三角函数诱导公式及经典记忆方法
诱导公式记忆口诀

诱导公式总结公式一:设α为任意角,终边相同的角的同三角函数的值相等:sin(2kπ+α)=sinα k∈zcos(2kπ+α)=cosα k∈ztan(2kπ+α)=tanα k∈zcot(2kπ+α)=cotα k∈z公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=—sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα推算公式:3π/2±α与α的三角函数值之间的关系:sin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα诱导公式记忆口诀:“奇变偶不变,符号看象限”。
“奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。
三角函数公式大全及记忆口诀

三角函数公式大全
一、定义
直
二、函数关系
倒数关系:;;
商数关系:;.
平方关系:;;
三、诱导公式
口诀:奇变偶不变,符号看象限
公式一:设为任意角,终边相同的角的同一三角函数的值相等:
公式二:设为任意角,与的三角函数值之间的关系:
公式三:任意角与的三角函数值之间的关系:
公式四:与的三角函数值之间的关系:
公式五:与的三角函数值之间的关系:
公式六:及与的三角函数值之间的关系:
四、基本公式
1.和差角公式
口诀:正余同余正,余余反正正
;
;
;
2.和差化积
口诀:正加正,正在前。
正减正,余在前。
余加余,余并肩。
余减余,余不见,负号很讨厌。
;
;
3.积化和差
4.倍角公式
sin4A=-4*(cosA*sinA*(2*sinA^2-1))
cos4A=1+(-8*cosA^2+8*cosA^4)
tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)
5.半角公式
五、万能公式
六、辅助角公式
七、三角形定理
1.正弦定理
在任意△ABC中,角A、B、C所对的边长分别为a、b、c,三角形外接圆的半径为R.则有
正弦定理变形可得:
2.余弦定理
在如图所示的在△ABC中,有
或。
三角函数公式及求导公式

一、诱导公式口诀:(分子)奇变偶不变,符号看象限。
1. sin (α+k•360)=sin αcos (α+k•360)=cos atan (α+k•360)=tan α2. sin(180°+β)=-sinαcos(180°+β)=-cosa3. sin(-α)=-sinacos(-a)=cosα4*. tan(180°+α)=tanαtan(-α)=tanα5. sin(180°-α)=sinαcos(180°-α)=-cosα6. sin(360°-α)=-sinαcos(360°-α)=cosα7. sin(π/2-α)=cosαcos(π/2-α)=sinα8*. Sin(3π/2-α)=-cosαcos(3π/2-α)=-sinα9*. Sin(π/2+α)=cosαcos(π/2+a)=-sinα10*.sin(3π/2+α)=-cosαcos(3π/2+α)=sinα二、两角和与差的三角函数1. 两点距离公式2. S(α+β): sin(α+β)=sinαcosβ+cosαsinβC(α+β): cos(α+β)=cosαcosβ-sinαsinβ3. S(α-β): sin(α-β)=sinαcosβ-cosαsinβC(α-β): cos(α-β)=cosαcosβ+sinαsinβ4. T(α+β):T(α-β):5*.三、二倍角公式1. S2α: sin2α=2sinαcosα2. C2a: cos2α=cos¬2α-sin2a3. T2α: tan2α=(2tanα)/(1-tan2α)4. C2a’: cos2α=1-2sin2αcos2α=2cos2α-1四*、其它杂项(全部不可直接用)1.辅助角公式asinα+bcosα= sin(a+φ),其中tanφ=b/a,其终边过点(a, b)asinα+bcosα= cos(a-φ),其中tanφ=a/b,其终边过点(b,a)2.降次、配方公式降次:sin2θ=(1-cos2θ)/2cos2θ=(1+cos2θ)/2配方1±sinθ=[sin(θ/2)±cos(θ/2)]21+cosθ=2cos2(θ/2)1-cosθ=2sin2(θ/2)3. 三倍角公式si n3θ=3sinθ-4sin3θcos3θ=4cos3-3cosθ4. 万能公式5. 和差化积公式sinα+sinβ= 书p45 例5(2)sinα-sinβ=cosα+cosβ=cosα-cosβ=6. 