动态光散射

合集下载

动态光散射(DLS)分析

动态光散射(DLS)分析

动态光散射(DLS)分析动态光散射(Dynamic light scattering, DLS),也称光子相关光谱法(photon correlation spectroscopy, PCS)或准弹性光散射(quasi-elastic light scattering, QELS),是用于确定溶液样品中悬浮体或聚合物中颗粒尺寸和半径分布最常用的分析方法之一。

在DLS的范围内,通常通过强度或光子自相关函数(ACF)分析时间波动。

单色光束(例如激光)照射到含有以布朗运动形式移动的球形粒子的测试溶液中,当光击中移动的粒子时会引起多普勒频移,从而改变原始光的波长。

这一改变,与粒子的尺寸有关。

通过ACF测量颗粒在被测介质中的扩散系数,可以计算出球体的尺寸分布并详细描述颗粒在被测介质中的运动。

同时,DLS还可用于探测复杂流体的行为,如浓缩聚合物溶液。

基于动态光散射(DLS)的分析。

在实际应用中,DLS可用于确定各种颗粒的尺寸分布,包括蛋白质、聚合物、胶束、碳水化合物和纳米颗粒。

如果系统在尺寸上不分散,则可以确定颗粒的平均有效直径,因为测量不仅取决于颗粒的核心尺寸,还取决于表面结构的尺寸、粒子浓度和介质中离子的类型。

动态光散射(DLS)分析的优点1. 准确、可靠和可重复的粒度分析。

2. 样品制备简单,甚至无需样品制备就可以直接对天然样品进行分析。

3. 设置简单和全自动化测定。

4. 可测量小于1nm的尺寸。

5. 可测量分子量 <1000Da的分子。

6. 体积要求低。

动态光散射DLS分析可获得重要的参数,例如分子量、回转半径、平移扩散常数等。

欢迎来电咨询!。

动态光散射原理

动态光散射原理

动态光散射原理动态光散射原理是指在光学系统中,当光线通过介质或者物体表面时,由于介质的不均匀性或者物体表面的粗糙度,导致光线的散射现象。

这种散射并非静态不变的,而是随着时间的推移而发生变化,因此被称为动态光散射。

动态光散射原理在许多领域都有着重要的应用,特别是在光通信、遥感、医学成像等方面。

在光通信中,由于大气的湍流扰动和其他环境因素的影响,光信号在传输过程中会发生动态光散射,从而影响信号的传输质量和稳定性。

在遥感领域,动态光散射的特性可以被用来获取地表的粗糙度信息,进而实现地表的三维重建和形态分析。

在医学成像中,动态光散射也可以被用来观察生物组织的微观结构和变化,为疾病诊断和治疗提供重要依据。

动态光散射的原理可以通过光学理论和统计学方法来解释。

光学理论认为,动态光散射是由于介质或者物体表面的微小不均匀性导致入射光线在不同方向上发生反射、折射和散射,从而形成了在空间中呈现出随机性和动态性的光场。

统计学方法则从概率和随机过程的角度来分析动态光散射现象,通过对光场的统计特性和时间演化规律进行研究,揭示了动态光散射的统计规律和动力学行为。

在实际应用中,我们可以利用动态光散射原理来设计和优化光学系统,改善光信号的传输质量和稳定性。

例如,通过对动态光散射的特性进行建模和仿真,可以帮助我们更好地理解光信号在复杂环境中的传输规律,从而指导光通信系统的设计和优化。

同时,动态光散射原理也为遥感和医学成像领域提供了重要的技术手段,可以实现对地表和生物组织的高精度观测和成像。

总之,动态光散射原理是光学系统中一个重要的现象,它不仅具有理论上的重要性,还有着广泛的应用前景。

通过对动态光散射的深入研究和应用,我们可以更好地理解和利用光场的统计特性,从而推动光学技术的发展和应用。

希望未来能有更多的科研工作者和工程师投入到动态光散射领域的研究和应用中,为光学技术的发展贡献自己的力量。

动态光散射

动态光散射

动态光散射动态光散射Dynamic Light Scattering (DLS),也称光子相关光谱Photon Correlation Spectroscopy (PCS) ,准弹性光散射quasi-elastic scattering,测量光强的波动随时间的变化。

