9力线平移定理
平面任意力系

且其作用线互相平行的力系。
∑ ∑
Yi 0 or
Xi 0
∑
M o Fi 0
A、B两点
∑
M A Fi 0
∑
M B Fi 0
的连线不 能与各力 的作用线 平行
例1:图示吊车,起吊物 重W=30kN,横梁单位长 度重q =4.2N/cm,l=5m, x=l /4。求A、B约束力。
R R2 R2 42kN
O
Ox
Oy
arctg ROy 52.4
ROx
2)求力系的主矩 M A 1 25 2 20 sin60 - 3 18 sin30 32.6kN m
3)求合力作用线到A点的距离 d M A 32.6 0.777
RO 42
个固定矢量。与简化中心密切相关,简化中心不同 其主矩一般也不相同,简化中心就是其作用点。
力系的合力:为主矢和主矩的合力,是一个固定矢量。与
原力系互为等效力系,不仅仅取决于主矢和主矩的 大小、方向及转向,还必须指出其作用线。
例1:正三角形ABC边长为a,受力如图,且F1=F2=F3=F。
求力系的主矢、对A点的主矩及力系合力作用线的位置。
解:1)求力系的主矢
ROx F1 F2 cos 60 F3 cos 60 2F ROy F2 sin60 F3 sin60 0
F3
CC
RO
R2 Ox
R2 Oy
4F2 0 2F
2)求对A点的主矩
2F
A
BB
F1
MA C
M A aF2 sin60 0.87aF
第1节3讲平面汇交力系-力线平移

c
A
D
300
E
B
2m
1m
1m F
P
图2-16
【 解】(1)取AB梁为研究对象。 A (2)画受力图。 FAx 未知量三个: FAy FAy FT FAx
独立的平衡方程数也是三个。 (3)列平衡方程,选坐标如图所示。
FT
D
300
E
B
P
F
X Y
0
0
FAx FT cos 30 0 0 FAy FT sin 30 0 P F 0 M A (F ) 0 FT AB sin 30 0 P AD F AE 0
300
E
A B
(F ) 0 (F ) 0
x
0
FAx
B
ቤተ መጻሕፍቲ ባይዱFAy
P
F
§2-5 平面平行力系的平衡条件
平面平行力系:各力的作用线在同一平面内且互 相平行的力系。 图示一受平面平行力系作用的物体,如选轴与各 力作用线垂直,显然有: F1 Fn y x F2
F
0
o
x
这样,平面平行力系的平衡 条件可写为:
FR‘
FR’ FR
O’
(b) 图2-6 合力矩定理证明图示
例2-1
图示一塔示起重机。机架m1=50t,重心在o点。 已知起重机的最大起吊质量m2=25t,欲使起重 机在空载与满载时都不会翻到,平衡锤的质量 m3 应如何?
c
b
o
W1
图中 a=3m,b=1.5m, c=6m, l=10m, W=m2g, P =m3g W1=m1g。
(1)
(2)
(3)
由(3)解得
力线平移定理的名词解释

