大学物理2-1第四章(刚体力学)习题集规范标准答案

大学物理2-1第四章(刚体力学)习题集规范标准答案
大学物理2-1第四章(刚体力学)习题集规范标准答案

习 题 四

4-1 一飞轮的半径为2m ,用一条一端系有重物的绳子绕在飞轮上,飞轮可绕水平轴转动,飞轮与绳子无相对滑动。当重物下落时可使飞轮旋转起来。若重物下落的距离由方程2at x =给出,其中2s m 0.2=a 。试求飞轮在t 时刻的角速度和角加速度。

[解] 设重物的加速度为t a ,t 时刻飞轮的角速度和角加速度分别为ω和β,则

a t

x

a 2d d 22t ==

因为飞轮与绳子之间无相对滑动,所以 βR a =t 则 2t rad/s 0.22

0.222=?===

R a R a β 由题意知 t =0时刻飞轮的角速度00=ω 所以 rad 0.20t t t ==+=ββωω

4-2 一飞轮从静止开始加速,在6s 内其角速度均匀地增加到200min rad ,然后以这个速度匀速旋转一段时间,再予以制动,其角速度均匀减小。又过了5s 后,飞轮停止转动。若该飞轮总共转了100转,求共运转了多少时间? [解] 分三个阶段进行分析

10 加速阶段。由题意知 111t βω= 和 112

12θβω= 得

2

21

11211t ωβωθ==

20 匀速旋转阶段。 212t ωθ=

30 制动阶段。

331t βω= 332

1

2θβω= 2

23

13213t ωβωθ== 由题意知 100321=++θθθ 联立得到

πωωω21002

2

3

1211

1?=+

+t t t

所以 s 1832002560200

2660200210022=???-??-

?=

ππππt 因此转动的总时间 s 19418356321=++=++=t t t t

4-3 历史上用旋转齿轮法测量光速的原理如下:用一束光通过匀速旋转的齿轮边缘的齿孔A ,到达远处的镜面反射后又回到齿轮上。设齿轮的半径为5cm ,边缘上的齿孔数为500个,齿轮的转速,使反射光恰好通过与A 相邻的齿孔B 。(1)若测得这时齿轮的角速度为600s r ,齿轮到反射镜的距离为500 m ,那么测得的光速是多大?(2)齿轮边缘上一点的线速度和加速度是多大? [解] (1) 齿轮由A 转到B 孔所需要的时间5

1031

26005002?=

?==ππωθt 所以光速 s m 10310315002285

?=??==

T

L c

(2) 齿轮边缘上一点的线速度 s m 1088.126001052

2?=???==-πωR v

齿轮边缘上一点的加速度 ()2

522

2s m 1010.71052600?=???==-πωR a

4-4 刚体上一点随刚体绕定轴转动。已知该点转过的距离s 与时间t 的关系为

2

0302

6t a t a s +=

τ。求证它的切向加速度每经过时间τ均匀增加0a 。

[证明] 该点的切向加速度 00

22t d d d d a t a t s t v a +===τ

所以 ()00000t τt a a t a a t a a a =???

??+-??????++=-+τττ 因此,切向加速度每经过时间τ均匀增加0a

4-5 如图所示的一块均匀的长方形薄板,边长分别为a 、b 。中心O 取为原点,坐标系如图所示。设薄板的质量为M ,求证薄板对Ox 轴、Oy 轴和Oz 轴的转动惯量分别为

2Ox 121

Mb J =

2Oy 121

Ma J =

()

22Oz 121

b a M J +=

[解] 根据转动惯量的定义 ?

=m r J d 2

对ox J 取图示微元,有 ?=m mb J 2ox

d 1212121mb = 同理可得 2oy 12

1

ma J =

对于 ????+

=+==m y

m x m y x m r J d d d )(d 2

2222oz

22ox oy 12

1

121mb ma J J +=

+=

4-6 一个半圆形薄板的质量为m 、半径为R ,当它绕着它的直径边转动时,其转动惯量是多大?

[解] 建立坐标系,取图示面积元 θd d d r r s =,根据转动惯量的定义有

???==π

θπθ

2

222

ox d d 2sin d R

r r R m

r m y J 200

232

4

1

d d sin 2mR r r R m R

=

=

??πθπ

4-7 一半圆形细棒,半径为R ,质量为m ,如图所示。求细棒对轴A A '的转动惯量。 [解] 建立图示的坐标系,取图示l d 线元,θλλd d d R l m ==, 根据转动惯量的定义式有

??=='π

θθλ0

222A A d sin d R R m x J

20

22

2

1

d sin mR mR =

=

θθπ

4-8 试求质量为m 、半径为R 的空心球壳对直径轴的转动惯量。 [解] 建立如图所示的坐标系,取一θθθd +→的球带,

θπd 2d rR s =它对y 轴的转动惯量

θππd 24d d 2

2

2rR R

m

r m r I == 又 θcos R r =

所以 θθd cos 2

d 32

mR I =

222

323

2

d cos 2d mR mR I I ===??-

π

π

θθ 此即空心球壳对直径轴的转动惯量。

4-9 图示为一阿特伍德机,一细而轻的绳索跨过一定滑轮,绳的两端分别系

x

y r

θ

有质量为1m 和2m 的物体,且1m >2m 。设定滑轮是质量为M ,半径为r 的圆盘,绳的质量及轴处摩擦不计,绳子与轮之间无相对滑动。试求物体的加速度和绳的张力。 [解] 物体21,m m 及滑轮M 受力如图所示

对a m T g m m 1111:=- (1) 对a m g m T m 2222:=- (2)

对βJ r T r T M ='

-'21:

(3)

又 2/2Mr J = (4)

βr a = (5)

'

=11T T (6)

'

=22T T (7)

联立(1)-(7)式,解得

2/)(2121M m m g

m m a ++-=

g m M m m M m T 121212/2

/2+++=

g m M m m M m T 221122

/2

/2+++=

M

R

2

m 1

m 2

m 2

T ρm ρ2N ρg

M ρ2

T ρ1

T ρ1

m 1

ρg

m ρ1

4-l0 绞车上装有两个连在一起的大小不同的鼓轮(如图),其质量和半径分别为m =2kg 、

r =0.05m ,M =8kg 、R =0.10m 。两鼓轮可看成是质量均匀分布的圆盘,绳索质量及轴承摩擦不

计。当绳端各受拉力1T =1 kg ,2T =2kg 时,求鼓轮的角加速度。 [解] 根据转动定律,取顺时针方向为正

βJ R T r T =+-21

(1)

2/2/22MR mr J += (2)

联立(1),(2)式可得 22

221rad/s 6.3422=++-=MR mr R T r T β

4-11 质量为M 、半径为R 的转盘,可绕铅直轴无摩擦地转动。转盘的初角速度为零。一个质量为m 的人,在转盘上从静止开始沿半径为r 的圆周相对圆盘匀角速走动,如果人在圆盘上走了一周回到了原位置,那么转盘相对地面转了多少角度?

