初二奥数题及答案1

合集下载

初二奥数竞赛试题及答案

初二奥数竞赛试题及答案

初二奥数竞赛试题及答案试题一:代数问题题目:若\( a \)、\( b \)、\( c \)为正整数,且满足\( a^2 + b^2 + c^2 = 1 \),求\( a \)、\( b \)、\( c \)的值。

答案:由于\( a \)、\( b \)、\( c \)为正整数,且\( a^2 + b^2 + c^2 = 1 \),我们可以推断出\( a \)、\( b \)、\( c \)的值只能是1或0。

因为\( 1^2 = 1 \),而\( 2^2 = 4 \),所以\( a \)、\( b \)、\( c \)不能大于1。

经过尝试,我们可以发现只有当\( a = b = c = 0 \)或\( a = 1, b = 0, c = 0 \)(或其它两种排列)时,等式成立。

试题二:几何问题题目:在一个直角三角形ABC中,∠C是直角,AC = 6,BC = 8,求斜边AB的长度。

答案:根据勾股定理,直角三角形的斜边的平方等于两直角边的平方和。

所以,我们有:\[ AB^2 = AC^2 + BC^2 \]\[ AB^2 = 6^2 + 8^2 \]\[ AB^2 = 36 + 64 \]\[ AB^2 = 100 \]\[ AB = \sqrt{100} \]\[ AB = 10 \]试题三:组合问题题目:有5种不同的颜色的球,每种颜色有3个球,现在要从中选出3个球,求不同的选法总数。

答案:这是一个组合问题,我们可以使用组合公式来解决。

组合公式为:\[ C(n, k) = \frac{n!}{k!(n-k)!} \]其中\( n \)是总数,\( k \)是要选择的数目。

在这个问题中,\( n = 15 \)(因为有5种颜色,每种3个球),\( k = 3 \)。

所以:\[ C(15, 3) = \frac{15!}{3!(15-3)!} \]\[ C(15, 3) = \frac{15 \times 14 \times 13}{3 \times 2 \times 1} \]\[ C(15, 3) = 455 \]试题四:逻辑问题题目:有5个盒子,每个盒子里都装有不同数量的糖果,从1到5。

简单初二奥数题五篇

简单初二奥数题五篇

简单初二奥数题五篇1.简单初二奥数题篇一1、甲乙两人相距4千米,乙在前,甲在后,两人同时同向出发,2小时后甲追上乙,乙每小时行6千米,甲的速度是多少千米?2、一架飞机执行空投救灾物资的任务,原计划每分钟飞行9千米。

为了争取时间,现在将速度提高到每分钟12千米,结果比原计划早到了30分钟。

机场与空投地点相隔多少千米?3、某校师生开展行军活动,以每小时6千米的速度前进,3小时后,学校派通讯员骑自行车去传达命令。

如果通讯员以每小时15千米的平均速度追赶队伍,需要几小时才能追上?4、甲乙二人由A地去B地,甲每分钟行50米,乙每分钟行45米,乙比甲早走4分钟,二人同时到达B地,那么AB两地的距离是多少米?5、某人步行的速度为每秒钟2米。

一列火车从后面开来,超过他用了10秒钟。

已知列车的长为90米,那么列车的速度是多少米?2.简单初二奥数题篇二1、A、B两村相距2800米,小明从A村步行出发5分钟后,小军骑车从B村出发,又经过10分钟两人相遇。

已知小军骑车比小明步行每分钟多行130米,小明步行速度是每分钟多少米?2、两辆电动小汽车在周长为360米的圆形道上不断行驶,甲车每分钟速度是20米,甲、乙两车同时分别从相距90米的A、B两点相背而行。

相遇后乙车立即返回,当它到达B点时,甲车过B点,又回到A点。

此时甲车立即返回,再过多少分钟与乙车相遇?3、甲、乙两人同时从南北两市镇相向出发,经过3小时,在一座小桥上相遇。

如果他们仍从南北市镇出发,甲每小时多走2千米,乙提前0.5小时出发,结果又在小桥上相遇。

如果甲晚出发0.5小时,乙每小时少走2千米,甲、乙两人还在小桥相遇。

求南北两镇距离?4、甲、乙二人分别从A、B两地同时出发,相向而行,出发时他们速度之比是3:2,他们第一次相遇后,甲的速度提高了20%,乙的速度提高了30%,这样,当甲到达B地时,乙离A地还有14千米,那么,A、B两地的距离是多少千米?5、学校操场的400米跑道中套着300米的小跑道,大跑道与小跑道有200米路程相重。

