动态光散射测定
动态光散射(DLS)分析

动态光散射(DLS)分析动态光散射(Dynamic light scattering, DLS),也称光子相关光谱法(photon correlation spectroscopy, PCS)或准弹性光散射(quasi-elastic light scattering, QELS),是用于确定溶液样品中悬浮体或聚合物中颗粒尺寸和半径分布最常用的分析方法之一。
在DLS的范围内,通常通过强度或光子自相关函数(ACF)分析时间波动。
单色光束(例如激光)照射到含有以布朗运动形式移动的球形粒子的测试溶液中,当光击中移动的粒子时会引起多普勒频移,从而改变原始光的波长。
这一改变,与粒子的尺寸有关。
通过ACF测量颗粒在被测介质中的扩散系数,可以计算出球体的尺寸分布并详细描述颗粒在被测介质中的运动。
同时,DLS还可用于探测复杂流体的行为,如浓缩聚合物溶液。
基于动态光散射(DLS)的分析。
在实际应用中,DLS可用于确定各种颗粒的尺寸分布,包括蛋白质、聚合物、胶束、碳水化合物和纳米颗粒。
如果系统在尺寸上不分散,则可以确定颗粒的平均有效直径,因为测量不仅取决于颗粒的核心尺寸,还取决于表面结构的尺寸、粒子浓度和介质中离子的类型。
动态光散射(DLS)分析的优点1. 准确、可靠和可重复的粒度分析。
2. 样品制备简单,甚至无需样品制备就可以直接对天然样品进行分析。
3. 设置简单和全自动化测定。
4. 可测量小于1nm的尺寸。
5. 可测量分子量 <1000Da的分子。
6. 体积要求低。
动态光散射DLS分析可获得重要的参数,例如分子量、回转半径、平移扩散常数等。
欢迎来电咨询!。
动态光散射实验表征

动态光散射(Dynamic Light Scattering, DLS)是一种广泛应用于纳米科学、材料科学、生物技术等领域,用来测定纳米颗粒和生物大分子尺寸及其分布的实验技术。
动态光散射实验表征主要包括以下几个方面:1.样品制备与测量条件:样品通常需要是均匀的悬浊液或溶液,且颗粒浓度适中,过高或过低的浓度可能会影响测量结果的准确性。
测量通常在恒温条件下进行,以减少温度变化对颗粒布朗运动的影响。
2.测量原理:DLS利用光照射样品时,样品中的颗粒由于布朗运动产生光散射,散射光的强度随时间呈现出波动,波动幅度与颗粒大小有关。
通过测量散射光的自相关函数(Autocorrelation Function, ACF),可以得到颗粒的扩散系数,进而计算颗粒的流体力学直径。
3.数据分析:使用专门的动态光散射仪器收集散射光强度随时间变化的数据,然后通过FFT变换(快速傅里叶变换)计算自相关函数。
应用斯托克斯-爱因斯坦方程(Stokes-Einstein equation)将扩散系数转换为颗粒的水动力学直径(Hydrodynamic Diameter)。
4.粒径分布:DLS不仅可以测定单个颗粒的尺寸,还可以给出样品中颗粒尺寸分布的信息,表现为粒径分布曲线或粒径分布直方图。
5.质量和粒径的关系:如果知道颗粒的密度,动态光散射还可以用来估算颗粒的绝对质量。
6.表征参数:主要表征参数包括:平均粒径、多分散系数(反映粒径分布宽度)、Zeta电位(反映颗粒的表面电荷性质,但这通常由电泳光散射实验获得)等。
7.实验注意事项:需要注意样品的稳定性、光学性质对测量的影响,以及样品容器的清洁度和背景散射的扣除等问题。
动态光散射实验是一种无损、快速、方便的纳米颗粒表征手段,但也受限于样品的光学性质、浓度以及粒径范围(通常适用于1nm至几微米的颗粒)。
对于更小的颗粒或者更大范围的粒径分布,可能需要结合其他表征技术如电子显微镜、原子力显微镜等一起使用。
动态光散射测定