[解一] 取m 和M 组成的系统为研究对象,系统对固定的转轴角动量守恒。设人相对圆盘的速度为v ,圆盘的角速度为ω,设人转动方向为正方向,则

0)(=++ωωJ r v mr (1) 而

2/2MR J =

(2)

联立(1)、(2)式可得

2

22/mr

MR mvr

+-

=ω 人在转盘上走一周所用的时间v r t /2π=

转盘转过的角度为

πωθ22/2

22

mr MR mr t +-== 负号表示方向与正方向相反。

[解二]

由角动量守恒定律可解(见上)

v m MR mr

2

2)2(+-

又因为 t

s

v t d d ,d d =

=θω 所以r s π2=?代入即可

πθ22/2

22

mr MR mr +-=

4-12 如图所示,一质量为m 的圆盘形工件套装在一根可转动的轴上,它们的中心线相互重合。圆盘形工件的内、外直径分别为1D 和2D 。该工件在外力矩作用下获得角速度0ω,这时撤掉外力矩,工件在轴所受的阻力矩作用下最后停止转动,其间经历了时间t 。试求轴处所受到的平均阻力f [轴的转动惯量略而不计,圆盘形工件绕其中心轴的转动惯量为

()22218

1

D D m +]。 [解] 根据角动量定理 12ωωI I t M -= 2

1

D f M ?

-= ()

2

2

218

1D D m I += 联立上述三式得到 ()

t D D D m f )4(12

2210+=ω

4-13 一砂轮直径为1m ,质量为50kg ,以900min r 的转速转动,一工件以200 N 的正压力

作用于轮子的边缘上,使砂轮在11.8s 内停止转动。求砂轮与工件间的摩擦系数(砂轮轴的摩擦可忽略不计,砂轮绕轴的转动惯量为

22

1

mR ,其中,m 和R 分别为砂轮的质量和半径)。 [解] 根据角动量定理, 12ωωI I Mt -=

NR M μ-=

22

1

mR I =

02=ω

联立上述四式得到 5.08

.112002602900215020

=?????

==

πωμNt

mR

4-14 以20m N ?的恒力矩作用于有固定轴的转轮上,在10s 内该轮的转速由零增大到100min r 。此时撤去该力矩,转轮因摩擦力矩的作用,又经100s 而停止,试求转轮的转动惯量。

[解] 设转轮的转动惯量为J ,摩擦力矩为f M ,则根据角动量定理

??=2

1

d d 0

L L t

L t M

考虑到本题力矩为常矢量,以外力矩方向为正方向,有 0)(1-=-ωJ t M M f (1) ωJ t M -=-02f

(2)

联立(1)、(2)式可得

100

10

60210060210010

202

11

ππω

ω?+??=

+=

t t Mt J 2kg.m 4.17=

4-15 设流星从各个方向降落到某星球,使该星球表面均匀地积存了厚度为h 的一层尘埃(h 比

该星球的半径R 小得多)。试证明:由此而引起的该星球自转周期的变化为原来的自转周期的

()RD hd 5倍。式中R 是星球的半径,D 和d 分别为星球和尘埃的密度。

[解] 取星球和尘埃为研究对象,在尘埃落向星球的过程中,系统的角动量守恒。设开始时星球的转动惯量为1J ,角动量为1ω,星球的自转周期为1T ;当落上厚度为h 的尘埃后,转动惯量为

2J ,角速度为2ω,自转周期为2T ,由角动量守恒得:

2211ωωJ J =

而 1

12ωπ

=

T 2

22ωπ

=

T

得到

2

1

21J J T T =

设尘埃对自转轴的转动惯量为0J ,则 012J J J += 而 23

13

452DR R J π?=

因此 ()233

0343452dR R h R J ??

????-+=

ππ 所以 ()()[]

D d R h DR R dR R h R J J T T 113513

452343432113

23233

1012-++

=???????-++=+=πππ 又因为 h <

RD

hd

D R h d T T 51335112+

=+= 因此

RD

hd

T T T 5112=

-

4-16 如图所示的飞船以角速度s rad 20.0=ω绕其对称轴自由旋转,飞船的转动惯量

2m kg 2000?=J 。若宇航员想停止这种转动,启动了两个控制火箭。它们装在距转轴r =1.5 m

的地方。若控制火箭以v =50s m 的速率沿切向向外喷气,两者总共的排气率s kg 2d d =t m 。试问这两个切向火箭需要开动多长时间? [解] 把飞船和喷出的气体当作研究系统。在喷气过程中,dt 时间内喷出的气体为dm ,在整个过程中,喷出的气体的总角动量为 mru mru L m

==

?0g d

当飞船停止转动时,它的角动量为零。

0=-ωI mru (也可由系统角动量守恒得)

所以 ru

I m ω

= 所求的时间为 s 67.250

5.122

.02000=???===ru I m t αωα

4-17 一冲床飞轮的转动惯量为2m kg 25?,转速为min r 300,每次冲压过程中,冲压所需的能量完全由飞轮供给。若一次冲压需要做功4000J ,求冲压后飞轮的转速将减少至多少? [解] 设冲压后飞轮的转速为2ω,由动能定理得

2

222

2

212221ωωωω-=-=J

J J A 所以 rad/s 8.2525

4000

2)602300(

22212=?-?=-

=

πωωJ

A

4-18 擦地板机圆盘的直径为D ,以匀角速度ω旋转,对地板的压力为F ,并假定地板所受的压力是均匀的,圆盘与地板间的摩擦系数为μ,试求开动擦地板机所需的功率(提示:先求圆盘上任一面元所受的摩擦力矩,而整个圆盘所受摩擦力矩与角速度的乘积即是摩擦力矩的功率)。

[解] 在圆盘上取一细圆环,半径r ,宽度为d r ,则其面积为r r s d 2d π=

此面积元受到的摩擦力为 ()r r D F

f d 22d 2

ππμ??

=

所以此面元所受的摩擦力矩为 f r M d d ?= 其方向与ω方向相反 其大小 r r D

F r r D F

r f r f r M d 8d 24d sin d d 22

2μππμθ=??

=== 又因为各面元所受的摩擦力矩方向相同,所以整个圆盘所受的摩擦力矩为

FD r r D F

M M D μμ3

1

d 8d 20

22

===?

?

所以所需要的功率 ωμωFD M N 3

1

==

4-19 如图所示,A 、B 两飞轮的轴可由摩擦啮合使之连结。轮A 的转动惯量21m kg 10?=J ,开始时轮B 静止,轮A 以

min r 6001=n 的转速转动,然后使A 与B 连结,轮B 得以

加速,而轮A 减速,直至两轮的转速都等于min r 200=n 为止。求:(1)轮B 的转动惯量;(2)在啮合过程中损失的机械能是多少?