初二奥数题及答案

初二奥数题及答案

F E A D C B 初二数学奥数1、如图,梯形ABCD 中,AD ∥BC ,DE =EC ,EF ∥AB 交BC 于点F ,EF =EC ,连结DF 。

(1)试说明梯形ABCD 是等腰梯形;(2)若AD =1,BC =3,DC =2,试判断△DCF 的形状;(3)在条件(2)下,射线BC 上是否存在一点P ,使△PCD 是等腰三角形,若存在,请直接写出PB 的长;若不存在,请说明理由。

2、在边长为6的菱形ABCD中,动点M从点A出发,沿A→B→C向终点C运动,连接DM交AC于点N.(1)如图25-1,当点M在AB边上时,连接BN.①求证:△ABN≌△ADN;②若∠ABC = 60°,AM = 4,求点M到AD的距离;(2)如图25-2,若∠ABC = 90°,记点M运动所经过的路程为x(6≤x≤12)试问:x为何值时,△ADN为等腰三角形.3、对于点O 、M ,点M 沿MO 的方向运动到O 左转弯继续运动到N ,使OM =ON ,且OM ⊥ON ,这一过程称为M 点关于O 点完成一次“左转弯运动”.正方形ABCD 和点P ,P 点关于A 左转弯运动到P 1,P 1关于B 左转弯运动到P 2,P 2关于C 左转弯运动到P 3,P 3关于D 左转弯运动到P 4,P 4关于A 左转弯运动到P 5,…….(1)请你在图中用直尺和圆规在图中确定点P 1的位置;(2)连接P 1A 、P 1B ,判断 △ABP 1与△ADP 之间有怎样的关系?并说明理由。

(3)以D 为原点、直线AD 为y 轴建立直角坐标系,并且已知点B 在第二象限,A 、P 两点的坐标为(0,4)、(1,1),请你推断:P 4、P 2009、P 2010三点的坐标. P DCBA O NM图1 图24、如图1和2,在20×20的等距网格(每格的宽和高均是1个单位长)中,Rt△ABC从点A与点M重合的位置开始,以每秒1个单位长的速度先向下平移,当BC边与网的底部重合时,继续同样的速度向右平移,当点C与点P重合时,Rt△ABC停止移动.设运动时间为x秒,△QAC的面积为y.(1)如图1,当Rt△ABC向下平移到Rt△A1B1C1的位置时,请你在网格中画出Rt△A1B1C1关于直线QN成轴对称的图形;(2)如图2,在Rt△ABC向下平移的过程中,请你求出y与x的函数关系式,并说明当x 分别取何值时,y取得最大值和最小值?最大值和最小值分别是多少?(3)在Rt△ABC向右平移的过程中,请你说明当x取何值时,y取得最大值和最小值?最大值和最值分别是多少?为什么?5、如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.(1)图中有几个等腰三角形?猜想:EF与BE、CF之间有怎样的关系,并说明理由.(2)如图②,若AB≠AC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由。