动态光散射仪测定粒径的操作步骤Brookhaven BI-200SM laser light scattering spectrometer该测试可以获得以下实验参数:流体力学粒径需要准备的样品:一份浓度适宜的样品溶液1. 制样注意:制样是实验成功的关键;无论是测试瓶、溶剂还是样品溶液都需要进行严格的除尘处理(通常采用注射器滤膜反复过滤),否则会引入较大的误差。
2. 打开光散射仪打开光源、检测器、恒温循环水的电源,在样品池内放入待测样品。
3. 打开软件:BIC Dynamic Light Scattering Software4. 调出测量窗口(1)将检测器调至“C档”(2)依次调出以下测定窗口A、在Correlation Functions下拉菜单中调出Correlator Control WindowB、在Graphs下拉菜单中调出Correlation Function WindowC、在Graphs下拉菜单中调出Count Rate History WindowD、在ISDA下拉菜单中调出NNLS WindowE、在ISDA下拉菜单中调出Contin Window(3)在Windows下拉菜单中点击Smart Tile,优化窗口布局(4)您将得到如下界面5. 设置参数在左上角窗口点击Dur调出测量时间参数窗口,依据当前的实际情况设置测量时间(如下图),点击“OK”在左上角窗口点击M.Bass调出测量基线参数窗口,选择Auto选项(如下图),点击“OK”在左上角窗口点击Params调出样品参数窗口,按照下图中的方框提示填写相应的值,点击“OK”注1、如溶剂为非水相体系,请在溶剂选项的下拉框中选择对应的体系(如下图)注2、如溶剂体系为软件提供的选项之外的情况,请在溶剂选项的下拉框中选择Unspecified,并手动输入相应的粘度和折光指数(如下图)在左上角窗口点击Display调出显示选项窗口,按照下图点勾,点击“OK”在左下角CF窗口点击Scale,在弹出的窗口中按照下图勾选Show Fit,然后在下面点选NNLS或Contin,点击“OK”6. 检测器设置:孔径选择100或200,波长根据激光源选择。
动态光散射仪测定乳粒粒径课件

显微镜观察法
通过显微镜观察乳粒的大 小,但这种方法操作繁琐 ,精度不高。
筛分法
通过不同孔径的筛子来分 离不同粒径的乳粒,但这 种方法不能测量小于筛孔 的乳粒。
动态光散射法
利用光散射原理测量乳粒 的大小,具有操作简便、 精度高等优点。
动态光散射法测定乳粒粒径的优势
非侵入性
动态光散射法是一种非侵入性的 测量方法,不会对乳制品造成任
乳制品口感
乳粒粒径大小直接影响乳制品的口感 ,粒径过大会使口感粗糙,粒径过小 则会使口感过于细腻。
营养成分分布
乳粒粒径大小还会影响乳制品中营养 成分的分布,进而影响其营养价值。
乳制品稳定性
乳粒粒径大小也会影响乳制品的稳定 性,过大的粒径可能导致乳制品分层 或沉淀,过小的粒径则会使乳制品过 于稳定。
乳粒粒径的测定方法
将处理后的数据存储在计算机中,以便后续分析 。
结果分析
数据解读
根据测量结果,分析乳粒粒径分布、平均粒径等指标。
结果比较
将实验结果与标准或已知数据进行比较,评估样品质量。
结果应用
根据分析结果,为生产、研发等提供指导建议。
05
数据解读与结果分析
数据 粒的粒径分布情况。数据以图表形式 展示,横坐标为粒径值,纵坐标为对 应的乳粒数量或比例。
动态光散射仪测定乳粒粒 径课件
• 动态光散射技术简介 • 乳粒粒径测定的意义 • 动态光散射仪的构造及工作原理 • 实验操作流程 • 数据解读与结果分析 • 注意事项与误差分析
01
动态光散射技术简介
动态光散射技术的基本原理
动态光散射技术利用光波在乳粒表面 的散射现象,通过测量散射光强度的 波动变化,推算出乳粒的粒径分布和 平均粒径。
动态光散射仪dls原理

动态光散射仪dls原理动态光散射仪(DLS)原理引言:动态光散射仪(Dynamic Light Scattering, DLS)是一种常用的技术手段,用于研究液体中颗粒的大小分布、粒径测量以及颗粒的动力学特性等。