[解] (1)以飞轮A ,B 为研究对象,在啮合过程中,系统受到轴向的正压力和啮合的切向摩擦,前者对轴的力矩为零,后者对轴的力矩为系统的内力矩,整个系统对转轴的角动量守恒,按角动量守恒定律,有

ωωω)(B A B B A A J J J J +=+

而 rad/s 202m

kg 101A 2

1A ππω==?==n J J

s rad 3

2020

B π

πωω=

==n

所以 2A A B m kg 20103

2032020?=?-

=-=

ππ

πω

ω

ωJ J

在啮合的过程中,部分机械能转化为热能,损失的机械能为

2

)(22

B A 2

A A ωωJ J J E +-

=? J 1032.1)3/20()2010(5.0)20(105.0422?=?+?-??=ππ

大学物理刚体部分知识点总结

一、刚体的简单运动知识点总结 1、刚体运动的最简单形式为平行移动与绕定轴转动。 2、刚体平行移动。 ·刚体内任一直线段在运动过程中,始终与它的最初位置平行,此种运动称为刚体平行移动,或平移。 ·刚体作平移时,刚体内各点的轨迹形状完全相同,各点的轨迹可能就是直线,也可能就是曲线。 ·刚体作平移时,在同一瞬时刚体内各点的速度与加速度大小、方向都相同。 3、刚体绕定轴转动。 ?刚体运动时,其中有两点保持不动,此运动称为刚体绕定轴转动,或转动。 ?刚体的转动方程φ=f(t)表示刚体的位置随时间的变化规律。 ?角速度ω表示刚体转动快慢程度与转向,就是代数量, 。角速度也可以用矢量表示, 。 ?角加速度表示角速度对时间的变化率,就是代数量, ,当α与ω同号时,刚体作匀加速转动;当α与ω异号时,刚体作匀减速转动。角加速度也可以用矢量表示, 。 ?绕定轴转动刚体上点的速度、加速度与角速度、角加速度的关系: 。 速度、加速度的代数值为。 ?传动比。

二. 转动定律转动惯量 转动定律 力矩相同,若转动惯量不同,产生的角加速度不同 与牛顿定律比较: 转动惯量 刚体绕给定轴的转动惯量J 等于刚体中每个质元的质量与该质元到转轴距离的平方的乘积之总与。 定义式质量不连续分布 质量连续分布 物理意义 转动惯量就是描述刚体在转动中的惯性大小的物理量。 它与刚体的形状、质量分布以及转轴的位置有关。 计算转动惯量的三个要素:

(1)总质量; (2)质量分布; (3)转轴的位置 (1) J 与刚体的总质量有关 几种典型的匀质刚体的转动惯量 平行轴定理与转动惯量的可加性 1) 平行轴定理 设刚体相对于通过质心轴线的转动惯量为Ic,相对于与之平行的另一轴的转动惯量为I,则可以证明I 与Ic 之间有下列关系 2c I I md =+ 2)转动惯量的可加性 对同一转轴而言,物体各部分转动惯量之与 等于整个物体的转动惯量。 三 角动量 角动量守恒定律 2 c I I md =+

大学物理D-03流体力学

练习三 流体力学 一、填空题 1.水平放置的流管通内有理想流体水,在某两截面上,已知其中一截面A 面积是另一截面B 的两倍,在截面A 水的速度为 2.0m/s ,压强为10kPa,则另截面的水的速度为 4.0m/s ,压强为 4kPa 。 2.雷诺数是判断生物体系内液体是做层流还是湍流流动状态的重要依据,许多藤本植物内水分流动雷诺数约为 3.33,说明一般植物组织中水分的流动是 层流 。 3.如果其它条件不变,为使从甲地到乙地圆形管道流过的水量变为原来的16倍,则水管直径需变为原来的 2 倍。 4.圆形水管的某一点A ,水的流速为1.0m/s ,压强为3.0×105 Pa 。沿水管的另一点B ,比A 点低20米,A 点截面积是B 点截面积的三倍,忽略水的粘滞力,则B 点的压强为 4.92×105 Pa 。(重力加速度 2 9.8/g m s ) 5.某小朋友在吹肥皂泡的娱乐中,恰好吹成一个直径为2.00cm 的肥皂泡,若在此环境下,肥皂液的表面张力系数为0.025N/m ,则此时肥皂泡内外压强差为 10.0 Pa 。 二、选择题 1.水管的某一点A ,水的流速为1.0米/秒,计示压强为3.0×105Pa 。沿水管的另一点B ,比A 点低20米,A 点面积是B 点面积的三倍.则B 点的流速和计示压强分别为( A )。 (A)3.0m/s,4.92×105Pa (B)0.33m/s, 4.92×105Pa (C)3.0m/s,5.93×105Pa (D )1.0m/s,5.93×105Pa 2.在如图所示的大容器中装有高度为H 的水,当在离最低点高度h 是水的高度H 多少时,水的水平距离最远。( C ) (A) 1/4 (B)1/3 (C)1/2 (D)2/3 3.如图所示:在一连通管两端吹两半径不同的肥皂泡A 、B ,已知R A >R.B ,(B ) 开通活塞,将出现的现象为? (A)A 和B 均无变化; (B)A 变大,B 变小; (C)A 变小,B 变大; (D) )A 和B 均变小 4.下列事件中与毛细现象有关的是?( D ) (1)植物水分吸收;

大学物理06刚体力学

刚体力学 1、(0981A15) 一刚体以每分钟60转绕z 轴做匀速转动(ω? 沿z 轴正方向).设某时刻刚体上一点 P 的位置矢量为k j i r ??? ? 5 4 3++=,其单位为“10-2 m ”,若以“10-2 m ·s -1”为速度单位,则该时刻P 点的速度为: (A) k j i ???? 157.0 125.6 94.2++=v (B) j i ??? 8.18 1.25+-=v (C) j i ??? 8.18 1.25--=v (D) k ?? 4.31=v [ ] 2、(5028B30) 如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、 B 两滑轮的角加速度分别为A 和B ,不计滑轮轴的摩擦,则 有 (A) A =B . (B) A >B . (C) A < B . (D) 开始时 A = B ,以后 A < B . [ ] 3、(0148B25) 几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体 (A) 必然不会转动. (B) 转速必然不变. (C) 转速必然改变. (D) 转速可能不变,也可能改变. [ ] 4、(0153A15) 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度 按图 示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度 (A) 必然增大. (B) 必然减少. (C) 不会改变. (D) 如何变化,不能确定. [ ] 5、(0165A15) 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? (A) 角速度从小到大,角加速度从大到小. A M B F O F F ω O A

大学物理(下)期末考试试卷

大学物理(下)期末考试试卷 一、 选择题:(每题3分,共30分) 1. 在感应电场中电磁感应定律可写成?-=?L K dt d l d E φ ,式中K E 为感应电场的电场强度。此式表明: (A) 闭合曲线L 上K E 处处相等。 (B) 感应电场是保守力场。 (C) 感应电场的电力线不是闭合曲线。 (D) 在感应电场中不能像对静电场那样引入电势的概念。 2.一简谐振动曲线如图所示,则振动周期是 (A) 2.62s (B) 2.40s (C) 2.20s (D) 2.00s 3.横谐波以波速u 沿x 轴负方向传播,t 时刻 的波形如图,则该时刻 (A) A 点振动速度大于零, (B) B 点静止不动 (C) C 点向下运动 (D) D 点振动速度小于零. 4.如图所示,有一平面简谐波沿x 轴负方向传 播,坐标原点O 的振动规律为)cos(0φω+=t A y , 则B 点的振动方程为 (A) []0)/(cos φω+-=u x t A y (B) [])/(cos u x t A y +=ω (C) })]/([cos{0φω+-=u x t A y (D) })]/([cos{0φω++=u x t A y 5. 一单色平行光束垂直照射在宽度为 1.20mm 的单缝上,在缝后放一焦距为2.0m 的会聚透镜,已知位于透镜焦平面处的屏幕上的中央明条纹宽度为2.00mm ,则入射光波长约为 (A )100000A (B )40000A (C )50000A (D )60000 A 6.若星光的波长按55000A 计算,孔镜为127cm 的大型望远镜所能分辨的两颗星2 4 1