力线平移定理的名词解释力线平移定理是流体力学中的基本定理之一,它描述了在一个定常的不可压缩流体中,沿着密度相同的流线平移的两点之间的压力差等于流速在这两点之间的切向速度分量的梯度与流体密度的乘积。
1. 引言在流体力学领域中,力线是描述流体运动的一种常用方式。
力线是指一条假想的线,其切向方向与流体的速度向量方向相同,因此力线可以帮助我们更好地理解流体的运动特性。
2. 力线平移定理的内容力线平移定理是描述力线平移过程中与压力差相关的一组方程。
在一个定常的不可压缩流体中,对于沿着密度相同的流线平移的两点A和B,它们之间的压力差可以表示为以下公式:ΔP = ρ ∂v_t/∂s其中,ΔP表示两点之间的压力差,ρ表示流体的密度,v_t表示流速在流线平移方向的切向速度分量,∂v_t/∂s表示切向速度的梯度。
3. 定常流体的定义在力线平移定理中,定常流体是指流体在任意时刻的速度场和压力场都不随时间变化,但随空间位置变化的情况。
这就意味着流体在整个系统内的速度和压力分布是恒定的,不会发生剧烈的波动或变化。
4. 不可压缩流体的定义在力线平移定理中,不可压缩流体是指流体在运动过程中密度始终保持不变的情况。
不可压缩流体的特点是其体积恒定,压力在不同位置发生变化时能够迅速传递,并保持体积的不变。
5. 力线平移定理的应用力线平移定理在流体力学中的应用十分广泛。
它被广泛用于分析流体力学问题、设计流体流动设备和优化流体流动过程。
例如,在飞机翼的设计中,通过运用力线平移定理,可以最大程度地减小翼面上的压力差,提高飞行的效率和安全性。
6. 力线平移定理的重要性力线平移定理作为流体力学中的基本定理之一,具有重要的理论和实践意义。
它不仅为我们提供了研究流体运动的一种重要方法,还为我们深入理解力线和流体力学问题的关系提供了基础。
同时,力线平移定理也为工程实践提供了重要的参考依据。
7. 结论力线平移定理是流体力学中的核心概念之一,它描述了定常不可压缩流体中沿着密度相同的流线平移的两点之间的压力差与切向速度梯度的乘积之间的关系。
力的平移定理

第四章平面一般力系第一节力得平移定理上面两章已经研究了平面汇交力系与平面力偶系得合成与平衡。
为了将平面一般力系简化为这两种力系,首先必须解决力得作用线如何平行移动得问题。
设刚体得A点作用着一个力F(图4-3(a)),在此刚体上任取一点O。
现在来讨论怎样才能把力F平移到O点,而不改变其原来得作用效应?为此,可在O点加上两个大小相等、方向相反,与F平行得力F′与F〞,且F′=F〞=F(图4-3(b))根据加减平衡力系公理,F、F′与F〞与图4-3(a)得F对刚体得作用效应相同。
显然F〞与F组成一个力偶,其力偶矩为这三个力可转换为作用在O点得一个力与一个力偶(图4-3(c))。
由此可得力得平移定理:作用在刚体上得力F,可以平移到同一刚体上得任一点O,但必须附加一个力偶,其力偶矩等于力F对新作用点O之矩。
顺便指出,根据上述力得平移得逆过程,共面得一个力与一个力偶总可以合成为一个力,该力得大小与方向与原力相同,作用线间得垂直距离为:力得平移定理就是一般力系向一点简化得理论依据,也就是分析力对物体作用效应得一个重要方法。
例如,图4-4a所示得厂房柱子受到吊车梁传来得荷载F得作用,为分析F得作用效应,可将力F平移到柱得轴线上得O点上,根据力得平移定理得一个力F′,同时还必须附加一个力偶(图4-4(b)).力F经平移后,它对柱子得变形效果就可以很明显得瞧出,力F′使柱子轴向受压,力偶使柱弯曲。
第二节平面一般力系向作用面内任一点简化一、简化方法与结果设在物体上作用有平面一般力系F1,F2,…,F n,如图4-5(a)所示。
为将这力系简化,首先在该力系得作用面内任选一点O作为简化中心,根据力得平移定理,将各力全部平移到O点(图4-5(b)),得到一个平面汇交力系F1′,F2′,…,F n′与一个附加得平面力偶系.其中平面汇交力系中各力得大小与方向分别与原力系中对应得各力相同,即F1′=F1,F2′=F2,…,F n′=F n各附加得力偶矩分别等于原力系中各力对简化中心O点之矩,即由平面汇交力系合成得理论可知,F1′,F2′,…,F n′可合成为一个作用于O点得力Rˊ,并称为原力系得主矢(图4-5(c)),即R′=F1′+F2′+…+F n′=F1+F2+…+F n=∑Fi(4-1)求主矢R′得大小与方向,可应用解析法。
掌握力的平移定理