积化和差公式sinαsinβ=1/2[sin(α+β)+sin(α-β)] 书p45 例5(1)cosαsinβ=1/2[sin(α+β)-sin(α-β)]sinαsinβ-1/2[cos(α+β)-cos(α-β)]cosαcosβ=1/2[cos(α+β)+cos(α-β)]两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA)cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍角公式tan2A=2tanA/[1-(tanA)^2]cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2sin2A=2sinA*cosA三倍角公式sin3a=3sina-4(sina)^3cos3a=4(cosa)^3-3cosatan3a=tana*tan(π/3+a)*tan(π/3-a)半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B) )2cosAcosB=cos(A+B)+cos(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB积化和差公式sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]诱导公式sin(-a)=-sin(a)cos(-a)=cos(a)sin(pi/2-a)=cos(a)cos(pi/2-a)=sin(a)sin(pi/2+a)=cos(a)cos(pi/2+a)=-sin(a)sin(pi-a)=sin(a)cos(pi-a)=-cos(a)sin(pi+a)=-sin(a)cos(pi+a)=-cos(a)tgA=tanA=sinA/cosA万能公式sin(a)= (2tan(a/2))/(1+tan^2(a/2))cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))tan(a)= (2tan(a/2))/(1-tan^2(a/2))其它公式a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c) [其中,tan(c)=b/a]a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c) [其中,tan(c)=a/b]1+sin(a)=(sin(a/2)+cos(a/2))^21-sin(a)=(sin(a/2)-cos(a/2))^2③(sinx)' = cosx(cosx)' = - sinx(tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2 -(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2 (secx)'=tanx·secx(cscx)'=-cotx·cscx(arcsinx)'=1/(1-x^2)^1/2(arccosx)'=-1/(1-x^2)^1/2(arctanx)'=1/(1+x^2)(arccotx)'=-1/(1+x^2)(arcsecx)'=1/(|x|(x^2-1)^1/2) (arccscx)'=-1/(|x|(x^2-1)^1/2)④(sinhx)'=coshx(coshx)'=sinhx(tanhx)'=1/(coshx)^2=(sechx)^2 (coth)'=-1/(sinhx)^2=-(cschx)^2 (sechx)'=-tanhx·sechx(cschx)'=-cothx·cschx(arsinhx)'=1/(x^2+1)^1/2 (arcoshx)'=1/(x^2-1)^1/2(artanhx)'=1/(x^2-1) (|x|<1) (arcothx)'=1/(x^2-1) (|x|>1) (arsechx)'=1/(x(1-x^2)^1/2) (arcschx)'=1/(x(1+x^2)^1/2)。
三角函数公式速记方法

三角函数公式速记方法
三角函数公式速记方法有多种,以下是其中的几种方法:
1. 诱导公式口诀:奇变偶不变,符号看象限,α当锐角看。
奇变偶不变:“奇”与“偶”指的是所加的角是π/2的奇数倍与偶数倍,“变”指的是函数名,即sin与cos;符号看象限,α当锐角看:“符号”是指结果的符号,即当将α看做锐角时,根据改变之后的角在单位圆中的终边所在象限来判断结果的符号。
2. 两角和差公式口诀:异名相乘符号同(正弦),同名相乘符号异(余弦),子同母异(正切)。
子同母异(正切):所谓“子同”,指的是如果是两角相加(减),分子就为两部分相加(减);所谓“母异”,指的是如果是两角相加(减),分子就为两部分相减(加)。
3. 二倍角公式:二倍角公式可由两角和差公式推出,在此不做过多解释。
4. 和差化积公式:将等式右边展开,即可得到等式左边。
5. 积化和差公式:将等式右边展开,即可得到等式左边。
6. 辅助角公式:证明方法可以查阅数学书籍或资料,了解更多关于三角函数公式的证明和应用。
此外,还可以使用三角函数公式的对称性和周期性来记忆和理解公式。
例如,正弦函数和余弦函数的图像都是周期函数,具有对称性,可以利用这些特点来记忆和理解公式。
总之,记忆三角函数公式需要多练习和应用,不断加深对公式的理解和掌握。
同时,也可以通过查阅数学书籍或资料来了解更多关于三角函数公式的证明和应用。
三角函数符号判断口诀及诱导公式记忆口诀

符号判断口诀:
一全正;二正弦;三正切;四余弦。
这十二字口诀的意思就是说:
第一象限内任何一个角的四种三角函数值都是+;
第二象限内只有正弦是+,其余全部是-;
第三象限内只有正切和余切是+,其余全部是-;
第四象限内只有余弦是+,其余全部是-。
ASCT反Z。
意即为all(全部)、sin、cos、tan按照将字母Z反过来写所占的象限对应的三角函数为正值。
诱导公式记忆口诀:
奇变偶不变,符号看象限。
奇、偶指的是/2的倍数的奇偶,变与不变指的是三角函数的名称的变化:变是指正弦变余弦,正切变余切。
(反之亦然成立)
符号看象限的含义是:把角看做锐角,不考虑角所在象限,看n(/2)是第几象限角,从而得到等式右边是正号还是负号。