DLS技术测量粒子粒径,具有准确、快速、可重复性好等优点,已经成为纳米科技中比较常规的一种表征方法。

随着仪器的更新和数据处理技术的发展,现在的动态光散射仪器不仅具备测量粒径的功能,还具有测量Zeta电位、大分子的分子量等的能力。

(一)动态光散射的基本原理1. 粒子的布朗运动Brownian motion导致光强的波动微小粒子悬浮在液体中会无规则地运动布朗运动的速度依赖于粒子的大小和媒体粘度,粒子越小,媒体粘度越小,布朗运动越快。

2. 光信号与粒径的关系光通过胶体时,粒子会将光散射,在一定角度下可以检测到光信号,所检测到的信号是多个散射光子叠加后的结果,具有统计意义(见附件一)。

瞬间光强不是固定值,在某一平均值下波动,但波动振幅与粒子粒径有关(见附件二)。

某一时间的光强与另一时间的光强相比,在极短时间内,可以认识是相同的,我们可以认为相关度为1,在稍长时间后,光强相似度下降,时间无穷长时,光强完全与之前的不同,认为相关度为0(此原理见附件三)。

根据光学理论可得出光强相关议程(见附件四)。

之前提到,正在做布朗运动的粒子速度,与粒径(粒子大小)相关(Stokes - Einstein方程)。

大颗粒运动缓慢,小粒子运动快速。

如果测量大颗粒,那么由于它们运动缓慢,散射光斑的强度也将缓慢波动。

类似地,如果测量小粒子,那么由于它们运动快速,散射光斑的密度也将快速波动。

附件五显示了大颗粒和小粒子的相关关系函数。

可以看到,相关关系函数衰减的速度与粒径相关,小粒子的衰减速度大大快于大颗粒的。

最后通过光强波动变化和光强相关函数计算出粒径及其分布(见附件六)。

动态光散射实验报告(3篇)

动态光散射实验报告(3篇)

第1篇一、实验目的本实验旨在利用动态光散射(Dynamic Light Scattering,DLS)技术测量溶液中纳米颗粒的粒径分布,并分析其粒度特性。

二、实验原理动态光散射技术是一种非侵入性、实时监测溶液中颗粒运动的技术。

当一束激光照射到溶液中的颗粒时,颗粒会散射激光,散射光强随时间的变化与颗粒的粒径和布朗运动有关。

通过分析散射光强的时间自相关函数,可以计算出颗粒的粒径分布。

三、实验仪器与材料1. 仪器:- 动态光散射仪(例如:Nicomp 380)- 激光器(例如:633nm He-Ne激光器)- 光电倍增管- 数字相关器- 数据采集卡- 计算机2. 材料:- 纳米颗粒溶液(例如:聚苯乙烯胶乳)- 纯净水- 容量瓶- 移液器四、实验步骤1. 将纳米颗粒溶液稀释至适当浓度,用移液器移取一定体积的溶液至容量瓶中。