本篇文章将着重介绍动态光散射仪的原理和基本操作流程。
一、动态光散射的基本原理动态光散射利用激光光束穿过悬浮颗粒物体时产生的光散射现象,从而获得颗粒的尺寸信息。
在悬浮液体中,颗粒和分子热运动引起了散射光的强度涨落,这种强度涨落蕴含了颗粒尺寸的信息。
1. 光散射公式动态光散射的基本公式为:I(q,t) = Nw(q)[h(q,R)S(q)+1]其中,I(q,t) 是在散射矢量q和时间t下的散射光强度;N 是颗粒的浓度;w(q) 是悬浊液体对散射光的响应函数;h(q,R) 是散射源的互相关函数;S(q) 是散射颗粒的结构因子。
2. 核自相关函数采用Fourier变换将光散射公式I(q,t)转换到散射矢量空间,可以得到颗粒尺寸的信息。
通常,通过核自相关函数分析悬浊液体的散射光信号,可以获得颗粒的尺寸分布以及相关运动的信息。
3. 平均动态光散射参数通过对DLS数据进行处理,可以获得颗粒的平均动态光散射参数,包括平均粒径(Z-average)、体积加权平均粒径(PdI)、颗粒浓度(NC)等指标。
这些参数能够提供关于颗粒的尺寸、分布以及体积分数等重要信息。
二、动态光散射仪的基本操作流程动态光散射仪是一种非常灵活和易用的仪器,可以广泛应用于颗粒分析、生物技术和材料科学等领域。
下面将介绍动态光散射仪的基本操作流程。
1. 样品制备样品制备是动态光散射分析的第一步,确保所研究的样品能够形成均匀的悬浊液体。
对于生物样品,需要进行适当的稀释和净化处理,以保证测量的准确性。
2. 仪器预热和校准在进行实际测量之前,需要进行仪器的预热和校准。
预热可以保证仪器在恒定的温度下工作,校准则是为了消除仪器偏差,保证测量结果的准确性。
动态光散射测量粒径及Zeta原理

动态光散射基本原理及其在纳米科技中的应用——Zeta电位测量前言:Zeta电位是纳米材料的一种重要表征参数。
现代仪器可以通过简便的手段快速准确地测得。
大致原理为:通过电化学原理将Zeta电位的测量转化成带电粒子淌度的测量,而粒子淌度的测量测是通过动态光散射,运用波的多普勒效应测得。
1.Zeta电位与双电层(图1)粒子表面存在的净电荷,影响粒子界面周围区域的离子分布,导致接近表面抗衡离子(与粒子电。
荷相反的离子)浓度增加。
于是,每个粒子周围均存在双电层。
围绕粒子的液体层存在两部分:一是内层区,称为Stern层,其中离子与粒子紧紧地结合在一起;另一个是外层分散区,其中离子不那么紧密的与粒子相吸附。
在分散层内,有一个抽象边界,在边界内的离子和粒子形成稳定实体。
当粒子运动时(如由于重力),在此边界内的离子随着粒子运动,但此边界外的离子不随着粒子运动。
这个边界称为流体力学剪切层或滑动面(slippingplane)。
在这个边界上存在的电位即称为Zeta电位。
2.Zeta电位与胶体的稳定性(DLVO理论)在1940年代Derjaguin, Landau, Verway与Overbeek 提出了描述胶体稳定的理论,认为胶体体系的稳定性是当颗粒相互接近时它们之间的双电层互斥力与范德瓦尔互吸力的净结果。
此理论提出当颗粒接近时颗粒之间的能量障碍来自于互斥力,当颗粒有足够的能量克服此障碍时,互吸力将使颗粒进一步接近并不可逆的粘在一起。
(图2) Zeta电位可用来作为胶体体系稳定性的指示:如果颗粒带有很多负的或正的电荷,也就是说很高的Zeta电位,它们会相互排斥,从而达到整个体系的稳定性;如果颗粒带有很少负的或正的电荷,也就是说它的Zeta电位很低,它们会相互吸引,从而达到整个体系的不稳定性。