三角函数诱导公式万能公式和差化积公式倍角公式等公式总结及其推导

三角函数诱导公式万能公式和差化积公式倍角公式等公式总结及其推导一、三角函数诱导公式1、万能公式a sin(A+B) = a sinAcosB + a cosAsinBa cos(A+B) = a cosAcosB - a sinAsinB2、差化积公式sinAcosB - cosAsinB = sin(A-B)cosAcosB + sinAsinB = cos(A-B)3、倍角公式sin2A = 2sinAcosAcos2A = cos2A - sin2A = 2cos2A - 1 = 1 - 2sin2A4、和差公式sin(A±B) = sinAcosB±cosAsinBcos(A±B) = cosAcosB∓sinAsinB二、推导1、万能公式推导过程设定A+B=C,则有:a sin(A + B)= a sinC左右两侧同时乘以cosB:a sin(A + B)cosB = a sinCcosB左右两侧同时乘以sinB:a sin(A + B)sinB = a sinCsinB将上式整合即可得:a sin(A + B)= a sinAcosB + a cosAsinB同理,可推导出:a cos(A + B) = a cosAcosB - a sinAsinB2、差化积公式推导过程设定A=B,则有:sinAcosB - cosAsinB = sinAcosA - cosAcosA 经过整合可得:sinAcosB - cosAsinB = sinA -cosA将A=B替换为A-B,即可得sinAcosB - cosAsinB = sin(A-B)同理:cosAcosB + sinAsinB = cosAcosA + sinAsinA 经过整合可得:cosAcosB +sinAsinB = cosA +sinA将A=B替换为A-B,即可得cosAcosB +sinAsinB = cos(A-B)3、倍角公式的推导过程由于A为任意角度,对其两侧两边可以分别进行乘以cosA及sinA,得到:sinAcosA + sinAcosA = cosA*sinA + cosA*sinA经过整合可得:sin2A = 2sinAcosAcos2A = cosAcosA - sinAcosA经过整合可得:cos2A = 2cos2A - 1再把上式中的cos2A代入:2cos2A - 1 = 1 - 2sin2A4、和差公式推导过程设定A+B=C,则有:sin(A + B)= sinC将左右两侧分别乘以cosB及sinB:。
八个诱导公式的口诀

八个诱导公式的口诀在咱们学习三角函数的时候,那八个诱导公式就像是一道道小关卡,不过别担心,我这儿有一套超棒的口诀来帮你轻松应对!“奇变偶不变,符号看象限。
”这简简单单的八个字,可是蕴含着大大的学问呢!先来说说“奇变偶不变”。
啥意思呢?就是当咱们的角度加上或者减去的是π/2 的奇数倍,比如π/2、3π/2 等等,函数名称就得变,正弦变余弦,余弦变正弦,正切变余切,余切变正切。
要是加上或者减去的是π/2 的偶数倍,像π、2π 这些,那函数名称就不变啦。
再看“符号看象限”。
这就更有意思啦!比如说,咱们要计算sin(π/2 + α) ,那咱们先把α 当成锐角,π/2 + α 就在第二象限。
第二象限正弦是正的,所以sin(π/2 + α) 就等于cosα 。
我记得之前给一个学生讲这个的时候,他总是迷糊,怎么都搞不清楚。
我就给他举了个特别形象的例子。
假设α 是一个正在欢快玩耍的小朋友,π/2 呢,就像是一个大转盘,每次加上或者减去它,小朋友的状态就会发生变化。
如果是奇数倍的转盘,小朋友就得换身衣服,从正弦小朋友变成余弦小朋友,或者从正切小朋友变成余切小朋友。
如果是偶数倍的转盘,小朋友就还是原来的样子,只是心情可能会变。
而这个心情是好是坏,就得看他转到了哪个象限。
咱们再来看具体的公式。
sin(-α)= -sinα ,这就好像α 小朋友心情不好,生闷气了,负负得正,心情就好了,所以符号是负的。
cos(-α)=cosα ,α 小朋友心情不错,没有变化,所以符号是正的。
sin(π - α) = sinα ,这就像是α 小朋友玩累了,睡了一觉,醒来还是那个快乐的自己,所以函数不变,符号也是正的。
cos(π - α) = -cosα ,α 小朋友做了个噩梦,心情糟糕了,所以符号变成负的。
sin(π + α) = -sinα ,α 小朋友被噩梦吓哭了,心情超级差,所以符号是负的。
cos(π + α) = -cosα ,α 小朋友一直哭一直哭,心情怎么都好不起来,所以符号还是负的。
简便诱导公式,非常容易记忆和理解,解题快(原创)

诱导公式一、三种三角函数(sin cos tan)的函数值正负象限分布情况(基础内容)sinαcosαtanα(cotα)二、诱导公式(对所有的三角函数都适用)(一)负角变正角看该三角函数第四象限的符号。
例sin(﹣30°)=﹣sin30°cos(﹣50°)=cos50°tan(﹣80°)=﹣tan80°(二)π的偶数倍角的转换。
(α看做锐角,切记!!!否则结果是错误的)1.+α,看该三角函数第一象限符号(α看做锐角,即使α是钝角也当做锐角)2.-α,看该三角函数第四象限符号(α看做锐角,即使α是钝角也当做锐角)此时三角函数转换前后的三角函数(sin cos tan)并没有变化。
