掌握力的平移定理

合集下载

第03章 平面任意力系(第4-6讲)

第03章 平面任意力系(第4-6讲)

第 4 讲教案第4讲平面任意力系简化第三章 平面任意力系力的作用线分布在同一平面内的力系称为平面力系。

(简易吊车梁)当物体所受的力对称于某一平面时,也可简化为在对称平面内的平面力系。

本章将讨论平面任意力系(简称平面力系)的简化和平衡问题。

§3-1 力线平移定理实际工程与实际生活中与力线平移有关的例子是很多的。

例如、驾船划桨,若双桨同时以相等的力气划,船在水面只前进不转动;若单桨划,船不仅有向前的运动,而且有绕船质心的转动。

此外,乒乓球运动中的各种旋转球也都与力线平移有关。

F A xF AyG 1 G 2F BABα设计: 1、用图片(课件中的简易吊车梁受力)引入平面任意力系。

2、启发学员思考分析任意力系合成和平衡问题的方法:化复杂问题为简单问题。

3、由分析方法引出力线平移设计: 1、用动画讲解力线平移定理。

ABCα定理:作用在刚体上某点的力F可平行移到任一点,平移时需附加一个力偶,附加力偶的力偶矩等于原力F对新作用点的矩。

如图。

证明:在点B上加一平衡力系(F',F"),令F'=-F"=F。

则力F与力系(F',F",F)(图b)等效或与力系[F',(F,F")](图c)等效。

后者即为力F向B点平移的结果。

附加力偶(F,F’)的力偶矩M=Fd=M B(F)证毕。

·该定理指出,一个力可等效于一个力和一个力偶,或一个力可分解为作用在同平面内的一个力和一个力偶。

其逆定理表明,在同平面内的一个力和一个力偶可等效或合成一个力。

·该定理既是复杂力系简化的理论依据,又是分析力对物体作用效应的重要方法。

例1、如单手攻丝时(图),由于力系(F',M O)的作强调:1、该定理表明一个力可分解为同平面内的一个力和一个力偶。

2、其逆定理表明,在同平面内的一个力和一个力偶可合用,不仅加工精度低,而且丝锥易折断。

理论力学第四章任意力系

理论力学第四章任意力系

OI x

Fi
Fi
一般力系(任意力系)向一点简化 汇交力系+力偶系
汇交力系 力偶系
合力 —— R'(主矢) , (作用在简化中心)
合力偶矩——MO (主矩) ,(作用在该平面上)
O 点为简化中心: F1' F1 , F2 ' F2 ,, Fi ' Fi .
m1 MO (F1), m 2 MO (F2 ), , m i MO (Fi ).
tan1 FRx 70.83 0
FR
2)求主矩
y
O MO

MO 3F1 1.5P1 3.9P2 2355 kN m
x
FR '
y 3m
2)求合力与基线OA的交点到O点的距

9m
F1
3m
P1
1.5
P2
3.9 m
离 x及合力作用线方程

主矩:MO 3F1 1.5P1 3.9P2
y
3m

P1
1.5
解:1)求 FR'x , FR'y
FR'x F1 F2 cos 300 70 cos16.7
232.9kN

FR'y P1 P2 F2 sin
9m
F1
P2 F2 450 200 70sin16.7 670.1kN
3.9 m 3m
MO2

M O1 FR
FR
M O1
FR
o d O
o d O
MO1 是自由矢量,可搬到O'处
所以在O'点处形成一个力螺旋。

第四章、平面任意力系

第四章、平面任意力系

分布力系说明
q
qB
A
L 2L/3 Q1 L/3
B
A L L/2 A Q L/2
B
A
L (a)三角形分布力
厚接分布力
B L (b)均匀分布力
在以后碰到分布力时,先进行简化处理,然后再求解。
第四章 平面任意力系
理 论 力 学
§4- 4 平衡条件、平衡方程
例 4-1
已知:梁AD的支承及受力如图所示。
F = 500N, FA = 1000N, q = 1000N/m
A、B、C是平面内不共线的任意三点.
应当指出:投影轴和矩心是可以任意选取的。 在解决实际问题时适当选取矩心与投影轴可以简化计算。
一般地说,矩心应选多个力的交点,尤其是选
未知力的交点,投影轴则尽可能选取与该力系中多数力的 后接例题 作用线平行或垂直。
第四章 平面任意力系
理 论 力 学
§4- 5 平面平行力系的合成与平衡
即两个力矩式一个投影式,其中A、B是平面内任意两点。 但连线不能垂直投影轴 X 。 B A x
第四章 平面任意力系
理 论 力 学
§4- 4 平衡条件、平衡方程
平衡方程
2、平面力系任意力系的平衡方程 B
A 即三个力矩式, C
(2)三力矩形式的平衡方程
∑MA (F)= 0,
∑MB (F)= 0 ∑MC (F)= 0
即距D点的距离为a/3。
应用平面力系平衡方程求解。
第四章 平面任意力系
理 论 力 学
§4- 4 平衡条件、平衡方程
例 4-1 ∑Fx = 0 ∑Fy= 0
步骤3:取坐标系Bxy,列平衡方程
FBx+ F = 0 FBy+ FC- Fp- FA= 0