主矢、主矩共同作用等效于原力系
结论:平面一般力系向其作用平面内任一点简化,得 到一个力和一个力偶。这个力称为原力系的主矢,作用于 简化中心,等于原力系各力的矢量和;这个力偶的力偶矩称 为原力系对简化中心的主矩。等于原力系中各力对简化中 心之矩之和. 注意:主矢与简化中心位置无关,主矩则有关。因此说 到力系的主矩时,必须指出是力系对于哪一点的主矩。
2、对简化结果进行讨论 (1)平面任意力系简化结果是一个力偶的情形 R′=0, M0≠0 此时原力系只与一个力偶等效,这个力偶就是原力系的 合力偶 (2)平面住意力系简化结果是一个力的情形 R′≠0, M0=0 此时原力系只与一个力等效,这个力就是原力系的合力 R′≠0 , M0≠0 由力的等效平移的逆过程可知,这个力和力偶可以合成 为一个合力
= O
Mo
R/
x
F3
F3/
M 1 M o F1 M 2 M o F2 M 3 M o F3
平面汇交力系 R′=∑F′=∑F 平面任意力系 平面力偶系 M0=∑M0=∑M0(F)
1、平面任意力系向O点简化的结果:
y
Mo O
R
合力 R ′ —
原力系的主矢,通过O点。
x
合力偶矩 M0 — 原力系对于O点的主矩
将F平移到B点,梁的变形 发生了改变。
力的平移定理的逆过程
—共面的一个力和一个力偶可以合成为一个力
d=
M F
/
至于力F在F′的哪一侧,可由力F对点0的 矩的转向与力偶矩Mo的转向一致的原则来判定。
二. 平面任意力系向作用面内一点简化
y F1 O F2 F1/ M1 = O y
M2 F2/ M3 x
二、平面任意力系的简化 1、简化过程及结果
力线平移定理

l
C h d1
A d
Fy
F
D Fx
B FBx
FBy
FB何关系较复杂不
宜确定,用合力矩定理。
M A (F ) M A (F x ) M A (F y) F co h F n si ln F (co h s nil n )
2.求B点约束力对A点的力矩MA(FB)
F' M=Fd dA
F MM
A
B
B
F A
A F
B
B
A
M
M
F' F'
F
作用于刚体上的力,可以平移到刚体上的任一点,得到 一平移力和一附加力偶,其附加力偶矩等于原力对平移点的 力矩。此即为力线平移定理 。
任务实施
【例1】 图示刚架ABCD, 在D点作用F力,已知力F的方向角为。 求:1.F力对A点的力矩, 2.B点约束力对A点的力矩。
M A
l
B 解:1)取AB为研究对象,分析并画受力图
2)列平衡方程求解约束力
M
A
B
d
FB
FA
M 0: FBdM0 F BM d lc o M n 2 1 0 3 0 /2 5 7 .7N
FA57.7N
小结
力的平移定理
作用于刚体上的力,可以平移到刚体上的任一点,得到一平移力 和一附加力偶,其附加力偶矩等于原力对平移点的力矩。
情境二 构件受力计算 任务一:构件受平面汇交力系作用的受力计算
力的投影、力的合成计算 平面汇交力系平衡问题1 平面汇交力系平衡问题2 力矩 平面力偶及合成 力的平移定理
知识准备: 力的平移定理
一、力的平移定理
F' F
Bd A
2.2、力线平移定理(4-1)(美化)

力系平移定理(4-1)
力离开作用线平行移动时,为保证作用效果不变,需要附加一个力偶,附加力偶的力偶矩等于一个力矩:平移前的力对平移后力作用点的力矩.
讨论题:
力平移时要附加一个力偶,力偶会让物体转动,所以力平移前与平移后相比.后者明显多出了一个让物体转动的力偶因素,力在平移前后对物体的作用效果还能相同吗?
判断题:
对刚体而言力是滑动矢量,但不是自由矢量。
例2.2-1两个平行力的合成问题。
证明杠杆定律的正确性;图示的两个平行F1、F2可以合成为一个力F1 2 。
现在要证明三个结论:
5
=+F F F 1212 F F F ////121212⋅=⋅F AE F BE M 1=M B (F 1)=F 1|BC |= F 1|AB |cosθ
M 1=M B (F 12)=F 12|BE|cosθ
F 1+F 2=F 12
⇒=112F AB F BE ⇒+=+112()()F AE BE F F BE 12⋅=⋅F AE F BE
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
思考题:
1)可否把力F2平移至力F1作用点处?或者将两力同时平移至杠杆支点E处?
=-F F F 1212 F F F ////121212⋅=⋅F AE F BE。
平面一般力系的简化