例sin(4π+α)=sinαtan(﹣4π-α)=﹣tanαcos400°=cos(180°*2+40°)=cos40°sin(﹣480°)=sin(﹣180°*2-60°)=﹣sin60°注:π的偶数倍的转换,其实就是讲角化成2kπ±α的形式,而2Kπ就相当于一个终边在X轴正半轴的角,之后再利用旋转的知识对±α进行运算。
(另一种理解方式)(三)π的奇数倍角的转换。
(α看做锐角,切记!!!否则结果是错误的)1.+α,看该三角函数第三象限符号(α看做锐角,即使α是钝角也当做锐角)2.-α,看该三角函数第二象限符号(α看做锐角,即使α是钝角也当做锐角)此时三角函数转换前后的三角函数(sin cos tan)并没有变化。
例cos495°=cos(3*180°-45°)=﹣cos45°Sin870°=sin(5*180°-30°)=sin30°注:π的奇数倍的转换,其实就是讲角化成kπ±α的形式,而Kπ就相当于一个终边在X轴负半轴的角,之后再利用旋转的知识对±α进行运算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数诱导公式及记忆方法一、同角三角函数的基本关系式(一)基本关系1、倒数关系tanα ·cotα=1 s inα ·cscα=1 cosα ·secα=12、商的关系sinα/cosα=tanαsecα/cscα=tanαcosα/sinα=cotαcscα/secα=cotα3、平方关系sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α(二)同角三角函数关系六角形记忆法构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。
1、倒数关系对角线上两个函数互为倒数;2、商数关系六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。
(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。
)。
由此,可得商数关系式。
3、平方关系在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。
二、诱导公式的本质所谓三角函数诱导公式,就是将角n·(π/2)±α的三角函数转化为角α的三角函数。
(一)常用的诱导公式1、公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα,k∈z cos(2kπ+α)=cosα,k∈ztan(2kπ+α)=tanα,k∈z cot(2kπ+α)=cotα,k∈zsec(2kπ+α)=secα,k∈z csc(2kπ+α)=cscα,k∈z2、公式二:α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα cos(π+α)=-cosαtan(π+α)= tanα cot(π+α)= cotαsec (π+α) =—secα csc (π+α) =—cscα3、公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinα cos(-α)= cosαtan(-α)=-tanα cot(-α)=-cotαsec (—α) = secα csc (—α) =—cscα4、公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotαsec (π—α) =—secα csc (π—α) = cscα5、公式五:利用公式一和公式三可以得2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)= cosαtan(2π-α)=-t anα cot(2π-α)=-cotαsec (2π—α) = secα csc (2π—α) =—cscα 6、公式六:2π+α与α的三角函数值之间的关系:sin (2π+α)= cosα cos (2π+α)=-sinα tan (2π+α)=-cotα cot (2π+α)=-tanαsec (2π+α) =—cscα csc (2π+α) = secα7、公式七:2π-α与α的三角函数值之间的关系:sin (2π-α)= cosα cos (2π-α)= sinα tan (2π-α)= cotα cot (2π-α)= tanαsec (2π—α) = cscα csc (2π—α) = secα8、推算公式:23π+α与α的三角函数值之间的关系:sin (23π+α)=-cosα cos (23π+α)= sinα tan (23π+α)=-cotα cot (23π+α)=-tanα sec (23π+α) = cscα csc (23π+α) =—secα 9、推算公式:23π—α与α的三角函数值之间的关系:sin (23π-α)=-cosα cos (23π-α)=-sinα tan (23π-α)= cotα cot (23π-α)= tanα sec (23π-α) =—cscα csc (23π—α) =—secα 诱导公式记忆口诀:“奇变偶不变,符号看象限”。
“奇、偶”指的是2π的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。
(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。
符号判断口诀:“一全正;二正弦;三两切;四余弦”。