2. 将容量瓶置于动态光散射仪样品池中,确保样品池的温度稳定。

3. 打开动态光散射仪,设置激光波长、散射角度、测量时间等参数。

4. 启动动态光散射仪,记录散射光强随时间的变化数据。

5. 将数据导入计算机,进行自相关函数分析。

6. 利用自相关函数反演算法,计算颗粒的粒径分布。

五、实验结果与分析1. 实验测得的散射光强自相关函数如图1所示。

图1:散射光强自相关函数2. 通过自相关函数反演算法,得到颗粒的粒径分布如图2所示。

图2:颗粒粒径分布由图2可知,纳米颗粒的粒径分布主要集中在100-300nm范围内,平均粒径约为200nm。

六、实验讨论1. 实验结果表明,动态光散射技术可以有效地测量溶液中纳米颗粒的粒径分布,为纳米材料的研究提供了有力的工具。

2. 在实验过程中,需要注意以下因素:- 样品浓度:样品浓度过高会导致颗粒聚集,影响测量结果;样品浓度过低,则信号强度不足,难以进行精确测量。

- 温度:温度对颗粒的布朗运动有显著影响,实验过程中需确保样品池的温度稳定。

- 激光波长:不同波长的激光对颗粒的散射特性不同,选择合适的激光波长可以提高测量精度。

动态光散射实验表征

动态光散射实验表征

动态光散射(Dynamic Light Scattering, DLS)是一种广泛应用于纳米科学、材料科学、生物技术等领域,用来测定纳米颗粒和生物大分子尺寸及其分布的实验技术。