力的平移定理

力的平移定理

第四章平面一般力系第一节力得平移定理上面两章已经研究了平面汇交力系与平面力偶系得合成与平衡。

为了将平面一般力系简化为这两种力系,首先必须解决力得作用线如何平行移动得问题。

设刚体得A点作用着一个力F(图4-3(a)),在此刚体上任取一点O。

现在来讨论怎样才能把力F平移到O点,而不改变其原来得作用效应?为此,可在O点加上两个大小相等、方向相反,与F平行得力F′与F〞,且F′=F〞=F(图4-3(b))根据加减平衡力系公理,F、F′与F〞与图4-3(a)得F对刚体得作用效应相同。

显然F〞与F组成一个力偶,其力偶矩为这三个力可转换为作用在O点得一个力与一个力偶(图4-3(c))。

由此可得力得平移定理:作用在刚体上得力F,可以平移到同一刚体上得任一点O,但必须附加一个力偶,其力偶矩等于力F对新作用点O之矩。

顺便指出,根据上述力得平移得逆过程,共面得一个力与一个力偶总可以合成为一个力,该力得大小与方向与原力相同,作用线间得垂直距离为:力得平移定理就是一般力系向一点简化得理论依据,也就是分析力对物体作用效应得一个重要方法。

例如,图4-4a所示得厂房柱子受到吊车梁传来得荷载F得作用,为分析F得作用效应,可将力F平移到柱得轴线上得O点上,根据力得平移定理得一个力F′,同时还必须附加一个力偶(图4-4(b)).力F经平移后,它对柱子得变形效果就可以很明显得瞧出,力F′使柱子轴向受压,力偶使柱弯曲。

第二节平面一般力系向作用面内任一点简化一、简化方法与结果设在物体上作用有平面一般力系F1,F2,…,F n,如图4-5(a)所示。

为将这力系简化,首先在该力系得作用面内任选一点O作为简化中心,根据力得平移定理,将各力全部平移到O点(图4-5(b)),得到一个平面汇交力系F1′,F2′,…,F n′与一个附加得平面力偶系.其中平面汇交力系中各力得大小与方向分别与原力系中对应得各力相同,即F1′=F1,F2′=F2,…,F n′=F n各附加得力偶矩分别等于原力系中各力对简化中心O点之矩,即由平面汇交力系合成得理论可知,F1′,F2′,…,F n′可合成为一个作用于O点得力Rˊ,并称为原力系得主矢(图4-5(c)),即R′=F1′+F2′+…+F n′=F1+F2+…+F n=∑Fi(4-1)求主矢R′得大小与方向,可应用解析法。

1.2力矩力偶与力的平移教案

1.2力矩力偶与力的平移教案

课题 1.2力矩力偶与力的平移
课时 1 班级21机电3/4班课型新课时间2021年10月19日
教学目标知识目标:熟记力矩、力偶的概念
能力目标:应用力矩、力偶,力的平移定理解题德育目标:提高合作探究能力,增强合作意识
教学重点力的平移定理
教学难点力的平移定理
教法直观教学法
学法小组合作探究
教学评价师生互评,小组互评
教具多媒体课件,教具,动画
教学过程及主要教学内容师生活动一、实验:
由此推导力的平移定理:
作用在刚体上A点处的力F,可以平移到刚体内任意点O,但必须同时附加一个力偶,其力偶矩等于原来的力F 对新作用点O的矩。