(完整版)初二奥数题及答案新人教版

(完整版)初二奥数题及答案新人教版

初二奥数题及答案新人教版一、选择题(每小题6分,共30分)1.我们知道:太阳的温度很高,其表面温度大概有6 000℃,而太阳中心的温度更是达到了惊人的19 200 000℃,其实,对于具有一定质量的恒星来说,它的核心部分的温度总是随着年龄的增长而逐渐升高的,天文学家估算,有些恒星中心温度能够达到太阳中心温度的312.5倍,请你用科学记数法表示出这些恒星中心的温度为( )A.6.0× ℃B.6.0× ℃C.6.0× ℃D.6.1× ℃2.岩岩家住在人民广场附近,她经常看到有好多人把自行车存到广场旁边.有一次她问看自行车的老大爷,得知当天的存车量为6 882辆次,其中普通自行车的存车费是每辆次0.2元,电动自行车的存车费是每辆次0.5元,且到19∶00以后,两种存车费都要翻倍.已知该天普通自行车19∶00之前的存车量为5 180辆次,19∶00之后的存车量为335辆次,其总收入为电动自行车的1.5倍.那么电动自行车在晚19∶00前和19∶00后的存车量各有( )A.1 072辆次、294辆次B.1 174辆次、193辆次C.973辆次、394辆次D.1 173辆次、254辆次3.期中考试过后,李老师把八年级一班60名学生的成绩实行了统计,制成了如图1所示的统计图,其中60分以下的人数和90分以上的人数一样多,而其它三个分数段(60—70,70—80,80—90)的频率分别是0.15、0.35、0.30.按学校规定成绩在80分以上(含80分)为优秀,那么这次考试中成绩优秀的学生有( )A.20人B.24人C.25人D.27人4.小王8∶30从家出门去参观房展,家里的闹钟也指向8∶30,房展结束,他12∶00准时回到家,发现家里的闹钟才11∶46,那么,再过几分钟此闹钟才能指到12点整( )A.13分钟B.14分钟C.15分钟D.16分钟5.6月份以来,猪肉价格一路上涨.为平抑猪肉价格,某省积极组织货源,计划由A、B、C三市分别组织10辆、10辆和8辆运输车向D、E两市运送猪肉,现决定派往D、E两地的运输车分别是18辆、10辆,已知一辆运输车从A市到D、E两市的运费分别是200元和800元,从B市到D、E两市的运费分别是300元和700元,从C市到D、E两市的运费分别是400元和500元.若设从A、B两市都派x辆车到D市,则当这28辆运输车全部派出时,总运费W(元)的最小值和值分别是( )A.8 000,13 200B.9 000,10 000C.10 000,13 200D.13 200,15 400二、填空题(每小题6分,共30分)6.小龙乘坐商场的自动扶梯下楼,他以每步一级的速度往下走,结果走了30步就到楼下,猛然发现,因为匆忙包丢在购物处了,接着他又以下楼时速度的3倍冲上楼梯,结果走了90步才到楼上,当电梯停下时,露在外面的电梯一共有级.7.如图2,是一玻璃盛水容器,高度为45厘米,现容器中水面高度为15厘米,如图2(1)所示,现将容器口密封并倒置此容器后,如图2(2)所示,这时水面高度为25厘米,已知,此容器最多可盛水700毫升,那么此时容器中水的体积为毫升.8.“爱心”教育基金会资助某山村学校13 440元,其中七、八年级的学生平均每人60元,七、八年级的每位学生都接受了资助;九年级每个学生100元,但九年级学生有40%因家庭条件好而未接受资助.则该学校一共有名学生.9.如图3所示的徽标,是我国古代弦图的变形,该图是由其中的一个Rt△ABC绕中心点O顺时针连续旋转3次,每次旋转90°得到的,如果中间小正方形的面积为1cm2,这个图形的总面积为113cm2,且AD=2cm,请问徽标的外围周长为cm.10.你看过机器人大赛吗?在美国旧金山举办的世界机器人大赛中,机器人踢足球可谓是独占鳌头.如图4,,,,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速前进向点O滚动,机器人立即从点B出发,沿直线匀速前进截小球,在点C处截住了小球,如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC= cm.三、解答题(本大题共60分)11.(本题10分)去年在德国举行的“世界杯”足球赛吸引了世界各国球迷的目光,不知道你对足球比赛的积分规则了解多少呢?最为常用的足球比赛的积分规则为:胜一场得3分,平一场得1分,输一场得0分.现在知道,有一支足球队在某个赛季共需比赛16场,现已比赛了9场,输了2场,得19分.请问:。

初二奥数题及答案

初二奥数题及答案

初二数学奥数1、如图,梯形ABCD中,AD∥BC,DE=EC,EF∥AB交BC于点F,EF=EC,连结DF。

(1)试说明梯形ABCD是等腰梯形;(2)若AD=1,BC=3,DC DCF的形状;(3)在条件(2)下,射线BC上是否存在一点P,使△PCD是等腰三角形,若存在,请直接写出PB的长;若不存在,请说明理由。

