于抗压强度,因而素混凝土结构不能用于受有拉应力的梁和板。
如果在混凝土梁、板的受拉区内配置钢筋,则混凝土开裂后的拉力即可由钢筋承担,这样就可充分发挥混凝土抗压强度较高和钢筋抗拉强度较高的优势,共同抵抗外力的作用,提高混凝土梁、板的承载能力。
钢筋混凝土结构钢筋与混凝土两种不同性质的材料能有效地共同工作,是由于混凝土硬化后混凝土与钢筋之间产生了粘结力。
它由分子力(胶合力)、摩阻力和机械咬合力三部分组成。
其中起决定性作用的是机械咬合力,约占总粘结力的一半以上。
将光面钢筋的端部作成弯钩,及将钢筋焊接成钢筋骨架和网片,均可增强钢筋与混凝土之间的粘结力。
为保证钢筋与混凝土之间的可靠粘结和防止钢筋被锈蚀,钢筋周围须具有15~30毫米厚的混凝土保护层。
若结构处于有侵蚀性介质的环境,保护层厚度还要加大。
3.梁和板等受弯构件中受拉力的钢筋,根据弯矩图的变化沿纵向配置在结构构件受拉的一侧。
在柱和拱等结构中,钢筋也被用来增强结构的抗压能力。
它有两种配置方式:一是顺压力方向配置纵向钢筋,与混凝土共同承受压力;另一是垂直于压力方向配置横向的钢筋网和螺旋箍筋,以阻止混凝土在压力作用下的侧向膨胀,使混凝土处于三向受压的应力状态,从而增强混凝土的抗压强度和变形能力由于按这种方式配置的钢筋并不直接承受压力,所以也称间接配筋。
在受弯构件中与纵向受力钢筋垂直的方向,还须配置分布筋和箍筋,以便更好地保持结构的整体性,承担因混凝土收缩和温度变化而引起的应力,及承受横向剪力。
木材:木材有很好的力学性质,但木材是有机各向异性材料,顺纹方向与横纹方向的力学性质有很大差别。
木材的顺纹抗拉和抗压强度均较高,但横纹抗拉和抗压强度较低。
木材强度还因树种而异,并受木材缺陷、荷载作用时间、含水率及温度等因素的影响,其中以木材缺陷及荷载作用时间两者的影响最大。
建筑用木材,通常以原木、板材、枋材三种型材供应。
原木系指去枝、去皮后按规格加工成一定长度的木料;板材是指宽度为厚度的三倍或三倍以上的型材;而枋材则为宽度不足三倍厚度的型材。
按照国家标准,根据木材的缺陷情况对各种商品木材进行了等级划分,通常分为一、二、三、四等。
结构和装饰用木材一般选用等级较高的木材。
对于承重结构用的木材,又根据《木结构设计规范》(GBJ5—88)的规定,按照承重结构的受力要求对木材进行分级,即分为I、II、III三级,设计时应根据构件的受力种类选用适当等级的木材。
例如承重木结构板材的选用,根据其承载特点,一般I级材用于受拉或受弯构件;II级材用于受弯或受压弯的构件;III级材用于受压构件及次要受弯构件。
三.实验的过程1.设计过程以下是我们设计的12个方案。
方案1方案2方案3方案5方案6方案8方案9方案11接下来以其中一个设计方案为例,对设计过程进行详细阐述。
I.结构的构件.图1图2图3图4图5图6提示:图1是该结构的前视图,每个部件的中间表示它的轴。
此外,我们对不同元素的标记是从1号到11号(部件12是两个结构之间的连接件)。
图2表示顶部梁1,主梁2 和底部支撑梁3的构造,梁1,2,3,用表面上的竖直线分割,由于定位所有其他构件。
图3和图4表示各构件具体的尺寸,作为我们做出精确模型的基础依据。
图5和6解决我们切材料的方式。
A x指6 * 6的轻木条和B x指6×3轻木条。
Table 1 Summary of ElementsNumber Amount Length(cm)SectionalDimensions(mm*mm)Total Length(cm)Tips1 2 30.97 6*6 61.94 A2:22 2 41.45 6*6 & 6*3 82.9 Strengthen both sides 41.45*2=82.9A1:2 B3:23 4 11.4 6*3 45.6 B1:44 4 10.81 6*6 43.24 A2:2 A5:25 4 9.4 6*6 37.6 A4:46 4 10.81 6*6 43.24 A4:47 8 10.81 6*6 & 6*3 86.48 A3:8 Strengthen 4 elements in both sides 10.81*2*4=86.48 B4:88 4 6.82 6*6 27.28 A1:1 A2:1 A4:1 B5: making 1 elementwith 6*39 4 4.4 6*6 17.6 A3:1 A5:2 B5: making 1 element with 6*310 4 11.4 6*6 45.6 A5:411 4 6.82 6*6 27.28 A5:2 B5:making 1 element with 6*312 15 8 6*3 120 B1:5 B2:10Sum 638.76Tips show the way to embody the arrangement of members, which is also included in figure 5&6.II.设计在解释我的设计过程中,我们真的要说感谢我们的老师,因为这次比赛给了我们一个学习SAP2000的机会。