这就是力的平移定理。

教师:精讲
互问互答
学生:小组合作学生:组间竞赛。

力线平移定理

力线平移定理

l
C h d1
A d
Fy
F
D Fx
B FBx
FBy
FB何关系较复杂不
宜确定,用合力矩定理。
M A (F ) M A (F x ) M A (F y) F co h F n si ln F (co h s nil n )
2.求B点约束力对A点的力矩MA(FB)
F' M=Fd dA
F MM
A
B
B
F A
A F
B
B
A
M
M
F' F'
F
作用于刚体上的力,可以平移到刚体上的任一点,得到 一平移力和一附加力偶,其附加力偶矩等于原力对平移点的 力矩。此即为力线平移定理 。
任务实施
【例1】 图示刚架ABCD, 在D点作用F力,已知力F的方向角为。 求:1.F力对A点的力矩, 2.B点约束力对A点的力矩。
M A
l
B 解:1)取AB为研究对象,分析并画受力图
2)列平衡方程求解约束力
M
A
B
d
FB
FA
M 0: FBdM0 F BM d lc o M n 2 1 0 3 0 /2 5 7 .7N
FA57.7N
小结
力的平移定理
作用于刚体上的力,可以平移到刚体上的任一点,得到一平移力 和一附加力偶,其附加力偶矩等于原力对平移点的力矩。
情境二 构件受力计算 任务一:构件受平面汇交力系作用的受力计算
力的投影、力的合成计算 平面汇交力系平衡问题1 平面汇交力系平衡问题2 力矩 平面力偶及合成 力的平移定理
知识准备: 力的平移定理
一、力的平移定理
F' F
Bd A

2.2、力线平移定理(4-1)(美化)

2.2、力线平移定理(4-1)(美化)

力系平移定理(4-1)
力离开作用线平行移动时,为保证作用效果不变,需要附加一个力偶,附加力偶的力偶矩等于一个力矩:平移前的力对平移后力作用点的力矩.
讨论题:
力平移时要附加一个力偶,力偶会让物体转动,所以力平移前与平移后相比.后者明显多出了一个让物体转动的力偶因素,力在平移前后对物体的作用效果还能相同吗?
判断题:
对刚体而言力是滑动矢量,但不是自由矢量。

例2.2-1两个平行力的合成问题。

证明杠杆定律的正确性;图示的两个平行F1、F2可以合成为一个力F1 2 。

现在要证明三个结论:
5
=+F F F 1212 F F F ////121212⋅=⋅F AE F BE M 1=M B (F 1)=F 1|BC |= F 1|AB |cosθ
M 1=M B (F 12)=F 12|BE|cosθ
F 1+F 2=F 12
⇒=112F AB F BE ⇒+=+112()()F AE BE F F BE 12⋅=⋅F AE F BE
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
思考题:
1)可否把力F2平移至力F1作用点处?或者将两力同时平移至杠杆支点E处?
=-F F F 1212 F F F ////121212⋅=⋅F AE F BE。

工程力学6 力的平移定理

工程力学6 力的平移定理

M F d
F
F′
d F′
A
F
O d
A
三、力的平移定理的应用
假设在一块钢板上O点钉一个钉子, 用四根绳子用力拉,钢板将会如何 运动呢?钉子将如何受力?
F1
F2 O
F4 F3
Y
F1
Y
F2
X
O
F3 图① F4 Y R′ Mo
O 图③
根据力的平移定理 F2
M1 F1
M2 X
O
M2 M3
F4
F3 图②
根据平面汇交力系和
d
OM
F′
d
FA
A
M F,F F d M O F
因此:作用于刚体上的力,可平移到刚体上的任意一点, 但必须附加一力偶,其附加力偶矩等于原力对平移点的 力矩。图中O称为简化中心。
1.力的平移定理
F1
F2
F3
O
F4
例题1:如图所示,假设每个方格是边长为1m的 正方形,F1=10KN、F2=10KN、F3=30KN、 F4=30KN,试求:将四个力平移至O点的结果。
B Od
b
A
F=
M B
F
O d M MO F F d
A B
O b
A
逆时针为正
M M O F F b
M 顺时针为负 F
2.力的平移定理性质
(2)力的平移定理只适用于刚体,对变形体不适用, 并且力的作用线只能在同一刚体内平移,不能平移到另 一刚体。
(3)力的平移定理的逆定理也成立。
OM
X
平面力偶系的合成
R′=F1+F2+F3+F4(矢量和) MO=M1+M2+M3+M4 (代数和)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