2、在边长为6的菱形ABCD中,动点M从点A出发,沿A→B→C向终点C运动,连接DM交AC于点N.(1)如图25-1,当点M在AB边上时,连接BN.①求证:△ABN≌△ADN;②若∠ABC = 60°,AM = 4,求点M到AD的距离;(2)如图25-2,若∠ABC = 90°,记点M运动所经过的路程为x(6≤x≤12)试问:x为何值时,△ADN为等腰三角形.3、对于点O 、M ,点M 沿MO 的方向运动到O 左转弯继续运动到N ,使OM =ON ,且OM ⊥ON ,这一过程称为M 点关于O 点完成一次“左转弯运动”.形ABCD 和点P ,P 点关于A 左转弯运动到P 1,P 1关于B 左转弯运动到P 2,P 2关于C 左转弯运动到P 3,P 3关于D 左转弯运动到P 4,P 4关于A 左转弯运动到P 5,……. (1)请你在图中用直尺和圆规在图中确定点P 1的位置;(2)连接P 1A 、P 1B ,判断 △ABP 1与△ADP 之间有怎样的关系?并说明理由。

(3)以D 为原点、直线AD 为y 轴建立直角坐标系,并且已知点B 在第二象限,A 、P 两点的坐标为(0,4)、(1,1)三点的坐标.PDCBA NM图1图24、如图1和2,在20×20的等距网格(每格的宽和高均是1个单位长)中,Rt△ABC从点A与点M重合的位置开始,以每秒1个单位长的速度先向下平移,当BC边与网的底部重合时,继续同样的速度向右平移,当点C与点P重合时,Rt△ABC停止移动.设运动时间为x秒,△QAC的面积为y.(1)如图1,当Rt△ABC向下平移到Rt△A1B1C1的位置时,请你在网格中画出Rt△A1B1C1关于直线QN成轴对称的图形;(2)如图2,在Rt△ABC向下平移的过程中,请你求出y与x的函数关系式,并说明当x 分别取何值时,y取得最大值和最小值?最大值和最小值分别是多少?(3)在Rt△ABC向右平移的过程中,请你说明当x取何值时,y取得最大值和最小值?最大值和最值分别是多少?为什么?5、如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.(1)图中有几个等腰三角形?猜想:EF与BE、CF之间有怎样的关系,并说明理由.(2)如图②,若AB≠AC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由。

八年级上奥数试题及答案

八年级上奥数试题及答案

八年级上奥数试题及答案一、选择题1. 已知一个等差数列的前三项分别为1,4,7,那么第n项的通项公式为:A. 3n - 2B. 3n - 1C. 3nD. 3n + 1答案:B2. 一个数列的前四项是2,3,5,8,那么这个数列的第五项是:A. 11B. 13C. 15D. 17答案:A二、填空题1. 计算:(2x - 3)(2x + 3) = _______。

答案:4x^2 - 92. 已知一个数的平方根是4,那么这个数是 _______。

答案:16三、解答题1. 已知一个等腰三角形的底边长为10,两腰长分别为12,求这个三角形的面积。

答案:首先,我们可以通过勾股定理求出高。

设高为h,那么有:(12/2)^2 + h^2 = 12^26^2 + h^2 = 14436 + h^2 = 144h^2 = 108h = √108 = 6√3然后,我们可以利用三角形面积公式求出面积:面积 = (底边长 * 高) / 2 = (10 * 6√3) / 2 = 30√32. 计算:(3x^2 - 2x + 1) / (x^2 - 4)。

答案:首先,我们对分子和分母进行因式分解:分子:3x^2 - 2x + 1 = (3x - 1)(x - 1)分母:x^2 - 4 = (x + 2)(x - 2)然后,我们进行约分:(3x^2 - 2x + 1) / (x^2 - 4) = (3x - 1)(x - 1) / ((x + 2)(x - 2))= (3x - 1) / (x + 2)四、证明题1. 证明:对于任意实数a,b,c,有a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - ac - bc)。

答案:首先,我们展开等式右边:(a + b + c)(a^2 + b^2 + c^2 - ab - ac - bc) = a^3 + b^3 + c^3 + ab^2 + ac^2 + bc^2 + ba^2 + ca^2 + cb^2 - a^2b - b^2a -a^2c - c^2a - b^2c - c^2b - 3abc然后,我们合并同类项:= a^3 + b^3 + c^3 - 3abc这证明了等式左边等于等式右边,所以原命题成立。