动态光散射实验表征主要包括以下几个方面:1.样品制备与测量条件:样品通常需要是均匀的悬浊液或溶液,且颗粒浓度适中,过高或过低的浓度可能会影响测量结果的准确性。

测量通常在恒温条件下进行,以减少温度变化对颗粒布朗运动的影响。

2.测量原理:DLS利用光照射样品时,样品中的颗粒由于布朗运动产生光散射,散射光的强度随时间呈现出波动,波动幅度与颗粒大小有关。

通过测量散射光的自相关函数(Autocorrelation Function, ACF),可以得到颗粒的扩散系数,进而计算颗粒的流体力学直径。

3.数据分析:使用专门的动态光散射仪器收集散射光强度随时间变化的数据,然后通过FFT变换(快速傅里叶变换)计算自相关函数。

应用斯托克斯-爱因斯坦方程(Stokes-Einstein equation)将扩散系数转换为颗粒的水动力学直径(Hydrodynamic Diameter)。

4.粒径分布:DLS不仅可以测定单个颗粒的尺寸,还可以给出样品中颗粒尺寸分布的信息,表现为粒径分布曲线或粒径分布直方图。

5.质量和粒径的关系:如果知道颗粒的密度,动态光散射还可以用来估算颗粒的绝对质量。

6.表征参数:主要表征参数包括:平均粒径、多分散系数(反映粒径分布宽度)、Zeta电位(反映颗粒的表面电荷性质,但这通常由电泳光散射实验获得)等。

7.实验注意事项:需要注意样品的稳定性、光学性质对测量的影响,以及样品容器的清洁度和背景散射的扣除等问题。

动态光散射实验是一种无损、快速、方便的纳米颗粒表征手段,但也受限于样品的光学性质、浓度以及粒径范围(通常适用于1nm至几微米的颗粒)。

对于更小的颗粒或者更大范围的粒径分布,可能需要结合其他表征技术如电子显微镜、原子力显微镜等一起使用。

动态光散射技术的使用教程

动态光散射技术的使用教程

动态光散射技术的使用教程光散射是指光在介质中遇到小尺寸的颗粒、细菌或细胞等物质时,发生散射现象。

动态光散射技术则是利用这种散射现象来研究物质的形态结构、运动性质以及浓度等信息。

本文将向你介绍动态光散射技术的使用教程。

一、动态光散射技术原理动态光散射技术是基于光的干涉和散射现象进行测量的一种方法。

当被测样品中的颗粒或分子遇到光束时,它们会散射光线,形成全方向的光强分布。

这些散射光经过检测器的接收和处理,可以得到物质的一系列信息。

二、动态光散射技术应用领域动态光散射技术广泛应用于生物医药、材料科学、环境监测等领域。

在生物医药领域,它可以用于细胞形态学研究、蛋白质结构分析、药物释放动力学等方面。

在材料科学领域,它可以帮助研究纳米颗粒的尺寸分布、聚合物的形态结构等。

在环境监测领域,它可以用来检测水中的微粒浓度、大气污染物等。

三、动态光散射技术仪器和操作步骤1. 光源:选择合适的光源是动态光散射实验的第一步。

常见的光源有激光、LED等,选择光源时要考虑波长和功率等参数。

2. 散射角度:确定合适的散射角度是保证实验准确性的关键。

散射角度过大或过小都会影响实验结果,需根据样品和需求进行调整。

3. 检测器:选择合适的检测器,能够接收到散射光的全部信息,并有良好的灵敏度和动态范围。

常用的检测器有光电二极管、光电倍增管等。

4. 数据处理:动态光散射数据处理是实验的核心部分。

通过散射光的强度变化,可以获得颗粒或分子的尺寸、形状、浓度等信息。

常用的数据处理方法包括光亮度自相关函数分析、多角度散射法等。

五、案例分析:动态光散射在生物医药领域的应用动态光散射技术在生物医药领域的应用非常广泛。

以细胞形态学研究为例,通过测量细胞的散射信号,可以分析细胞的形状、大小、聚集状态等。

这对于癌细胞的早期诊断和治疗具有重要意义。

此外,动态光散射还可以应用于蛋白质结构分析。

利用动态光散射技术,可以测量蛋白质溶液中的散射光强度,从而分析蛋白质的聚集情况、分子量等。

动态光散射

动态光散射

动态光散射动态光散射 Dyn amic Light Scatteri ng (DLS),也称光子相关光谱 Photo n Correlation Spectroscopy (PCS),准弹性光散射quasi-elastic scatteri ng ,测量光强的波动随时间的变化。

DLS技术测量粒子粒径,具有准确、快速、可重复性好等优点,已经成为纳米科技中比较常规的一种表征方法。

随着仪器的更新和数据处理技术的发展,现在的动态光散射仪器不仅具备测量粒径的功能,还具有测量Zeta电位、大分子的分子量等的能力。

(一)动态光散射的基本原理1. 粒子的布朗运动Brownian motion导致光强的波动微小粒子悬浮在液体中会无规则地运动布朗运动的速度依赖于粒子的大小和媒体粘度,粒子越小,媒体粘度越小,布朗运动越快。

2. 光信号与粒径的关系光通过胶体时,粒子会将光散射,在一定角度下可以检测到光信号,所检测到的信号是多个散射光子叠加后的结果,具有统计意义(见附件一)。

瞬间光强不是固定值,在某一平均值下波动,但波动振幅与粒子粒径有关(见附件二)。

某一时间的光强与另一时间的光强相比,在极短时间内,可以认识是相同的,我们可以认为相关度为1,在稍长时间后,光强相似度下降,时间无穷长时,光强完全与之前的不同,认为相关度为0 (此原理见附件三)。

根据光学理论可得出光强相关议程(见附件四)。

之前提到,正在做布朗运动的粒子速度,与粒径(粒子大小)相关(Stokes - Einstein方程)。

大颗粒运动缓慢,小粒子运动快速。

如果测量大颗粒,那么由于它们运动缓慢,散射光斑的强度也将缓慢波动。

类似地,如果测量小粒子,那么由于它们运动快速,散射光斑的密度也将快速波动。

附件五显示了大颗粒和小粒子的相关关系函数。

可以看到,相关关系函数衰减的速度与粒径相关,小粒子的衰减速度大大快于大颗粒的。

最后通过光强波动变化和光强相关函数计算出粒径及其分布(见附件六)。

动态光散射-精选.doc

动态光散射-精选.doc

动态光散射动态光散射Dynamic Light Scattering (DLS) ,也称光子相关光谱Photon Correlation Spectroscopy (PCS) ,准弹性光散射quasi-elastic scattering ,测量光强的波动随时间的变化。

DLS 技术测量粒子粒径,具有准确、快速、可重复性好等优点,已经成为纳米科技中比较常规的一种表征方法。

随着仪器的更新和数据处理技术的发展,现在的动态光散射仪器不仅具备测量粒径的功能,还具有测量Zeta 电位、大分子的分子量等的能力。

(一)动态光散射的基本原理1. 粒子的布朗运动Brownian motion 导致光强的波动微小粒子悬浮在液体中会无规则地运动布朗运动的速度依赖于粒子的大小和媒体粘度,粒子越小,媒体粘度越小,布朗运动越快。