大学物理刚体动力学

第二章 刚体力学基础 自学练习题 一、选择题 1.有两个力作用在有固定转轴的刚体上: (1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零; (2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零; (3)当这两个力的合力为零时,它们对轴的合力矩也一定是零; (4)当这两个力对轴的合力矩为零时,它们的合力也一定是零; 对上述说法,下述判断正确的是:( ) (A )只有(1)是正确的; (B )(1)、(2)正确,(3)、(4)错误; (C )(1)、(2)、(3)都正确,(4)错误; (D )(1)、(2)、(3)、(4)都正确。 【提示:(1)如门的重力不能使门转动,平行于轴的力不能提供力矩;(2)垂直于轴的力提供力矩,当两个力提供的力矩大小相等,方向相反时,合力矩就为零】 2.关于力矩有以下几种说法: (1)对某个定轴转动刚体而言,内力矩不会改变刚体的角加速度; (2)一对作用力和反作用力对同一轴的力矩之和必为零; (3)质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的运动状态一定相同。 对上述说法,下述判断正确的是:( ) (A )只有(2)是正确的; (B )(1)、(2)是正确的; (C )(2)、(3)是正确的; (D )(1)、(2)、(3)都是正确的。 【提示:(1)刚体中相邻质元间的一对内力属于作用力和反作用力,作用点相同,则对同一轴的力矩和为零,因而不影响刚体的角加速度和角动量;(2)见上提示;(3)刚体的转动惯量与刚体的质量和大小形状有关,因而在相同力矩的作用下,它们的运动状态可能不同】 3.一个力(35)F i j N =+作用于某点上,其作用点的矢径为m j i r )34( -=,则该力对坐标原点的力矩为 ( ) (A )3kN m -?; (B )29kN m ?; (C )29kN m -?; (D )3kN m ?。 【提示:(43)(35)430209293 5 i j k M r F i j i j k k k =?=-?+=-=+ =】 4.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴 转动,如图所示。今使棒从水平位置由静止开始自由下落,在棒摆 到竖直位置的过程中,下述说法正确的是:( ) (A )角速度从小到大,角加速度不变; (B )角速度从小到大,角加速度从小到大; (C )角速度从小到大,角加速度从大到小;

大学物理 CH4.1 流体力学

大学物理 CH4.1 流体力学 第四章流体力学 流动性 静止流体在任何微小的切向力作用下都要发生连续不断的变形,不断的变形,即流体的一部分相对另一部分运动,即流体的一部分相对另一部分运动,这种变形称为流动。这种变形称为流动。连续介质模型 设想流体是由连续分布的流体质点组成的的连续介质,流体质点具有宏观充分小,流体质点具有宏观充分小,微观充分大的特点。微观充分大的特点。描述流体的物理量可以表示成空间和时间的连续函描述流体的物理量可以表示成空间和时间的连续函数。 内容提要 流体的主要物理性质 连续性方程、连续性方程、伯努利方程及其应用 粘性流体的两种流动状态、粘性流体的两种流动状态、哈根-哈根-泊肃叶定律斯托克斯定律 一、惯性 惯性是物体保持原有运动状态的性质,惯性是物体保持原有运动状态的性质,表征某一流体的惯性大小可用该流体的密度。 m 均质流体:均质流体:ρ= V ?m d m ρ(x , y , z )=lim = ?v →0?V d V 液体的密度随压强和温度的变化很小,液体的密度随压强和温度的变化很小,气体的密 度随压强和温度而变化较大。度随压强和温度而变化较大。 二、压缩性

流体受到压力作用后体积或密度发生变化的特性称为压缩性。为压缩性。通常采用体积压缩率表示流体的压缩性。 d V κ=?单位:单位:m 2/N d p 体积弹性模量: d p E V ==? κd V 1 单位:单位:N / m2或Pa 不可压缩流体即在压力作用下不改变其体积的流体。即在压力作用下不改变其体积的流体。 三、粘性 粘性是运动流体内部所具有的抵抗剪切变形的特性。粘性是运动流体内部所具有的抵抗剪切变形的特性。它表现为运动着的流体中速度不同的流层之间存在着沿切向的粘性阻力(着沿切向的粘性阻力(即内摩擦力)。即内摩擦力)。 x d u 速度梯度d y d u F =μA 牛顿粘性公式 d y μ为动力黏度,为动力黏度,单位Pa ?s d u 黏滞切应力τ=μ d y d u x d u d t

大学物理刚体力学基础习题思考题及答案

习题5 5-1.如图,一轻绳跨过两个质量为 m 、半径为r 的均匀圆盘状定滑轮,绳的两端 分别挂着质量为2m 和m 的重物,绳与滑轮间无相对滑动,滑轮轴光滑,两个定 滑轮的转动惯量均为 mr 2 / 2,将由两个定滑轮以及质量为 2m 和m 的重物组成 的系统从静止释放,求重物的加速度和两滑轮之间绳的力。 解:受力分析如图,可建立方程: 广 2mg T 2 2ma ① T1 mg ma ② J (T 2 T)r J ③ (T T 1)r J ④ 虹 a r , J mr 2/2 ⑤ 联立,解得:a 1g, T 4 上,设开始时杆以角速度 °绕过中心O 且垂直与桌面的轴转动,试求: (1)作 用于杆的摩擦力矩;(2)经过多长时间杆才会停止转动。 解:(1)设杆的线密度为: d f dmg gd x, 微元摩擦力矩:d M g xd x , (2)根据转动定律 M J J 马, t 有: 0 Mdt Jd dt 1 . -mglt 1 [2 —m l 0, . . t _oL 4 12 3 g 或利用: M t J J 0,考虑到 0, J 1 | 2 一 ml , 12 有:t ol 。 11 a mg 5-2.如图所示,一均匀细杆长为 l ,质量为m ,平放在摩擦系数为 的水平桌面 一小质元dm dx,有微元摩擦力: 考虑对称性, l_ M 2 2 有摩擦力 矩: gxdx 1

5-3.如图所示,一个质量为m的物体与绕在定滑轮上的绳子相联,绳子的质量 可以忽略,它与定滑轮之间无滑动。假设定滑轮质量为M、半径为 R,其转动惯量为MR2/2,试求该物体由静止开始下落的过程中, 下落速度与时间的关系。 解:受力分析如图,可建立方程: r mg T ma ① * TR J ② —, 1 ~2 — k a R , J — mR —-③ 2 2mg Mmg 联立,解得:a ------------ — , T ----------- —, 考虑到a四,.?. v dv 「旦—dt,有:v dt 0 0 M 2m M 2m 5-4.轻绳绕过一定滑轮,滑轮轴光滑,滑轮的质量为M /4,均匀分布在其边缘上,绳子A端有一质量为M的人抓住了绳端,而在绳的另一端B系了一质量为M /4的重物,如图。已知滑轮对O 轴的转动惯量J MR2 /4 ,设人从静止开始以相对绳匀速向上爬时,绳与滑轮间无相对滑动,求B端重物上升的加速度? 解一: 分别对人、滑轮与重物列出动力学方程 Mg T1Ma A人 T2M 4g M 心 a B物 4 T1R T2R J滑轮 由约束方程:a A a B R 和J MR2/4,解上述方程组 得到a —. 2 解二: 选人、滑轮与重物为系统,设 U为人相对绳的速度,V为重