简单的八年级奥数题5篇

简单的八年级奥数题5篇

简单的八年级奥数题5篇1.简单的八年级奥数题篇一1、客车由甲城开往乙城要10小时,货车由乙城开往甲城要15小时,两车同时从两城相向开出,相遇时客车比货车多行96千米,甲乙两城之间的公路长多少千米?2、甲乙两地相距1800千米,一架飞机从甲地飞往乙地,每小时飞行360千米,返回时顺风,比去时少用1小时.往返平均每小时飞行多少千米?3、一列火车每小时行68千米,另一列火车每小时行76千米,这两列火车分别从甲乙两站同时相对开出,行了5/6小时后还相距两站之间的铁路长的1/4,甲乙两站之间的铁路长多少千米?4、两辆汽车同时从东、西两站相对开出,第一次在离车站60千米的地方相遇,之后两车继续以原来速度前进,各车到站后立即返回,又在离中点30千米处相遇,两站相距多少千米?5、甲、乙两车分别从东、西两站同时相对开出。

第一次相遇时,甲车行了80千米,两车继续以原来速度前进,各车到站后立即返回,第二次相遇地点在第一次相遇地点东侧40千米处。

东、西两站相距多少千米?2.简单的八年级奥数题篇二1、A、C两地相距7000米,B是A、C两地的中点,小明骑自行车从A地、小华步行从B地同时出发去C地,并且到了C地立即返回,已知小明的速度为250米/分,小华的速度为100米/分,小明和小华相遇时距C地多少米?2、两辆汽车从两地同时出发,相向而行,已知甲车行完全程比乙车多用1.5小时,甲车每小时行40千米,乙车每小时行50千米,出发后多少小时两车相遇?3、甲车每小时行40千米,乙车每小时行60千米。

甲车从A地、乙车从B地同时出发相向而行。

两车相遇后4.5小时甲车到达B地,A、B两地相距多少千米?4、甲乙两车分别从相距306千米的两地同时开出,相向而行,4.5小时后相遇,甲乙两车的速度比为8:9,甲乙两车每小时各行多少千米?5、甲乙从同一地点向相反的方向行驶,甲下午6时出发每小时行40000米,乙第二天上午4时出发,经过10小时后两车相距1080千米。

初二组奥数试题及答案

初二组奥数试题及答案

初二组奥数试题及答案
1. 题目:一个数列的前三项是1, 2, 4,从第四项开始,每一项都是前三项的和。

求数列的第10项。

答案:数列的第10项是144。

2. 题目:一个正方形的边长增加10%,它的面积增加了多少百分比?
答案:面积增加了21%。

3. 题目:一个班级有40名学生,其中30%是女生。

如果班级中有5名学生转学,那么女生的比例变为多少?
答案:女生的比例变为33.33%。

4. 题目:一个数的平方减去它的一半等于36。

求这个数。

答案:这个数是12。

5. 题目:一个长方体的长、宽、高分别是10cm、8cm、6cm。

求这个长方体的体积。

答案:这个长方体的体积是480立方厘米。

6. 题目:一个圆的直径是14cm,求这个圆的面积。

答案:这个圆的面积是153.94平方厘米。

7. 题目:一个数的3倍加上它的一半等于45。

求这个数。

答案:这个数是15。

8. 题目:一个数的5倍减去它的2倍等于18。

求这个数。

答案:这个数是6。

9. 题目:一个数的4倍加上它的3倍等于72。

求这个数。

答案:这个数是12。

10. 题目:一个班级有50名学生,其中20%是男生。

如果班级中有10名学生转学,那么男生的比例变为多少?
答案:男生的比例变为24%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学奥数及答案1、如图,梯形ABCD中,AD∥BC,DE=EC,EF∥AB交BC于点F,EF=EC,连结DF。

(1)试说明梯形ABCD是等腰梯形;(2)若AD=1,BC=3,DC=,试判断△DCF的形状; (3)在条件(2)下,射线BC上是否存在一点P,使△PCD 是等腰三角形,若存在,请直接写出PB的长;若不存在,请说明理由。

2、在边长为6的菱形ABCD中,动点M从点A出发,沿A→B→C向终点C运动,连接DM交AC于点N。

(1)如图25-1,当点M在AB边上时,连接BN.①求证:△ABN≌△ADN;②若∠ABC = 60°,AM = 4,求点M到AD的距离;(2)如图25-2,若∠ABC = 90°,记点M运动所经过的路程为x(6≤x≤12)试问:x为何值时,△ADN为等腰三角形。