2. 光信号与粒径的关系光通过胶体时,粒子会将光散射,在一定角度下可以检测到光信号,所检测到的信号是多个散射光子叠加后的结果,具有统计意义(见附件一)。

瞬间光强不是固定值,在某一平均值下波动,但波动振幅与粒子粒径有关(见附件二)。

某一时间的光强与另一时间的光强相比,在极短时间内,可以认识是相同的,我们可以认为相关度为1,在稍长时间后,光强相似度下降,时间无穷长时,光强完全与之前的不同,认为相关度为0(此原理见附件三)。

根据光学理论可得出光强相关议程(见附件四)。

之前提到,正在做布朗运动的粒子速度,与粒径(粒子大小)相关(Stokes - Einstein 方程)。

大颗粒运动缓慢,小粒子运动快速。

如果测量大颗粒,那么由于它们运动缓慢,散射光斑的强度也将缓慢波动。

类似地,如果测量小粒子,那么由于它们运动快速,散射光斑的密度也将快速波动。

附件五显示了大颗粒和小粒子的相关关系函数。

可以看到,相关关系函数衰减的速度与粒径相关,小粒子的衰减速度大大快于大颗粒的。

最后通过光强波动变化和光强相关函数计算出粒径及其分布(见附件六)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动态光散射原理-Dynamic Light Scattering (DLS)
动态光散射(DLS),也称光子相关光谱Photon Correlation Spectroscopy (PCS) ,准弹性光散射quasi-elastic scattering,测量光强的波动随时间的变化。

DLS技术测量粒子粒径,具有准确、快速、可重复性好等优点,已经成为纳米科技中比较常规的一种表征方法。

随着仪器的更新和数据处理技术的发展,现在的动态光散射仪器不仅具备测量粒径的功能,还具有测量Zeta电位等的能力。

因此,被广泛地应用于描述各种各样的微粒系统,包括合成聚合物(如乳液、PVC、等等),水包油、油包水型乳剂、囊泡、胶束、生物大分子、颜料、染料、二氧化硅、金属溶胶,陶瓷和无数其他胶体悬浮液和分散体。

美国PSS粒度仪Nicomp380系列,就是采用的这种检测原理。

动态光散射:扩散的影响
经典的光散射测得的是平均时间散射光强度,认为散射强度与时间没有关系,实际上光散射强度是随时间波动的,这是由于检测点内不同的粒子发出的不同的光波相干叠加的或“重合”的结果,这个物理现象被称为“干涉”。

每个单独的散射波到达探测器时建立一个对应入射激光波的相位关系。

在光电倍增管检测器前方的一个狭缝处相互混合发生干涉。

光电倍增管检测器在一个特定的散射角(90度角的DLS模块)处测量净散射量。

光的衍射(Diffraction):又称为绕射,波遇到障碍物或小孔后通过散射继续传播的现象.衍射现象是波的特有现象,一切波都会发生衍射现象。

光的散射(Scattering):光束通过不均匀媒质时,部分光束将偏离原来方向而分散传播,从侧向也可以看到光的现象,叫做光的散射.
为了更好的理解粒子分散和散射强度中
波动结果的相关性,我们假设只有两个悬浮
粒子存在的简单情况。

如图2所示。

检测器
(远离散射单元,针孔孔径) 所检测到的净强
度是一个只有两个散射波叠加的结果。

在图
2中,我们定义了两个光路长度、
L1 = l1a + l1b 和 L2 = l2a + l2b。

(更准
确地说,折射光折射率会影响光程。

但为了
简单起见,我们假设折射率为1.0,这样光程
L1和L2是就可以简化为图2所示)。

当两个粒子所处的位置恰好使两个散射图2:简化的散射模型:两个扩散粒子
波在到达探测器时∆L = L1 - L2刚好等于激
光的波长λ整数倍时,两个散射光波就会增强。