这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”; 第二象限内只有正弦是“+”,其余全部是“-”;第三象限内只有正切和余切是“+”,其余全部是“-”; 第四象限内只有余弦是“+”,其余全部是“-”。
“ASCT”意即为“all(全部)”、“sin”、“tan ”、“cos ” (二)其他三角函数知识1、两角和差公式sin (α+ β)= sinαcosβ+ cosαsinβ sin (α-β)= sinαcosβ-cosαsinβ cos (α+ β)= cosαcosβ-sinαsinβ cos (α-β)= cosαcosβ+ sinαsinβtan (α+ β)=(tanα+tanβ )/(1-tanα·tanβ) tan (α-β)=(tanα-tanβ)/(1+tanα·tanβ)2、二倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α tan2α=αα2tan -12tan3、半角的正弦、余弦和正切公式sin 22α=2cos -1α cos 22α=2cos 1α+tan 22α=ααcos 1cos -1+ tan 2α=ααsin cos -1=ααcos 1sin +4、万能公式sinα=2tan 122tan 2αα+ cosα=2tan 12tan -122αα+ tanα=2tan -122tan 2αα5、三倍角的正弦、余弦和正切公式sin3α=3sinα-4sin 3α cos3α=4cos 3α-3cosα tan3α=α—α—α233tan 1tan 3tan6、三角函数的和差化积公式 sinα+sinβ=2sin 2βα+·cos2β—α sinα-sinβ= 2cos2βα+·sin 2β—αcosα+cosβ= 2cos 2βα+·cos 2β—α cosα-c osβ=-2sin 2βα+·sin 2β—α7、三角函数的积化和差公式sinα·cosβ=21[sin(α+β)+sin(α-β)] cosα·sinβ=21[sin(α+β)-sin(α-β)]cosα·cosβ=21[cos(α+β)+cos(α-β)]sinα·sinβ=-21[cos(α+β)-cos(α-β)]三、公式推导过程(一)万能公式推导 sin2α=2sinαcosα=αααα22sin cos cos sin 2+ (因为cos 2α+sin 2α=1) 再把上面的分式上下同除cos 2α,可得sin2α=2tan 122tan2αα+ 然后用2α代替α即可。
同理可推导余弦的万能公式。
正切的万能公式可通过正弦比余弦得到。
(二)三倍角公式推导tan3α=ααcos3sin3=αα—ααααααcos sin2sin cos2sin 2cos cos sin2+=αα—αα—αα—ααααcos sin 2sin cos cos sin sin cos cos sin 22222+ 上下同除以cos 3α,得: tan3α=α—α—α233tan 1tan 3tansin3α=sin(2α+α)=sin2αcosα+cos2αsinα=2sinαcos 2α+(1-2sin 2α)sinα=2sinα-2sin 3α+sinα-2sin 3α=3sinα-4sin 3αcos3α=cos(2α+α)=cos2αcosα-sin2αsinα=(2cos 2α-1)cosα-2cosαsin 2α=2cos 3α-cosα+(2cosα-2cos 3α)=4cos 3α-3cosα即 sin3α=3sinα-4sin 3αcos3α=4cos 3α-3cosα (三)和差化积公式推导首先,我们知道sin(α+β)=sin αcos β+cos αsin β, sin(α-β)=sin αcos β-cos αsin β我们把两式相加就得到sin(α+β)+sin(α-β)=2sin αcos β所以,sin αcos β=2sin sin β)—(αβ)(α++同理,若把两式相减,就得到cos αsin β=2sin sin β)—(α—β)(α+同样的,我们还知道cos(α+β)=cos αcos β-sin αsin β,cos(α-β)=cos αcos β+sin αsin β所以,把两式相加,我们就可以得到cos(α+β)+cos(α-β)=2cos αcos β所以我们就得到,cos αcos β=2cos cos β)—(αβ)(α++同理,两式相减我们就得到sin αsin β= —2cos cos β)—(α—β)(α+ 这样,我们就得到了积化和差的四个公式:sin αcos β=2sin sin β)—(αβ)(α++ cos αsin β=2sin sin β)—(α—β)(α+ cos αcos β= 2cos cos β)—(αβ)(α++ sin αsin β=-2cos cos β)—(α—β)(α+ 好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式.我们把上述四个公式中的α+b 设为x, α-β设为y,那么α=2y x +, β=2yx - 把α,β分别用x,y 表示就可以得到和差化积的四个公式:sinx+siny=2sin2y x +cos 2yx - sinx-siny=2cos 2y x +sin 2yx -cosx+cosy=2cos 2y x +cos 2yx -cosx-cosy=—2sin 2y x +sin 2yx -。