大学物理刚体部分练习题

02刚体 一、选择题 1.0148:几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体 (A) 必然不会转动 (B) 转速必然不变 (C) 转速必然改变 (D) 转速可能不变,也可能改变 [ ] 2.0153:一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度按图示方向转动。若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到 圆盘上,则圆盘的角速度ω (A) 必然增大 (B) 必然减少 (C) 不会改变 (D) 如何变化,不能确定 [ ] 3.0165:均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? (A) 角速度从小到大,角加速度从大到小 (B) 角速度从小到大,角加速度从小到大 (C) 角速度从大到小,角加速度从大到小 (D) 角速度从大到小,角加速度从小到大 [ ] 4.0289:关于刚体对轴的转动惯量,下列说法中正确的是 (A )只取决于刚体的质量,与质量的空间分布和轴的位置无关 (B )取决于刚体的质量和质量的空间分布,与轴的位置无关 (C )取决于刚体的质量、质量的空间分布和轴的位置 (D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关 [ ] 5.0292:一轻绳绕在有水平轴的定滑轮上,滑轮的转动惯量为J ,绳下端挂一物体。物体所 受重力为P ,滑轮的角加速度为。若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度将 (A) 不变 (B) 变小 (C) 变大 (D) 如何变化无法判断 [ ] 6.0126:花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角 速度为。然后她将两臂收回,使转动惯量减少为J 0。这时她转动的角速度变为: (A) (B) (C) (D) [ ] 7.0132:光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点且垂直于 杆的竖直光滑固定轴O 自由转动,其转动惯量为mL 2 ,起初杆静止。 为m v 相向运动,如图所示。当两小球同时与杆的两个端点发生完全非 弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速 ωαα0ω 31 31ω() 03/1ω03ω03ω31 O v 俯视图

大学物理讲稿(第4章流体力学)第一节

第4章流体力学 前面讨论过刚体的运动,刚体是指形状大小不变的物体.只有固体才可以近似地认为是刚体.气体和液体都是没有一定形状的,容器的形状就是它们的形状.固体的分子虽然可以在它们的平衡位置上来回振动或旋转,但活动范围是很小的.然而气体或液体的分子却可以以整体的形式从一个位置流动到另一个位置,这是它们与固体不同的一个特点,即具有流动性.由于这种流动性,把气体和液体统称为流体.流体是一种特殊的质点组,它的特殊性主要表现为连续性和流动性.因而仍可用质点组的规律处理流体的运动情况.研究静止流体规律的学科称为流体静力学,大家熟悉的阿基米德原理、帕斯卡原理等都是它的内容.研究流体运动的学科叫流体动力学,它的一些基本概念和规律即为本章中要介绍的内容. 流体力学在航空、航海、气象、化工、煤气、石油的输运等工程部门中都有广泛的应用,研究流体运动的规律具有重要的意义. §4.1 流体的基本概念 一、理想流体 实际流体的运动是很复杂的.为了抓住问题的主要矛盾,并简化我们的讨论,即对实际流体的性质提出一些限制,然而这些限制条件并不影响问题的主要方面.在此基础上用一个理想化的模型来代替实际流体进行讨论.此理想化的模型即为理想流体. 1. 理想流体 理想流体是不可压缩的.实际流体是可压缩的,但就液体来说,压缩性很小.例如的水,每增加一个大气压,水体积只减小约二万分之一,这个数值十分微小,可忽略不计,所以液体可看成是不可压缩的.气体虽然比较容易压缩,但对于流动的气体,很小的压强改变就可导致气体的迅速流动,因而压强差不引起密度的显著改变,所以在研究流动的气体问题时,也可以认为气体是不可压缩的. 理想流体没有粘滞性.实际流体在流动时都或多或少地具有粘滞性.所谓粘滞性,就是当流体流动时,层与层之间有阻碍相对运动的内摩擦力(粘滞力).例如瓶中的油,若将油向下倒时,可看到靠近瓶壁的油几乎是粘在瓶壁上,靠近中心的油流速最大,其它均小于中心的流速.但有些实际流体的粘滞性很小,例如水和酒精等流体的粘滞性很小,气体的粘滞性更小,对于粘滞性小的流体在小范围内流动时,其粘滞性可以忽略不计. 为了突出流体的主要性质——流动性,在上述条件下忽略它的次要性质——可压缩性和粘滞性,我们得到了一个理想化的模型:不可压缩、没有粘滞性的流体,此流体即为理想流体.

大学物理-力学考题

一、填空题(运动学) 1、一质点在平面内运动, 其1c r = ,2/c dt dv =;1c 、2c 为大于零的常数,则该质点作 运动。 2.一质点沿半径为0.1=R m 的圆周作逆时针方向的圆周运动,质点在0~t 这段 时间内所经过的路程为4 2 2t t S ππ+ = ,式中S 以m 计,t 以s 计,则在t 时刻质点的角速度为 , 角加速度为 。 3.一质点沿直线运动,其坐标x 与时间t 有如下关系:x=A e -β t ( A. β皆为常数)。则任意时刻t 质点的加速度a = 。 4.质点沿x 轴作直线运动,其加速度t a 4=m/s 2,在0=t 时刻,00=v ,100=x m ,则该质点的运动方程为=x 。 5、一质点从静止出发绕半径R 的圆周作匀变速圆周运动,角加速度为β,则该质点走完半周所经历的时间为______________。 6.一质点沿半径为0.1=R m 的圆周作逆时针方向的圆周运动,质点在0~t 这段时间内所经过的路程为2t t s ππ+=式中S 以m 计,t 以s 计,则t=2s 时,质点的法向加速度大小n a = 2/s m ,切向加速度大小τa = 2/s m 。 7. 一质点沿半径为0.10 m 的圆周运动,其角位移θ 可用下式表示3 2t +=θ (SI). (1) 当 2s =t 时,切向加速度t a = ______________; (2) 当的切向加速度大小恰为法向加速度 大小的一半时,θ= ______________。 (rad s m 33.3,/2.12) 8.一质点由坐标原点出发,从静止开始沿直线运动,其加速度a 与时间t 有如下关系:a=2+ t ,则任意时刻t 质点的位置为=x 。 (动力学) 1、一质量为kg m 2=的质点在力()()N t F x 32+=作用下由静止开始运动,若此力作用在质点上的时间为s 2,则该力在这s 2内冲量的大小=I ;质点在第 s 2末的速度大小为 。