主矢、主矩共同作用等效于原力系
结论:平面一般力系向其作用平面内任一点简化,得 到一个力和一个力偶。这个力称为原力系的主矢,作用于 简化中心,等于原力系各力的矢量和;这个力偶的力偶矩称 为原力系对简化中心的主矩。等于原力系中各力对简化中 心之矩之和. 注意:主矢与简化中心位置无关,主矩则有关。因此说 到力系的主矩时,必须指出是力系对于哪一点的主矩。
2、对简化结果进行讨论 (1)平面任意力系简化结果是一个力偶的情形 R′=0, M0≠0 此时原力系只与一个力偶等效,这个力偶就是原力系的 合力偶 (2)平面住意力系简化结果是一个力的情形 R′≠0, M0=0 此时原力系只与一个力等效,这个力就是原力系的合力 R′≠0 , M0≠0 由力的等效平移的逆过程可知,这个力和力偶可以合成 为一个合力
= O
Mo
R/
x
F3
F3/
M 1 M o F1 M 2 M o F2 M 3 M o F3
平面汇交力系 R′=∑F′=∑F 平面任意力系 平面力偶系 M0=∑M0=∑M0(F)
1、平面任意力系向O点简化的结果:
y
Mo O
R
合力 R ′ —
原力系的主矢,通过O点。
x
合力偶矩 M0 — 原力系对于O点的主矩
将F平移到B点,梁的变形 发生了改变。
力的平移定理的逆过程
—共面的一个力和一个力偶可以合成为一个力
d=
M F
/
至于力F在F′的哪一侧,可由力F对点0的 矩的转向与力偶矩Mo的转向一致的原则来判定。
二. 平面任意力系向作用面内一点简化
y F1 O F2 F1/ M1 = O y
M2 F2/ M3 x

二、平面任意力系的简化 1、简化过程及结果
R′称为原力系 的主失 M0′称为原力系 的主矩 它们共同作用等 效于原力系
重 点
1、力的平移定理; 2、平面任意力系简化的结果; 3、平面任意力系平衡方程的形式。
难 点
1、平面任意力系简化的结果。 2、平面任意力系简化的平衡方程
概述 平面任意力系是指各力的作用线在同一平面内不完全汇交于一 点也不完全相互平行的力系,也称为平面一般力系
一. 力的平移定理
若将力从轮的边缘平移到O点,将改变其对轮的作用效应. F'

(3)、平面任意力系平衡的情形 R′=0 ,M0′=0 则原力系是平衡力系,这种情形将在下一节中讨论
情况 向O点简化的结果 分类 主矢R′ 主矩MO
1 2 3 4 R′=0 R'=0 R0 R′0 MO=0 MO0 MO=0 MO0
力系简化的最终结果 (与简化中心无关)
平衡状态(力系对物体的移动 和转动作用效果均为零)。 一个合力偶,M=MO。 合力R=R,作用线过O点。 一个合力,其大小为 R=R, 作用线到O点的距离为h=MO/R' R在O点哪一边,由MO符号决定
平面力系简化的最终结果,只有三种可能:一个力;一个 力偶;或为平衡力系。
三、平面任意力系的合力矩定理
内容—平面一般力系的 合力对平面内任一点之 矩等于力系中各力对该 点之矩的代数和

四、练习
主矢:
主矩:Leabharlann 合力:练习2
一、力的平移定理
若将力从轮的边缘平移到O点,将改变其对轮的作用效应.
M=FA•d 转向与FA对B点之矩的转向相同 力的平移定理—作用在刚体上的力F,可以平移到同一刚体上的 任一点,但必须附加一个力偶,其力偶矩对于原力F对新作用点 之矩。
O O
F o
M=Fh
h F
''
F
F
作用在刚体上力的F, 可以平移到其上任一点,但必 须同时附加一力偶,其力偶矩对于原力F对新作用点之矩。 即:M=M0(F).力偶的转向与原力对新作用点之矩的转向 相同.
应用实例
为了了解偏心力F对立柱的作用效果, 将F平移到轴线上,可以容易的看出 立柱的变形情况 但是,一般说来,在研究变形问题时, 力是不能移动的 。 例如:
主矢的解析表达法
2 2 R RX RY
R X X1 X 2 X n X1 X 2 X n X
同理:
R
Y RY
RY Y Tan R X X
X 2 Y 2
M0=∑M0=M0(F1)+M0(F2)+…M0(Fn)=∑M0(F)
相关文档
最新文档