3、对于点O、M,点M沿MO的方向运动到O左转弯继续运动到N,使OM=ON,且OM⊥ON,这一过程称为M点关于O点完成一次“左转弯运动”.正方形ABCD和点P,P点关于A左转弯运动到P1,P1关于B左转弯运动到P2,P2关于C左转弯运动到P3,P3关于D左转弯运动到P4,P4关于A左转弯运动到P5,…….(1)请你在图中用直尺和圆规在图中确定点P1的位置;(2)连接P1A、P1B,判断△ABP1与△ADP之间有怎样的关系?并说明理由。

(3)以D 为原点、直线A D为轴建立直角坐标系,并且已知点B 在第二象限,A 、P 两点的坐标为(0,4)、(1,1),请你推断:P 4、P 2009、P 2010三点的坐标.4、如图1和2,在20×20的等距网格(每格的宽和高均是1个单位长)中,Rt △A BC从点A 与点M 重合的位置开始,以每秒1个单位长的速度先向下平移,当BC 边与网的底部重合时,继续同样的速度向右平移,当点C 与点P重合时,Rt△ABC 停止移动.设运动时间为x 秒,△QAC 的面积为y 。

...感谢聆听...(1)如图1,当Rt △ABC 向下平移到Rt △A 1B 1C 1的位置时,请你在网格中画出Rt △A 1B 1C 1关于直线QN 成轴对称的图形;(2)如图2,在Rt △AB C向下平移的过程中,请你求出y 与x 的函数关系式,并说明当x 分别取何值时,y 取得最大值和最小值?最大值和最小值分别是多少?(3)在Rt △ABC向右平移的过程中,请你说明当x 取何值时,y 取得最大值和最小值?最大值和最值分别是多少?为什么?5、如图①,△AB C中,A B=AC,∠B 、∠C 的平分线交于O图1 图2点,过O点作EF∥BC交AB、AC于E、F.(1)图中有几个等腰三角形?猜想:EF与BE、CF 之间有怎样的关系,并说明理由.(2)如图②,若AB≠AC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们。

在第(1)问中EF与B E、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由。

6、已知,如图,△ABC中,∠BAC=90°,AB=AC,D为AC上一点,且∠BDC=124°,延长BA到点E,使AE=AD,BD的延长线交CE于点F,求∠E的度数。

7、如图,正方形ABCD的对角线AC,BD交于点O,将一三角尺的直角顶点放在点O处,让其绕点O旋转,三角尺的直角边与正方形ABCD的两边交于点E和F。

通过观察或测量OE,OF的长度,你发现了什么?试说明理由.ﻬ1、解:(1)证明:∵EF=EC,∴∠EFC=∠ECF,∵EF∥AB,∴∠B=∠EFC,∴∠B=∠ECF,∴梯形ABCD是等腰梯形;(2)△DCF是等腰直角三角形,证明:∵DE=EC,EF=EC,∴EF= CD,∴△CDF是直角三角形(如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形),∵梯形ABCD是等腰梯形,∴CF= (BC-AD)=1, ∵DC= ,∴由勾股定理得:DF=1,∴△DCF是等腰直角三角形;(3)共四种情况:PB=1,PB=2,PB=3—,PB=3+2、证明:(1)①∵四边形ABCD是菱形,∴AB=AD,∠1=∠2. 又∵AN=AN,∴△ABN≌△ADN.②解:作MH⊥DA交DA的延长线于点H. 由AD∥BC,得∠MAH=∠ABC=60°。

在Rt△AMH中,MH=AM•sin60°=4×sin60°=2 .∴点M到AD的距离为2。

∴AH=2.∴DH=6+2=8.(2)解:∵∠ABC=90°,∴菱形ABCD是正方形.∴∠CAD=45°.下面分三种情形: (Ⅰ)若ND=NA,则∠ADN=∠NAD=45°.此时,点M恰好与点B重合,得x=6;(Ⅱ)若DN=DA,则∠DNA=∠DAN=45°. 此时,点M恰好与点C重合,得x=12;(Ⅲ)若AN=AD=6,则∠1=∠2. ∵AD∥BC,∴∠1=∠4,又∠2=∠3,∴∠3=∠4. ∴CM=CN.∴AC=6 2.∴CM=CN=AC -AN=6 2—6.故x=12—CM=12-(6 2-6)=18—6 2.综上所述:当x=6或12或18—6 2时,△ADN是等腰三角形。