这就是常说的“相长”干涉,在探测器内产生最大可能的强度。

还有一种极端,你有可能发现两个粒子位置是这样的;∆L等于半波长λ/ 2的奇数倍。

在这种情况下,两个散射波到达探测器时彼此完全抵消。

这完全是“相消”干涉,由此产生的净强度为零。

随着时间的推移,粒子的扩散将导致探测器接收到的净强度在这两个极端值之间波动——就像一个典型的“噪音”信号。

如图3所示,为一个具有代表性的总信号强度。

当光程在受到半波长λ/ 2(增加或减少)的影响时。

信号强度会在最大值和最小值之间变化。

真正构成DLS粒子粒径测量的关键物理因素就是是图3所示的——波动随时间的表现取决于粒子的大小。

简单起见,我们假设粒子一样大的,有单一的、良好的扩散系数。

小颗粒在溶液中“抖动”相对迅速,就得到一个快速波动的强度信号。

相比之下,大颗粒扩散地更慢,导致强度信号又慢又大。

这种情况下假设温度是保持不变的,因为温度与粒径在决定散射率方面作用相当,都会影响到合成波动强度的时间。

当然,在真实情况下悬浮液中都不只存在两个粒子,然而,干涉的原理还是相同的。

我们会观察到产生的信号会按平均水平波动,这跟检测区内粒子的数量及他们各自的散射强度——方程1 a 和1 b 成比例的。

波动的时间范围取决于粒子扩散系数和粒子的粒度。

见图
4 a 、b 和c 分别为“小”、“中”和“大”粒子粒径(水平轴都使用相同的时间段)。

图4 a, b, c: 代表粒子粒径为“小”(a),“中”(b)和“大”(c)的散射光波强度与时间的关系
从扩散系数获得粒度
如图4所示散射光强度与时间的关系似乎是杂乱无章的,实际上它们是符合统计规律的,这里我们引入“自动相关函数C
(t’)”,之所以要选用“自动相关函数”是因为可以通过拉普拉斯逆转换,将光信号转换成指数光谱的形式进行数据处理。

这样杂乱无章的强度起伏图就变成了有规则的C
( t’)平滑曲线。

图5:自相关函数C(t)扩散的均匀颗粒:指数式衰变 变量τ是一个的指数函数里特定的衰变时间常数,控制自相关函数C(t)向long -t 极限值(基线B)衰
变的速度。

因此,粒子越大扩散系数越小,产生的波动越慢,衰减时间常数τ就越大。

现在我们可以通过粒子衰变常数τ就能够得到的扩散系数D 1/τ= 2DK2 (a) 或者D =(1/2K2)(1/τ) (b)
在这里,k 被叫做“散射光波矢量”。

它是一个常数,由溶液中的激光的波长和PMT 探测器接收到的散射光散射角θ决定。

(美国PSS 粒度仪 NICOMP DLS 模式中散射角θ为90度),事实上K 完全是一个校准的常数,它关系到激光的散射时间跟距离。

常数K 表示如下: K = (4πn/λ) sin θ/2 (c)
其中n 是溶剂的折射率(例如水为1.33)。

DLS 模式的情况下,θ= 90 o 和λ= 632.8nm , K = 1.868×105 cm -1。

这就是DLS 测试粒子大小的原理。

我们通过计算的波动强度的自相关函数,可以获得指数衰变曲线。

从衰变时间常数τ,我们可以获得粒子扩散系数D 使用Stokes -Einstein 方程(2),我们最后可以计算出粒子的半径(假定粒子是一个球体) D = kT / 6πηR (d)
K 是玻耳兹曼常数(1.38 X 10-16 erg K -1),T 是温度(0K= 0o C + 273),η是溶液的剪切粘度(如水在20摄氏度时,η= 1.002 X10-2poise)。

相关文档
最新文档