大学物理06刚体力学

刚体力学 1、(0981A15) 一刚体以每分钟60转绕z 轴做匀速转动(ω?沿z 轴正方向).设某时刻刚体上一点P 的位置矢量为k j i r ???? 5 4 3++=,其单位为“10-2 m ”,若以“10-2 m ·s -1”为速度单位, 则该时刻P 点的速度为: (A) k j i ???? 157.0 125.6 94.2++=v (B) j i ??? 8.18 1.25+-=v (C) j i ??? 8.18 1.25--=v (D) k ?? 4.31=v [ ] 2、(5028B30) 如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮 挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为A 和B ,不计滑轮轴的摩擦,则有 (A) A =B . (B) A >B . (C) A <B . (D) 开始时A =B ,以后A <B . [ ] 3、(0148B25) 几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几个力的矢量和为零, 则此刚体 (A) 必然不会转动. (B) 转速必然不变. (C) 转速必然改变. (D) 转速可能不变,也可能改变. [ ] 4、(0153A15) 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度按图示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度 (A) 必然增大. (B) 必然减少. (C) 不会改变. (D) 如何变化,不能确 定. [ ] 5、(0165A15) 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? (A) 角速度从小到大,角加速度从大到小. (B) 角速度从小到大,角加速度从小到大. (C) 角速度从大到小,角加速度从大到小. (D) 角速度从大到小,角加速度从小到大. [ ] 6、(0289A10) 关于刚体对轴的转动惯量,下列说法中正确的是 (A )只取决于刚体的质量,与质量的空间分布和轴的位置无关. (B )取决于刚体的质量和质量的空间分布,与轴的位置无关. (C )取决于刚体的质量、质量的空间分布和轴的位置. (D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关. A M B F O F F ω O A

大学物理试题库刚体力学 Word 文档

第三章 刚体力学 一、刚体运动学(定轴转动)---角位移、角速度、角加速度、线量与角量的关系 1、刚体做定轴转动,下列表述错误的是:【 】 A ;各质元具有相同的角速度; B :各质元具有相同的角加速度; C :各质元具有相同的线速度; D :各质元具有相同的角位移。 2、半径为0.2m 的飞轮,从静止开始以20rad/s 2的角加速度做定轴转动,则t=2s 时,飞轮边缘上一点的切向加速度τa =____________,法向加速度n a =____________,飞轮转过的角位移为_________________。 3、刚体任何复杂的运动均可分解为_______________和 ______________两种运动形式。 二、转动惯量 1、刚体的转动惯量与______________ 和___________________有关。 2、长度为L ,质量为M 的均匀木棒,饶其一端A 点转动时的转动惯量J A =_____________,绕其中心O 点转动时的转动惯量J O =_____________________。 3、半径为R 、质量为M 的均匀圆盘绕其中心轴(垂直于盘面)转动的转动惯量J=___________。 4、两个匀质圆盘A 和B 的密度分别是A ρ和B ρ,若B A ρρ>,但两圆盘的质量和厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为A J 和B J 则:【 】 (A )B A J J >; (B )B A J J < (C )B A J J = (D )不能确定 三、刚体动力学----转动定理、动能定理、角动量定理、角动量守恒 1、一长为L 的轻质细杆,两端分别固定质量为m 和2m 的小球,此系统在竖直平面内可绕过中点O 且与杆垂直的水平光滑固定轴(O 轴)转 动.开始时杆与水平成60°角,处于静止状态.无初转速地释放以后, 杆球这一刚体系统绕O 轴转动.系统绕O 轴的转动惯量J = ___________.释放后,当杆转到水平位置时,刚体受到的合外力矩M =____ __;角加速度β= ____ __. 2、一个能绕固定轴转动的轮子,除受到轴承的恒定摩擦力矩M r 外,还受到恒定外力矩M 的作用.若M =20 N ·m ,轮子对固定轴的转动惯量为J =15 kg ·m 2.在t =10 s 内,轮子的角速度由ω =0增大到ω=10 rad/s ,则M r =_______. 3、【 】银河系有一可视为物的天体,由于引力凝聚,体积不断收缩。设它经过一万年体积收缩了1%,而质量保持不变。则它的自转周期将______;其转动动能将______ (A )减小,增大; (B)不变,增大; (C) 增大,减小; (D) 减小,减小 4、【 】一子弹水平射入一竖直悬挂的木棒后一同上摆。在上摆的过程中,一子弹和木棒为系统(不包括地球),则总角动量、总动量及总机械能是否守恒?结论是: (A )三者均不守恒; (B )三者均守恒;

大学物理习题及解答(刚体力学)

1 如图所示,质量为m 的小球系在绳子的一端,绳穿过一铅直套管,使小球限制在一光滑水平面上运动。先使小球以速度0v 。绕管心作半径为r D 的圆周运动,然后向下慢慢拉绳,使小球运动轨迹最后成为半径为r 1的圆,求(1)小球距管心r 1时速度大小。(2)由r D 缩到r 1过程中,力F 所作的功。 解 (1)绳子作用在 小球上的力始终通过中 心O ,是有心力,以小球 为研究对象,此力对O 的 力矩在小球运动过程中 始终为零,因此,在绳子缩短的过程中,小球对O 点的角动量守恒,即 1 0L L = 小球在r D 和r 1位置时的角动量大小 1100r mv r mv = 1 00r r v v = (2)可见,小球的速率增大了,动能也增大了,由功能定理得力所作的功 ??????-=-=-=1)(21 2 1)(21 2 1212102020210202021r r mv mv r r mv mv mv W

2 如图所示,定滑轮半径为r ,可绕垂直通过轮心的无摩擦水平轴转动,转动惯量为J ,轮上绕有一轻绳,一端与劲度系数为k 的轻弹簧相连,另一端与质量为m 的物体相连。 物体置于倾角为θ的光滑斜面上。 开始时,弹簧处于自然长度,物体速度为零,然后释放物体沿斜面下 滑,求物体下滑距离l 时, 物体速度的大小。 解 把物体、滑轮、弹簧、 轻绳和地球为研究系统。在 物体由静止下滑的过程中,只有重力、弹性力作功,其它外力和非保守内力作功的和为零,故系统的机械能守恒。 设物体下滑l 时,速度为v ,此时滑轮的角速度为ω 则 θωsin 2121210222mgl mv J kl -++= (1) 又有 ωr v = (2) 由式(1)和式(2)可得 m r J kl mgl v +-=22 sin 2θ

《大学物理 》下期末考试 有答案

《大学物理》(下)期末统考试题(A 卷) 说明 1考试答案必须写在答题纸上,否则无效。请把答题纸撕下。 一、 选择题(30分,每题3分) 1.一质点作简谐振动,振动方程x=Acos(ωt+φ),当时间t=T/4(T 为周期)时,质点的速度为: (A) -Aωsinφ; (B) Aωsinφ; (C) -Aωcosφ; (D) Aωcosφ 参考解:v =dx/dt = -A ωsin (ωt+φ) ,cos )sin(2 4/?ω?ωπA A v T T t -=+?-== ∴选(C) 2.一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的 (A) 7/6 (B) 9/16 (C) 11/16 (D )13/16 (E) 15/16 参考解:,1615)(221242122122 1221=-=kA k kA kA mv A ∴选(E ) 3.一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中: (A) 它的动能转换成势能. (B) 它的势能转换成动能. (C) 它从相邻的一段质元获得能量其能量逐渐增大. (D) 它把自己的能量传给相邻的一段质元,其能量逐渐减小. 参考解:这里的条件是“平面简谐波在弹性媒质中传播”。由于弹性媒质的质元在平衡位置时的形变最大,所以势能动能最大,这时动能也最大;由于弹性媒质的质元在最大位移处时形变最小,所以势能也最小,这时动能也最小。质元的机械能由最大变到最小的过程中,同时也把该机械能传给相邻的一段质元。∴选(D )