3、解:(1)用直尺和圆规作图,作图痕迹清晰;(2)△ABP1≌△ADP,且△ABP1可看成是由△ADP绕点A顺时针旋转90°而得.理由如下:在△ABP1和△ADP中,由题意:AB=AD,AP=AP1,∠PAD=∠P1AB,∴△ABP1≌△ADP,又∵△ABP1和△ADP有公共顶点A,且∠PAP1=90°,∴△ABP1可看成是由△ADP绕点A顺时针旋转90°而得;(3)点P(1,1)关于点A(0,4)左转弯运动到P1(-3,3),点P1(-3,3)关于点B(-4,4)左转弯运动到点P2(—5,3),点P2(-5,3)关于点C(—4,0)左转弯运动到点P3(—1,1),点P3(—1,1)关于点D(0,0)左转弯运动到点P4(1,1),点P4(1,1)关于点A(0,4)左转弯运动到点P5(-3,3),点P5与点P1重合,点P6与点P2重合,,点P2009的坐标为(-3,3)点P2010的坐标为(—5,3)。

4、解:(1)如图1,△A2B2C2是△A1B1C1关于直线QN成轴对称的图形;(2)当△ABC以每秒1个单位长的速度向下平移x秒时(如图2),则有:MA=x,MB=x+4,MQ=20,y=S梯形QMBC-S△AMQ-S△ABC=4+20)(x+4)—×20x- ×4×4=2x+40(0≤x≤16).由一次函数的性质可知:当x=0时,y取得最小值,且y最小=40,当x=16时,y取得最大值,且y最大=2×16+40=72;(3)解法一:当△ABC继续以每秒1个单位长的速度向右平移时,此时16≤x≤32,PB=20-(x—16)=36-x,PC=PB-4=32—x,∴y=S梯形BAQP-S△CPQ-S△ABC=(4+20)(36—x)-×20×(32-x)-×4×4=-2x+104(16≤x≤32).由一次函数的性质可知:当x=32时,y取得最小值,且y最小=—2×32+104=40;当x=16时,y取得最大值,且y最大=-2×16+104=72.解法二:在△ABC自左向右平移的过程中,△QAC在每一时刻的位置都对应着(2)中△QAC某一时刻的位置,使得这样的两个三角形关于直线QN成轴对称。

因此,根据轴对称的性质,只需考查△ABC在自上至下平移过程中△QAC面积的变化情况,便可以知道△ABC在自左向右平移过程中△QAC面积的变化情况。

当x=16时,y取得最大值,且y最大=72,当x=32时,y取得最小值,且y最小=40.5、解:(1)图中有5个等腰三角形,EF=BE+CF,∵△BEO≌△CFO,且这两个三角形均为等腰三角形,可得EF=EO+FO=BE+CF;(2)还有两个等腰三角形,为△BEO、△CFO,如下图所示:∵EF∥BC,∴∠2=∠3,又∵∠1=∠2,∴∠1=∠3,∴△BEO为等腰三角形,在△CFO中,同理可证.∴EF=BE+CF存在.(3)有等腰三角形:△BEO、△CFO,此时EF=BE-CF,∵如下图所示:OE∥BC,∴∠5=∠6,又∠4=∠5,∴∠4=∠6,∴,△BEO是等腰三角形,在△CFO中,同理可证△CFO是等腰三角形,此时EF=BE—CF,6、解:在△ABD和△ACE中,∵AB=AC,∠DAB=∠CAE=90°AD=AE,∴△ABD≌△ACE(SAS),∴∠E=∠ADB。

∵∠ADB=180°-∠BDC=180°—124°=56°,∴∠E=56°.7、解:OE=OF.证明:正方形ABCD的对角线AC,BD交于点O,∴OA=OB,∠OAB=∠OBE=45°,AC⊥BD.∵∠AOF+∠FOB=∠EOB+∠FOB=90°,∴∠AOF=∠EOB.在△AOF和△BOE中∠OAB=∠OBE,OA=OB,∠AOF=∠EOB,∴△AOF≌△BOE(ASA).∴OE=OF....谢阅...。

相关文档
最新文档