F1
m1
x
F2
(a)
(b)
1.简化方法
向一点简化
一般力系(任意力系)
(未知力系)
FR(已知力系)
汇交力系合力
4
附加力偶的合力偶矩
2.主矢与主矩
①. 主矢:指原平面一般力系各力的矢量和
。
主矢 的 解析求法
大小: 方向: 注意:因以主它矢与等简于化原中力心系的各位力置的无矢关量。和,所
4、固定端(插入端)约束 在工程中常见的有:
A 雨搭
车刀
固定端(插入端)约束的构造
Fi A
约束反力
①认为Fi这群力在同一 平面内;
7
MA
FA
A
MA A
FA y FA x
② 将Fi向A点简化得一 力和一力偶;
③FA方向不定可用正交 分力FAx, FAy表示;
④ FAx, FAy ,MA为固定端 约束反力; ⑤ FAx, FAy限制物体平动, MA为限制转动。
A (a)
B F
F A (b)
m B A
(c)
2
讨论
①力线平移定理揭示了力与力偶的关系:力 力+力偶
②力线平移定理可考察力对物体的作用效应。
P
e
O
A
P
m
O
A
(刚体、变形体两 种情况)
③力线平移定理是力系简化的理论基础。 3
二、 平面一般力系向一点简化
Fn
An O
A2
F1
A1 F2
y Fn mn
5
②主矩:指原平面一般力系对简化中心之矩的代数和 。
大小:
主矩 MO 正、负规定 : 转向 +
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FB
2.求B点约束力对A点的力矩MA(FB) 同理,FB对A点力臂d的几何关系复杂不宜确定,用合力矩定理。
M A ( FB ) M A ( FBx ) M A ( FBy )
FB l sin FB sin 0 F Bcon l
任务实施 【例2】图示杆件AB上作用一力偶,其力偶矩M=100N· m,梁 长l=2m, =30不计梁的自重,求A、B两支座 A d
B
M
A
A
B
B
A
F
F'
F'
F
作用于刚体上的力,可以平移到刚体上的任一点,得到 一平移力和一附加力偶,其附加力偶矩等于原力对平移点的 力矩。此即为力线平移定理 。
任务实施 【例1】 图示刚架ABCD, 在D点作用F力,已知力F的方向角为。 求:1.F力对A点的力矩, 2.B点约束力对A点的力矩。
A M
B 解:1)取AB为研究对象,分析并画受力图
l
2)列平衡方程求解约束力
M 0:
B
FB d M 0
A
M d FA
FB
FB
M M 100 57.7 N d l con 2 3 / 2
FA 57.7 N
小
结
力的平移定理
作用于刚体上的力,可以平移到刚体上的任一点,得到一平移力 和一附加力偶,其附加力偶矩等于原力对平移点的力矩。
情境二 构件受力计算 任务一:构件受平面汇交力系作用的受力计算
力的投影、力的合成计算 平面汇交力系平衡问题1 平面汇交力系平衡问题2 力矩 平面力偶及合成 力的平移定理
知识准备: 力的平移定理
一、力的平移定理
F' B F"
F M M M
F A
若F' = F"=F
d
=
M ( FF ) Fd M B ( F )
l C A h d FBy Fy D F
d1
F x
B FBx
解:1.求MA(F) F力对A点力臂d的几何关系较复杂不 宜确定,用合力矩定理。
M A ( F ) M A ( Fx ) M A ( Fy ) F con h F sin l
F (con h sin l )