4.如图所示,折射率为n 2、厚度为e 的透明介质薄膜 的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1 <n 2<n 3.若用波长为λ的单色平行光垂直入射到该薄膜 上,则从薄膜上、下两表面反射的光束①与②的光程差是 (A) 2n 2 e . (B) 2n 2 e -λ / 2 . (C) 2n 2 e -λ. (D) 2n 2 e -λ / (2n 2). 参考解:半波损失现象发生在波由波疏媒质到波密媒质的界面的反射现象中。两束光分别经上下表面反射时,都是波疏媒质到波密媒质的界面的反射,同时存在着半波损失。所以,两束反射光的光程差是2n 2 e 。 ∴选(A ) 5.波长λ=5000?的单色光垂直照射到宽度a=0.25mm 的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹,今测得屏幕上中央明条纹一侧第三个暗条纹和另一侧第三个暗条纹之间的距离d=12mm ,则凸透镜的焦距f 为: (A) 2m (B) 1m (C) 0.5m (D) 0.2m ; (E) 0.1m 参考解:由单缝衍射的暗纹公式, asin φ = 3λ, 和单缝衍射装置的几何关系 ftg φ = d/2, 另,当φ角很小时 sin φ = tg φ, 有 1103 310500061025.0101232==?=---?????λa d f (m ) , ∴选(B ) 6.测量单色光的波长时,下列方法中哪一种方法最为准确? (A) 双缝干涉 (B) 牛顿环 (C) 单缝衍射 (D) 光栅衍射 参考解:从我们做过的实验的经历和实验装置可知,最为准确的方法光栅衍射实验,其次是牛顿环实验。 ∴选(D ) 7.如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为I 0的自然光垂直入射在偏振片上,则出射光强为 (A) I 0 / 8. (B) I 0 / 4. (C) 3 I 0 / 8. (D) 3 I 0 / 4. 参考解:穿过第一个偏振片自然光的光强为I 0/2。随后,使用马吕斯定律,出射光强 10201 60cos I I I == ∴ 选(A ) n 3

大学物理刚体部分知识点总结复习过程

一、刚体的简单运动知识点总结 1.刚体运动的最简单形式为平行移动和绕定轴转动。 2.刚体平行移动。 ·刚体内任一直线段在运动过程中,始终与它的最初位置平行,此种运动称为刚体平行移动,或平移。 ·刚体作平移时,刚体内各点的轨迹形状完全相同,各点的轨迹可能是直线,也可能是曲线。 ·刚体作平移时,在同一瞬时刚体内各点的速度和加速度大小、方向都相同。 3.刚体绕定轴转动。 ?刚体运动时,其中有两点保持不动,此运动称为刚体绕定轴转动,或转动。 ?刚体的转动方程φ=f(t)表示刚体的位置随时间的变化规律。 ?角速度ω表示刚体转动快慢程度和转向,是代数量,。角速度也可以用矢量表示,。 ?角加速度表示角速度对时间的变化率,是代数量,,当α与ω同号时,刚体作匀加速转动;当α与ω异号时,刚体作匀减速转动。角加速度也可以用矢量表示,。 ?绕定轴转动刚体上点的速度、加速度与角速度、角加速度的关系: 。 速度、加速度的代数值为。 ?传动比。

二.转动定律转动惯量 转动定律 力矩相同,若转动惯量不同,产生的角加速度不同 与牛顿定律比较: 转动惯量 刚体绕给定轴的转动惯量J 等于刚体中每个质元的质量与该质元到转轴距离的平方的乘积之总和。 定义式质量不连续分布 质量连续分布 物理意义 转动惯量是描述刚体在转动中的惯性大小的物理量。 它与刚体的形状、质量分布以及转轴的位置有关。 计算转动惯量的三个要素:

(1)总质量; (2)质量分布; (3)转轴的位置 (1) J 与刚体的总质量有关 几种典型的匀质刚体的转动惯量 平行轴定理和转动惯量的可加性 1) 平行轴定理 设刚体相对于通过质心轴线的转动惯量为Ic ,相对于与之平行的另一轴的转动惯量为I ,则可以证明I 与Ic 之间有下列关系 2c I I md =+ 2)转动惯量的可加性 对同一转轴而言,物体各部分转动惯量之和 等于整个物体的转动惯量。 三 角动量 角动量守恒定律 2 c I I m d =+

大学物理(上)期末试题(1)

大学物理(上)期末试题(1) 班级 学号 姓名 成绩 一 填空题 (共55分) 请将填空题答案写在卷面指定的划线处。 1(3分)一质点沿x 轴作直线运动,它的运动学方程为x =3+5t +6t 2-t 3 (SI),则 (1) 质点在t =0时刻的速度=0v __________________; (2) 加速度为零时,该质点的速度v =____________________。 2 (4分)两个相互作用的物体A 和B ,无摩擦地在一条水平直线上运动。物体A 的动量是时间的函数,表达式为 P A = P 0 – b t ,式中P 0 、b 分别为正值常量,t 是时间。在下列两种情况下,写出物体B 的动量作为时间函数的表达式: (1) 开始时,若B 静止,则 P B 1=______________________; (2) 开始时,若B 的动量为 – P 0,则P B 2 = _____________。 3 (3分)一根长为l 的细绳的一端固定于光滑水平面上的O 点,另一端系一质量为m 的小球,开始时绳子是松弛的,小球与O 点的距离为h 。使小球以某个初速率沿该光滑水平面上一直线运动,该直线垂直于小球初始位置与O 点的连线。当小球与O 点的距离达到l 时,绳子绷紧从而使小球沿一个以O 点为圆心的圆形轨迹运动,则小球作圆周运动时的动能 E K 与初动能 E K 0的比值 E K / E K 0 =______________________________。 4(4分) 一个力F 作用在质量为 1.0 kg 的质点上,使之沿x 轴运动。已知在此力作用下质点的运动学方程为3243t t t x +-= (SI)。在0到4 s 的时间间隔内, (1) 力F 的冲量大小I =__________________。 (2) 力F 对质点所作的功W =________________。