一般来说, Zeta电位愈高,颗粒的分散体系愈稳定,水相中颗粒分散稳定性的分界线一般认为在+30mV或-30mV,如果所有颗粒都带有高于+30mV或低于-30mV的zeta电位,则该分散体系应该比较稳定3.影响Zeta电位的因素分散体系的Zeta电位可因下列因素而变化:A. pH 的变化B. 溶液电导率的变化C. 某种特殊添加剂的浓度,如表面活性剂,高分子测量一个颗粒的zeta势能作为上述变量的变化可了解产品的稳定性,反过来也可决定生成絮凝的最佳条件。
动态光散射原理.doc

一、动态光散射仪的工作原理动态光散射技术(dynamic light scattering,DLS)是指通过测量样品散射光强度起伏的变化来得出样品颗粒大小信息的一种技术。
之所以称为“动态”是因为样品中的分子不停地做布朗运动,正是这种运动使散射光产生多普勒频移。
动态光散射技术的工作原理可以简述为以下几个步骤:首先根据散射光的变化,即多普勒频移测得溶液中分子的扩散系数D,再由D=KT/6πηr可求出分子的流体动力学半径r,(式中K为玻尔兹曼常数,T为绝对温度,η为溶液的粘滞系数),根据已有的分子半径-分子量模型,就可以算出分子量的大小。
光在传播时若碰到颗粒,一部分光会被吸收,一部分会被散射掉。
如果分子静止不动,散射光发生弹性散射时,能量频率均不变。
但由于分子不停地在做杂乱无章的布朗运动,所以,当产生散射光的分子朝向监测器运动时,相当于把散射的光子往监测器送了一段距离,使光子较分子静止时产生的散射光要早到达监测器,也就是在监测器看来散射光的频率增高了;如果产生散射的分子逆向监测器运动,相当于把散射光子往远离监测器的方向拉了一把,结果使散射光的频率降低。
日常生活中,但我们听到救护车由远而近时,声音的频率越来越高,也是同样的道理。
实际上我们可以根据声音频率变化的快慢来判断救护车运动的速度。
光散射技术就是根据这种微小的频率变化来测量溶液中分子的扩散速度。
由D=KT/6πηr可知,当扩散速度一定时,由于实验时溶剂一定,温度是确定的,所以扩散的快慢只与流体动力学半径有关。
蛋白质多方面的性质都直接和它的大小相关。
因此,光散射广泛应用与蛋白质及其它大分子的理化性质研究。
动态光散射技术的优点:1.样品制备简单,不需特殊处理,测量过程不干扰样品本身的性质,所以能够反映出溶液中样品分子的真实状态;2.测量过程迅速,而且样品可以回收利用;3.检测灵敏度高,10kD蛋白质,浓度只需0.1mg/mL,样品体积只需20-50μL即可;4.能够实时监测样品的动态变化。
动态光散射仪测定乳粒粒径资料讲解

光强、体积和数量分布
米氏理论,输入颗粒的折光指数和吸收率
数量分布 Mie theo体ry 积分布
M光ie 强theo分ry布
(Rayleigh theory)
设想一个由相等数量的5nm和50nm球形粒子组成的混合物
N1:N2
N1*3/4πr13 : N2*3/4πr23 N1V1:N2V2
N1V12 : N2V22
ln g1() = ln A-Гt +(m2/2!)t2 +(m3/3!)t3 这里是衰减时间 Г为衰减率,与z-均扩散系数相关 Г = q2D q为散射矢量,q = (4πn/λ0)sin(q/2) n为折光指数,λ0为入射光波长 由z-均扩散系数得到z-均直径 m2/ Г2为分布系数PDI
17
Stokes-Einstein方程
光强平均粒径 = 50nm
粒子尺度分布
❖ 光强分布,体积分布和数量分布之间的相互转换基于以 下前提: ▪ 所有的粒子都是球型的 ▪ 所有的粒子都是均匀的,且密度相同 ▪ 光学性质已知(折光指数,吸收率)
❖ 动态光散射 DLS 技术往往高估分布峰的宽度,这个影 响可以从体积分布和数量分布的相互转换过程中体现
动态光散射技术 (Dynamic
Light Scattering, DLS)
------测量粒径及其分布
湖北大学 材料科学与工程学院 张全元
材料学院8008
主要内容
测试原理 运算法则 样品要求 样品制备
数据分析
2
什么是动态光散射?