大学物理下期末试题及答案

大学物理(下)试卷(A 卷) 院系: 班级:________ : 学号: 一、选择题(共30分,每题3分) 1. 设有一“无限大”均匀带正电荷的平面.取x 轴垂直带电平面,坐标原点在带电平面上,则 其周围空间各点的电场强度E 随距平面的位置 坐标x 变化的关系曲线为(规定场强方向沿x 轴正向为正、反之为负): [ ] 2. 如图所示,边长为a 的等边三角形的三个顶点上,分别放置 着三个正的点电荷q 、2q 、3q .若将另一正点电荷Q 从无穷远处移 到三角形的中心O 处,外力所作的功为: 0.0. 0.0 [ ] 3. 一个静止的氢离子(H +)在电场中被加速而获得的速率为一静止的氧离子(O +2 )在同一电场中且通过相同的路径被加速所获速率的: (A) 2倍. (B) 22倍. (C) 4倍. (D) 42倍. [ ] 4. 如图所示,一带负电荷的金属球,外面同心地罩一不带电的金属球壳,则在球壳中一点P 处的场强大小与电势(设无穷远处为电势零点)分别为: (A) E = 0,U > 0. (B) E = 0,U < 0. (C) E = 0,U = 0. (D) E > 0,U < 0.[ ] 5. C 1和C 2两空气电容器并联以后接电源充电.在电源保持联接的情况下,在C 1中插入一电介质板,如图所示, 则 (A) C 1极板上电荷增加,C 2极板上电荷减少. (B) C 1极板上电荷减少,C 2极板上电荷增加. x 3q 2

(C) C 1极板上电荷增加,C 2极板上电荷不变. (D) C 1极板上电荷减少,C 2极板上电荷不变. [ ] 6. 对位移电流,有下述四种说法,请指出哪一种说确. (A) 位移电流是指变化电场. (B) 位移电流是由线性变化磁场产生的. (C) 位移电流的热效应服从焦耳─楞次定律. (D) 位移电流的磁效应不服从安培环路定理. [ ] 7. 有下列几种说法: (1) 所有惯性系对物理基本规律都是等价的. (2) 在真空中,光的速度与光的频率、光源的运动状态无关. (3) 在任何惯性系中,光在真空中沿任何方向的传播速率都相同. 若问其中哪些说法是正确的, 答案是 (A) 只有(1)、(2)是正确的. (B) 只有(1)、(3)是正确的. (C) 只有(2)、(3)是正确的. (D) 三种说法都是正确的. [ ] 8. 在康普顿散射中,如果设反冲电子的速度为光速的60%,则因散射使电子获得的能量是其静止能量的 (A) 2倍. (B) 1.5倍. (C) 0.5倍. (D) 0.25倍. [ ] 9. 已知粒子处于宽度为a 的一维无限深势阱中运动的波函数为 a x n a x n π= sin 2)(ψ , n = 1, 2, 3, … 则当n = 1时,在 x 1 = a /4 →x 2 = 3a /4 区间找到粒子的概率为 (A) 0.091. (B) 0.182. (C) 1. . (D) 0.818. [ ] 10. 氢原子中处于3d 量子态的电子,描述其量子态的四个量子数(n ,l ,m l ,m s )可能取的值为 (A) (3,0,1,21- ). (B) (1,1,1,21 -). (C) (2,1,2,21). (D) (3,2,0,2 1 ). [ ] 二、填空题(共30分) 11.(本题3分) 一个带电荷q 、半径为R 的金属球壳,壳是真空,壳外是介电常量为 的无限大各向同 性均匀电介质,则此球壳的电势U =________________.

大学物理第3章刚体力学习题解答

第3章 刚体力学习题解答 3.13 某发动机飞轮在时间间隔t 内的角位移为 ):,:(43s t rad ct bt at θθ-+=。求t 时刻的角速度和角加速度。 解:23212643ct bt ct bt a dt d dt d -== -+== ωθβω 3.14桑塔纳汽车时速为166km/h ,车轮滚动半径为0.26m ,发动机转速与驱动轮转速比为0.909, 问发动机转速为每分多少转? 解:设车轮半径为R=0.26m ,发动机转速为n 1, 驱动轮转速为n 2, 汽车速度为v=166km/h 。显然,汽车前进的速度就是驱动轮边缘的线速度, 909.0/2212Rn Rn v ππ==,所以: min /1054.1/1024.93426.014.3210 166909.02909.013 rev h rev n R v ?=?===????π 3.15 如题3-15图所示,质量为m 的空心圆柱体,质量均匀分布,其内外半径为r 1和r 2,求对通过其中心轴的转动惯量。 解:设圆柱体长为h ,则半径为r ,厚为dr 的薄圆筒的质量dm 为: 2..dm h r dr ρπ= 对其轴线的转动惯量dI z 为 232..z dI r dm h r dr ρπ== 2 1 222211 2..()2 r z r I h r r dr m r r ρπ== -? 3.17 如题3-17图所示,一半圆形细杆,半径为 ,质量为 ,求对过细杆二端 轴的转动惯量。 解:如图所示,圆形细杆对过O 轴且垂直于圆形细杆所在平面的轴的转动惯量为mR 2,根据垂直轴定理z x y I I I =+和问题的对称性知:圆形细杆对过 轴的转动惯量为 1 2 mR 2,由转动惯量的可加性可求得:半圆形细杆对过细杆二端 轴的转动惯量为:21 4 AA I mR '=

大学物理刚体部分知识点总结上课讲义

大学物理刚体部分知 识点总结

一、刚体的简单运动知识点总结 1.刚体运动的最简单形式为平行移动和绕定轴转动。 2.刚体平行移动。 ·刚体内任一直线段在运动过程中,始终与它的最初位置平行,此种运动称为刚体平行移动,或平移。 ·刚体作平移时,刚体内各点的轨迹形状完全相同,各点的轨迹可能是直线,也可能是曲线。 ·刚体作平移时,在同一瞬时刚体内各点的速度和加速度大小、方向都相同。 3.刚体绕定轴转动。 ?刚体运动时,其中有两点保持不动,此运动称为刚体绕定轴转动,或转动。 ?刚体的转动方程φ=f(t)表示刚体的位置随时间的变化规律。 ?角速度ω表示刚体转动快慢程度和转向,是代数量,。角速度也可以用矢量表示,。 ?角加速度表示角速度对时间的变化率,是代数量,,当α与ω同号时,刚体作匀加速转动;当α与ω异号时,刚体作匀减速转动。角加速度也可以用矢量表示,。 ?绕定轴转动刚体上点的速度、加速度与角速度、角加速度的关系: 。 速度、加速度的代数值为。

?传动比。 二.转动定律转动惯量 转动定律 力矩相同,若转动惯量不同,产生的角加速度不同 与牛顿定律比较: 转动惯量 刚体绕给定轴的转动惯量 J 等于刚体中每个质元的质量与该质元到转轴距离的平方的乘积之总和。 定义式质量不连续分布

质量连续分布 物理意义 转动惯量是描述刚体在转动中的惯性大小的物理量。 它与刚体的形状、质量分布以及转轴的位置有关。 计算转动惯量的三个要素: (1)总质量; (2)质量分布; (3)转轴的位置 (1) J 与刚体的总质量有关 几种典型的匀质刚体的转动惯量 刚体转轴位置转动惯量J 细棒(质量为m,长为l)过中心与棒垂直212 ml 细棒(质量为m,长为l)过一点与棒垂直23 ml 细环(质量为m,半径为 R)过中心对称轴与环面垂直2 mR 细环(质量为m,半径为 R)直径22 mR 圆盘(质量为m,半径为 R)过中心与盘面垂直22 mR 圆盘(质量为m,半径为直径24 mR

相关文档
最新文档