动态光散射(DLS),也称光子相关光谱(Photon Correlation Spectroscopy, PCS),是指由于散射质点不停地做布朗运动而 引起的多普勒效应导致了散射光波长以入射光波长为中心 展开的现象,故又称准弹性散射。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动态光散射仪测定粒径的操作步骤
Brookhaven BI-200SM laser light scattering spectrometer
该测试可以获得以下实验参数:流体力学粒径
需要准备的样品:一份浓度适宜的样品溶液
1. 制样
注意:制样是实验成功的关键;无论是测试瓶、溶剂还是样品溶液都需要进行严格的除尘处理(通常采用注射器滤膜反复过滤),否则会引入较大的误差。
2. 打开光散射仪
打开光源、检测器、恒温循环水的电源,在样品池内放入待测样品。
3. 打开软件:BIC Dynamic Light Scattering Software
4. 调出测量窗口
(1)将检测器调至“C档”
(2)依次调出以下测定窗口
A、在Correlation Functions下拉菜单中调出Correlator Control Window
B、在Graphs下拉菜单中调出Correlation Function Window
C、在Graphs下拉菜单中调出Count Rate History Window
D、在ISDA下拉菜单中调出NNLS Window
E、在ISDA下拉菜单中调出Contin Window
(3)在Windows下拉菜单中点击Smart Tile,优化窗口布局
(4)您将得到如下界面
5. 设置参数
在左上角窗口点击Dur调出测量时间参数窗口,依据当前的实际情况设置测量时间(如下图),点击“OK”在左上角窗口点击M.Bass调出测量基线参数窗口,选择Auto选项(如下图),点击“OK”
在左上角窗口点击Params调出样品参数窗口,按照下图中的方框提示填写相应的值,点击“OK”
注1、如溶剂为非水相体系,请在溶剂选项的下拉框中选择对应的体系(如下图)
注2、如溶剂体系为软件提供的选项之外的情况,请在溶剂选项的下拉框中选择Unspecified,并手动输入相应的粘度和折光指数(如下图)
在左上角窗口点击Display调出显示选项窗口,按照下图点勾,点击“OK”
在左下角CF窗口点击Scale,在弹出的窗口中按照下图勾选Show Fit,然后在下面点选NNLS或Contin,点击“OK”
6. 检测器设置:孔径选择100或200,波长根据激光源选择。
注、孔径选择使检测光强在50KCPS~500KCPS左右。
如选择100,检测光强仍过强,考虑通过中密度滤光轮衰减入射光功率或者对样品进行稀释。
7. 测定
(1)点击主界面左上方的绿色圆形图标开始测试
(2)测试结束(如下图)
(3)NNLS/Contin结果分析
点击Layout弹出窗口,根据需要选择图像表现形式(如下图)
点击Summary弹出窗口,点Copy For Spreadsheet数据复制(可在EXCEL,TXT文件中处理),点Copy
To Clipboard进行图像复制(如下图)
8. 后续
(1)点击“Clear”可以清除当前的实验数据,开始另一样品的测试
(2)主界面上方菜单“File”✍“Database”✍可以中调出已测定的样品数据
9. 关机
(2)将检测器调至“C档”,关闭光源、检测器及循环水电源,取出样品;关闭软件,上传数据。